1
|
Investigating the Diversity of Wolbachia across the Spiny Ants (Polyrhachis). DIVERSITY 2023. [DOI: 10.3390/d15030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Among insects, Wolbachia is an exceedingly common bacterial endosymbiont with a range of consequences of infection. Despite the frequency of Wolbachia infection, very little is known about this bacteria’s diversity and role within hosts, especially within ant hosts. In this study, we analyze the occurrence and diversity of Wolbachia across the spiny ants (Polyrhachis), a large and geographically diverse genus. Polyrhachis samples from throughout the host genus’ phylogenetic and biogeographical range were first screened for single infections of Wolbachia using the wsp gene and Sanger sequencing. The multilocus sequence typing (MLST) scheme was then used on these singly infected samples to identify the Wolbachia strains. A Wolbachia phylogeny was inferred from the Polyrhachis samples analyzed in this study as well as other Formicidae MLST profiles from the MLST online database. We hypothesized that three key host factors were impacting Wolbachia diversity within the Polyrhachis genus: biogeography, phylogeny, and species level. The results suggest that the phylogeny and biogeography of Polyrhachis hosts have no impact on Wolbachia diversity; however, species level may have some limited influence. Additionally, Wolbachia strains appear to group according to being either Old World or New World strains. Among the taxa able to form complete MLST allelic profiles, all twenty are seemingly new strains.
Collapse
|
2
|
Xiao Q, Wang L, Chen SQ, Zheng CY, Lu YY, Xu YJ. Gut Microbiome Composition of the Fire Ant Solenopsis invicta: an Integrated Analysis of Host Genotype and Geographical Distribution. Microbiol Spectr 2023; 11:e0358522. [PMID: 36602316 PMCID: PMC9927370 DOI: 10.1128/spectrum.03585-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Gut symbiotic bacteria are known to be closely related to insect development, nutrient metabolism, and disease resistance traits, but the most important factors leading to changes in these communities have not been well clarified. To address this, we examined the associations between the gut symbiotic bacteria and the host genotype and geographical distribution of Solenopsis invicta in China, where it is invasive and has spread primarily by human-mediated dispersal. Thirty-two phyla were detected in the gut symbiotic bacteria of S. invicta. Proteobacteria were the most dominant group among the gut symbiotic bacteria. Furthermore, the Bray-Curtis dissimilarity matrices of the gut symbiotic bacteria were significantly positively correlated with the geographical distance between the host ant colonies, but this relationship was affected by the social form. The distance between monogyne colonies had a significant effect on the Bray-Curtis dissimilarity matrices of gut symbiotic bacteria, but the distance between polygyne colonies did not. Moreover, the Bray-Curtis dissimilarity matrices were positively correlated with Nei's genetic distance of the host but were not correlated with the COI-based genetic distance. This study provides a scientific basis for further understanding the ecological adaptability of red imported fire ants during invasion and dispersal. IMPORTANCE We demonstrated that gut microbiota composition and diversity varied among populations. These among-population differences were associated with host genotype and geographical distribution. Our results suggested that population-level differences in S. invicta gut microbiota may depend more on environmental factors than on host genotype.
Collapse
Affiliation(s)
- Qian Xiao
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Lei Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Si-Qi Chen
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Chun-Yan Zheng
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Yi-Juan Xu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Ramalho MO, Moreau CS. Untangling the complex interactions between turtle ants and their microbial partners. Anim Microbiome 2023; 5:1. [PMID: 36597141 PMCID: PMC9809061 DOI: 10.1186/s42523-022-00223-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To understand the patterns of biodiversity it is important to consider symbiotic interactions as they can shape animal evolution. In several ant genera symbiotic interactions with microbial communities have been shown to have profound impacts for the host. For example, we know that for Camponotini the gut community can upgrade the host's diet and is shaped by development and colony interactions. However, what is true for one ant group may not be true for another. For the microbial communities that have been examined across ants we see variation in the diversity, host factors that structure these communities, and the function these microbes provide for the host. In the herbivorous turtle ants (Cephalotes) their stable symbiotic interactions with gut bacteria have persisted for 50 million years with the gut bacteria synthesizing essential amino acids that are used by the host. Although we know the function for some of these turtle ant-associated bacteria there are still many open questions. RESULTS In the present study we examined microbial community diversity (16S rRNA and 18S rRNA amplicons) of more than 75 species of turtle ants across different geographic locations and in the context of the host's phylogenetic history. Our results show (1) that belonging to a certain species and biogeographic regions are relevant to structuring the microbial community of turtle ants; (2) both bacterial and eukaryotic communities demonstrated correlations and cooccurrence within the ant host; (3) within the core bacterial community, Burkholderiaceae bacterial lineage were the only group that showed strong patterns of codiversification with the host, which is remarkable since the core bacterial community is stable and persistent. CONCLUSIONS We concluded that for the turtle ants there is a diverse and evolutionarily stable core bacterial community, which leads to interesting questions about what microbial or host factors influence when these partner histories become evolutionarily intertwined.
Collapse
Affiliation(s)
- Manuela O. Ramalho
- grid.268132.c0000 0001 0701 2416Department of Biology, West Chester University, 750 South Church Street, West Chester, PA 19383 USA
| | - Corrie S. Moreau
- grid.5386.8000000041936877XDepartment of Entomology, Cornell University, Ithaca, NY 14853 USA ,grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
4
|
Yang Y, Liu X, Guo J, Xu H, Liu Y, Lu Z. Gut bacterial communities and their assembly processing in Cnaphalocrocis medinalis from different geographic sources. Front Microbiol 2022; 13:1035644. [PMID: 36590437 PMCID: PMC9797858 DOI: 10.3389/fmicb.2022.1035644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The insect gut harbors numerous microorganisms that may have functions in development and reproduction, digestion, immunity and protection, and detoxification. Recently, the influence factors on gut microbiota were evaluated in the rice leaffolder Cnaphalocrocis medinalis, a widespread insect pest in paddy fields. However, the relationship between gut microbiota composition and geography is poorly understood in C. medinalis. Methods To reveal the patterns of C. medinalis gut bacterial communities across geographic sources and the ecological processes driving the patterns, C. medinalis were sampled from six geographic sources in China, Thailand, and Vietnam in 2016, followed by gut bacterial 16S ribosomal RNA gene sequencing. Results A total of 22 bacterial phyla, 56 classes, 84 orders, 138 families, 228 genera, and 299 species were generated in C. medinalis from six geographic sources. All alpha diversity indices differed among the samples from different geographic sources. Analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) both revealed significant differences in the gut microbiota of C. medinalis from six geographic sources. A total of 94 different taxa were screened as indicators for the gut microbiota of C. medinalis from six geographic sources by linear discriminant analysis effect size (LEfSe). The gene ontology (GO) pathways of the gut microbiota in C. medinalis differed among geographic sources. In total, the bacterial communities within geographic sources were mainly determined by stochastic processes, and those between geographic sources were mainly determined by deterministic processes. Discussion This study elucidates that geography plays a crucial role in shaping the gut microbiota of C. medinalis. Thus, it enriches our knowledge of gut bacteria in C. medinalis and sheds light on the mechanisms underlying C. medinalis gut microbial shifts across geography.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,College of Plant Protection, Southwest University, Chongqing, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China,*Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Zhongxian Lu,
| |
Collapse
|
5
|
Graber LC, Ramalho MO, Powell S, Moreau CS. Identifying the Role of Elevation, Geography, and Species Identity in Structuring Turtle Ant (Cephalotes Latreille, 1802) Bacterial Communities. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02128-z. [PMID: 36352137 DOI: 10.1007/s00248-022-02128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bacterial communities in animals are often necessary for hosts to survive, particularly for hosts with nutrient-limited diets. The composition, abundance, and richness of these bacterial communities may be shaped by host identity and external ecological factors. The turtle ants (genus Cephalotes) are predominantly herbivorous and known to rely on bacterial communities to enrich their diet. Cephalotes have a broad Neotropical distribution, with high diversity in the South American Cerrado, a geologically and biologically diverse savanna. Using 16S rRNA amplicon sequencing, we examined the bacterial communities of forty-one Cephalotes samples of sixteen different species collected from multiple locations across two sites in the Cerrado (MG, Brazil) and compared the bacterial communities according to elevation, locality, species, and species group, defined by host phylogeny. Beta diversity of bacterial communities differed with respect to all categories but particularly strongly when compared by geographic location, species, and species group. Differences seen in species and species groups can be partially explained by the high abundance of Mesorhizobium in Cephalotes pusillus and Cephalotes depressus species groups, when compared to other clades via the Analysis of Composition of Microbiome (ANCOM). Though the Cephalotes bacterial community is highly conserved, results from this study indicate that multiple external factors can affect and change bacterial community composition and abundance.
Collapse
Affiliation(s)
- Leland C Graber
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY, 14853, USA.
| | - Manuela O Ramalho
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY, 14853, USA
- Department of Biology, West Chester University, West Chester, PA, USA
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, D.C., USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY, 14853, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Zhou X, Zhang HL, Lu XW, Zhao P, Liu F, Qi ZH, Tang F, Duan WJ, Cai L. Applying meta-data of soybean grain in origin trace and quarantine inspection. Food Res Int 2022; 162:111998. [DOI: 10.1016/j.foodres.2022.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
|
7
|
Ishikawa S, Huang M, Tomita A, Kurihara Y, Watanabe R, Iwai H, Arakawa K. Complete Genome Sequences of Four Bacteria Isolated from the Gut of a Spiny Ant ( Polyrhachis lamellidens). Microbiol Resour Announc 2022; 11:e0033322. [PMID: 35658703 PMCID: PMC9302085 DOI: 10.1128/mra.00333-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
We isolated and sequenced the complete genomes of four bacteria from the gut contents of a spiny ant (Polyrhachis lamellidens) sampled from a primeval beech forest in Yamagata Prefecture, Japan. The isolates belong to the genera Tsukamurella, Enterococcus, Lysinibacillus, and Streptomyces and provide insights into the functional roles of microbiomes of ants.
Collapse
Affiliation(s)
- Sora Ishikawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Muyang Huang
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Atsuki Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Yu Kurihara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Riki Watanabe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Hironori Iwai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
8
|
Grothjan JJ, Young EB. Bacterial Recruitment to Carnivorous Pitcher Plant Communities: Identifying Sources Influencing Plant Microbiome Composition and Function. Front Microbiol 2022; 13:791079. [PMID: 35359741 PMCID: PMC8964293 DOI: 10.3389/fmicb.2022.791079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Processes influencing recruitment of diverse bacteria to plant microbiomes remain poorly understood. In the carnivorous pitcher plant Sarracenia purpurea model system, individual pitchers open to collect rainwater, invertebrates and a diverse microbial community, and this detrital food web is sustained by captured insect prey. This study examined how potential sources of bacteria affect the development of the bacterial community within pitchers, how the host plant tissue affects community development and how established vs. assembling communities differ. In a controlled greenhouse experiment, seven replicate pitchers were allocated to five treatments to exclude specific bacterial sources or host tissue: milliQ water only, milliQ + insect prey, rainwater + prey, established communities + prey, artificial pitchers with milliQ + prey. Community composition and functions were examined over 8-40 weeks using bacterial gene sequencing and functional predictions, measurements of cell abundance, hydrolytic enzyme activity and nutrient transformations. Distinct community composition and functional differences between artificial and real pitchers confirm an important influence of host plant tissue on community development, but also suggest this could be partially related to host nutrient uptake. Significant recruitment of bacteria to pitchers from air was evident from many taxa common to all treatments, overlap in composition between milliQ, milliQ + prey, and rainwater + prey treatments, and few taxa unique to milliQ only pitchers. Community functions measured as hydrolytic enzyme (chitinase, protease) activity suggested a strong influence of insect prey additions and were linked to rapid transformation of insect nutrients into dissolved and inorganic sources. Bacterial taxa found in 6 of 7 replicate pitchers within treatments, the "core microbiome" showed tighter successional trajectories over 8 weeks than all taxa. Established pitcher community composition was more stable over 8 weeks, suggesting a diversity-stability relationship and effect of microinvertebrates on bacteria. This study broadly demonstrates that bacterial composition in host pitcher plants is related to both stochastic and specific bacterial recruitment and host plants influence microbial selection and support microbiomes through capture of insect prey.
Collapse
Affiliation(s)
- Jacob J. Grothjan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Erica B. Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
9
|
Zheng Z, Zhao M, Zhang Z, Hu X, Xu Y, Wei C, He H. Lactic Acid Bacteria Are Prevalent in the Infrabuccal Pockets and Crops of Ants That Prefer Aphid Honeydew. Front Microbiol 2022; 12:785016. [PMID: 35126329 PMCID: PMC8814368 DOI: 10.3389/fmicb.2021.785016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023] Open
Abstract
Ants are evolutionarily successful species and occupy diverse trophic and habitat niches on the earth. To fulfill dietary requirements, ants have established commensalism with both sap-feeding insects and bacteria. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacterial composition and structure of the digestive tracts in three species of Formica ants and Lasius niger (Linnaeus)—species that predominantly feed on honeydew secreted by aphids. We found that bacterial communities displayed species- and colony-level signatures, and that bacterial communities in the infrabuccal pockets and crops were different from those in the midguts and hindguts. Lactobacillus and Wolbachia were dominant in the infrabuccal pockets and crops of workers, whereas Wolbachia was dominant in the midguts, hindguts and brood (larvae, pupae and cocoons). To learn more about the dominant Lactobacillus in ants, we assessed its prevalence in a wide range of aphid-tending ants using diagnostic PCR. We found that Lactobacillus was more prevalent in Formicinae than in Myrmicinae species. We also isolated four strains of lactic acid bacteria (Lactobacillus sanfranciscensis, Lactobacillus lindneri, Weissella cibaria and Fructobacillus sp.) from the infrabuccal pockets and crops of aphid-tending ants using a culture-dependent method. Two predominant lactic acid bacterial isolates, Lactobacillus sanfranciscensis (La2) and Weissella cibaria (La3), exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew. These findings contribute to further understanding the association between ants, aphids and bacteria, and provide additional information on the function of lactic acid bacteria in ants.
Collapse
Affiliation(s)
- Zhou Zheng
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Mengqin Zhao
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Zhijun Zhang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Hu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Yang Xu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Cong Wei,
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
- Hong He,
| |
Collapse
|
10
|
Zani RDOA, Ferro M, Bacci M. Three phylogenetically distinct and culturable diazotrophs are perennial symbionts of leaf-cutting ants. Ecol Evol 2021; 11:17686-17699. [PMID: 35003632 PMCID: PMC8717316 DOI: 10.1002/ece3.8213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023] Open
Abstract
The obligate mutualistic basidiomycete fungus, Leucocoprinus gongylophorus, mediates nutrition of leaf-cutting ants with carbons from vegetal matter. In addition, diazotrophic Enterobacteriales in the fungus garden and intestinal Rhizobiales supposedly mediate assimilation of atmospheric nitrogen, and Entomoplasmatales in the genus Mesoplasma, as well as other yet unidentified strains, supposedly mediate ant assimilation of other compounds from vegetal matter, such as citrate, fructose, and amino acids. Together, these nutritional partners would support the production of high yields of leafcutter biomass. In the present investigation, we propose that three phylogenetically distinct and culturable diazotrophs in the genera Ralstonia, Methylobacterium, and Pseudomonas integrate this symbiotic nutrition network, facilitating ant nutrition on nitrogen. Strains in these genera were often isolated and directly sequenced in 16S rRNA libraries from the ant abdomen, together with the nondiazotrophs Acinetobacter and Brachybacterium. These five isolates were underrepresented in libraries, suggesting that none of them is dominant in vivo. Libraries have been dominated by four uncultured Rhizobiales strains in the genera Liberibacter, Terasakiella, and Bartonella and, only in Acromyrmex ants, by the Entomoplasmatales in the genus Mesoplasma. Acromyrmex also presented small amounts of two other uncultured Entomoplasmatales strains, Entomoplasma and Spiroplasma. The absence of Entomoplasmatales in Atta workers implicates that the association with these bacteria is not mandatory for ant biomass production. Most of the strains that we detected in South American ants were genetically similar with strains previously described in association with leafcutters from Central and North America, indicating wide geographic dispersion, and suggesting fixed ecological services.
Collapse
Affiliation(s)
| | - Milene Ferro
- Centro de Estudos de Insetos Sociais (CEIS)Universidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais (CEIS)Universidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
- Departamento de Biologia Geral e AplicadaUniversidade Estadual Paulista (UNESP)Rio Claro ‐ SPBrazil
| |
Collapse
|
11
|
Malacrinò A. Host species identity shapes the diversity and structure of insect microbiota. Mol Ecol 2021; 31:723-735. [PMID: 34837439 DOI: 10.1111/mec.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
As for most of the life that inhabits our planet, microorganisms play an essential role in insect nutrition, reproduction, defence, and support their host in many other functions. More recently, we assisted to an exponential growth of studies describing the taxonomical composition of bacterial communities across insects' phylogeny. However, there is still an outstanding question that needs to be answered: Which factors contribute most to shape insects' microbiomes? This study tries to find an answer to this question by taking advantage of publicly available sequencing data and reanalysing over 4000 samples of insect-associated bacterial communities under a common framework. Results suggest that insect taxonomy has a wider impact on the structure and diversity of their associated microbial communities than the other factors considered (diet, sex, life stage, sample origin and treatment). However, when specifically testing for signatures of codiversification of insect species and their microbiota, analyses found weak support for this, suggesting that while insect species strongly drive the structure and diversity of insect microbiota, the diversification of those microbial communities did not follow their host's phylogeny. Furthermore, a parallel survey of the literature highlights several methodological limitations that need to be considered in the future research endeavours.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
12
|
Possible impacts of the predominant Bacillus bacteria on the Ophiocordyceps unilateralis s. l. in its infected ant cadavers. Sci Rep 2021; 11:22695. [PMID: 34811424 PMCID: PMC8609033 DOI: 10.1038/s41598-021-02094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Animal hosts infected and killed by parasitoid fungi become nutrient-rich cadavers for saprophytes. Bacteria adapted to colonization of parasitoid fungi can be selected and can predominate in the cadavers, actions that consequently impact the fitness of the parasitoid fungi. In Taiwan, the zombie fungus, Ophiocordyceps unilateralis sensu lato (Clavicipitaceae: Hypocreales), was found to parasitize eight ant species, with preference for a principal host, Polyrhachis moesta. In this study, ant cadavers grew a fungal stroma that was predominated by Bacillus cereus/thuringiensis. The bacterial diversity in the principal ant host was found to be lower than the bacterial diversity in alternative hosts, a situation that might enhance the impact of B. cereus/thuringiensis on the sympatric fungus. The B. cereus/thuringiensis isolates from fungal stroma displayed higher resistance to a specific naphthoquinone (plumbagin) than sympatric bacteria from the environment. Naphthoquinones are known to be produced by O. unilateralis s. l., and hence the resistance displayed by B. cereus/thuringiensis isolates to these compounds suggests an advantage to B. cereus/thuringiensis to grow in the ant cadaver. Bacteria proliferating in the ant cadaver inevitably compete for resources with the fungus. However, the B. cereus/thuringiensis isolates displayed in vitro capabilities of hemolysis, production of hydrolytic enzymes, and antagonistic effects to co-cultured nematodes and entomopathogenic fungi. Thus, co-infection with B. cereus/thuringiensis offers potential benefits to the zombie fungus in killing the host under favorable conditions for reproduction, digesting the host tissue, and protecting the cadaver from being taken over by other consumers. With these potential benefits, the synergistic effect of B. cereus/thuringiensis on O. unilateralis infection is noteworthy given the competitive relationship of these two organisms sharing the same resource.
Collapse
|
13
|
Zhang W, Liu F, Zhu Y, Han R, Xu L, Liu J. Differing Dietary Nutrients and Diet-Associated Bacteria Has Limited Impact on Spider Gut Microbiota Composition. Microorganisms 2021; 9:2358. [PMID: 34835483 PMCID: PMC8618231 DOI: 10.3390/microorganisms9112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
Spiders are a key predator of insects across ecosystems and possess great potential as pest control agents. Unfortunately, it is difficult to artificially cultivate multiple generations of most spider species. Since gut bacterial flora has been shown to significantly alter nutrient availability, it is plausible that the spiders' microbial community plays a key role in their unsuccessful breeding. However, both the gut microbial composition and its influencing factors in many spiders remain a mystery. In this study, the gut microbiota of Campanicola campanulata, specialists who prey on ants and are widely distributed across China, was characterized. After, the impact of diet and diet-associated bacteria on gut bacterial composition was evaluated. First, two species of prey ants (Lasius niger and Tetramorium caespitum) were collected from different locations and fed to C. campanulata. For each diet, we then profiled the nutritional content of the ants, as well as the bacterial communities of both the ants and spiders. Results showed that the protein and carbohydrate content varied between the two prey ant species. We isolated 682 genera from 356 families in the ants (dominant genera including Pseudomonas, Acinetobacter, Paraburkholderia, Staphylococcus, and Novosphingobium), and 456 genera from 258 families in the spiders (dominated by Pseudomonas). However, no significant differences were found in the gut microbiota of spiders that were fed the differing ants. Together, these results indicate that nutritional variation and diet-associated bacterial differences have a limited impact on the microbial composition of spider guts, highlighting that spiders may have a potentially stable internal environment and lay the foundation for future investigations into gut microbiota.
Collapse
Affiliation(s)
- Wang Zhang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, China; (F.L.); (Y.Z.)
| | - Fengjie Liu
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, China; (F.L.); (Y.Z.)
| | - Yang Zhu
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, China; (F.L.); (Y.Z.)
| | - Runhua Han
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA;
| | - Letian Xu
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, China; (F.L.); (Y.Z.)
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, China; (F.L.); (Y.Z.)
- School of Nuclear Technology and Chemistry, Biology University of Science and Technology, Xianning 437100, China
| |
Collapse
|
14
|
New Strains of Wolbachia Unveiling the Complexity of This Symbiotic Interaction in Solenopsis (Hymenoptera: Formicidae). MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria of the genus Wolbachia are widely distributed in arthropods, particularly in ants; nevertheless, it is still little explored with the Multilocus Sequence Typing (MLST) methodology, especially in the genus Solenopsis, which includes species native to South America. Ants from this genus have species distributed in a cosmopolitan way with some of them being native to South America. In Brazil, they are widely spread and preferentially associated with areas of human activity. This study aimed to investigate the diversity of Wolbachia in ants of the genus Solenopsis through the MLST approach and their phylogenetic relationship, including the relationship between mtDNA from the host and the related Wolbachia strain. We also tested the geographic correlation between the strains to infer transmission and distributional patterns. Fifteen new strains and eleven previously unknown alleles were obtained by sequencing and analyzing the five genes that make up the MLST. The phylogenetic relationship between the strains showed a polyphyletic pattern, indicative of the complexity of the evolutionary history of these bacteria in the analyzed species. We detected the correlation of host’s mitochondrial DNA with Wolbachia diversity which imply that related strains exist in related hosts, strongly suggesting the occurrence of vertical transfer. We found no specificity of the Wolbachia strain for a given geographic region that could indicate either that there is no horizontal transfer of the strain from the environment for the host or that the human action could be shuffling the distribution of the Solenopsis ants and the endosymbiont Wolbachia, as well. Our study highlights the complexity and novelty of Wolbachia diversity with this specific group of ants and the need for further studies that focus on understanding of this intricate relationship.
Collapse
|
15
|
Flynn PJ, D'Amelio CL, Sanders JG, Russell JA, Moreau CS. Localization of bacterial communities within gut compartments across Cephalotes turtle ants. Appl Environ Microbiol 2021; 87:AEM.02803-20. [PMID: 33579688 PMCID: PMC8091110 DOI: 10.1128/aem.02803-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Microbial communities within the animal digestive tract often provide important functions for their hosts. The composition of eukaryotes' gut bacteria can be shaped by host diet, vertical bacterial transmission, and physiological variation within the digestive tract. In several ant taxa, recent findings have demonstrated that nitrogen provisioning by symbiotic bacteria makes up for deficiencies in herbivorous diets. Using 16S rRNA amplicon sequencing and qPCR, this study examined bacterial communities at a fine scale across one such animal group, the turtle ant genus Cephalotes We analyzed the composition and colonization density across four portions of the digestive tract to understand how bacterial diversity is structured across gut compartments, potentially allowing for specific metabolic functions of benefit to the host. In addition, we aimed to understand if caste differentiation or host relatedness influences the gut bacterial communities of Cephalotes ants. Microbial communities were found to vary strongly across Cephalotes gut compartments in ways that transcend both caste and host phylogeny. Despite this, caste and host phylogeny still have detectable effects. We demonstrated microbial community divergence across gut compartments, possibly due to the varying function of each gut compartment for digestion.IMPORTANCE Gut compartments play an important role in structuring the microbial community within individual ants. The gut chambers of the turtle ant digestive tract differ remarkably in symbiont abundance and diversity. Furthermore, caste type explains some variation in the microbiome composition. Finally, the evolutionary history of the Cephalotes species structures the microbiome in our study, which elucidates a trend in which related ants maintain related microbiomes, conceivably owing to co-speciation. Amazingly, gut compartment-specific signatures of microbial diversity, relative abundance, composition, and abundance have been conserved over Cephalotes evolutionary history, signifying that this symbiosis has been largely stable for over 50 million years.
Collapse
Affiliation(s)
- Peter J Flynn
- University of Chicago, Committee on Evolutionary Biology, Chicago, IL, 60605 USA
| | - Catherine L D'Amelio
- Drexel University, Department of Biodiversity, Earth and Environmental Science, Philadelphia, PA, 19104 USA
| | - Jon G Sanders
- Cornell University, Department Ecology and Evolutionary Biology, Ithaca, NY, 14850 USA
| | - Jacob A Russell
- Drexel University, Department of Biodiversity, Earth and Environmental Science, Philadelphia, PA, 19104 USA
| | - Corrie S Moreau
- Cornell University, Department Ecology and Evolutionary Biology, Ithaca, NY, 14850 USA
- Cornell University, Department of Entomology, Ithaca, NY, 14850 USA
| |
Collapse
|
16
|
Halawani O, Dunn RR, Grunden AM, Smith AA. Bacterial exposure leads to variable mortality but not a measurable increase in surface antimicrobials across ant species. PeerJ 2020; 8:e10412. [PMID: 33344078 PMCID: PMC7719289 DOI: 10.7717/peerj.10412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Social insects have co-existed with microbial species for millions of years and have evolved a diversity of collective defenses, including the use of antimicrobials. While many studies have revealed strategies that ants use against microbial entomopathogens, and several have shown ant-produced compounds inhibit environmental bacterial growth, few studies have tested whether exposure to environmental bacteria represents a health threat to ants. We compare four ant species’ responses to exposure to Escherichia coli and Staphylococcus epidermidis bacteria in order to broaden our understanding of microbial health-threats to ants and their ability to defend against them. In a first experiment, we measure worker mortality of Solenopsis invicta, Brachymyrmex chinensis, Aphaenogaster rudis, and Dorymyrmex bureni in response to exposure to E. coli and S. epidermidis. We found that exposure to E. coli was lethal for S. invicta and D. bureni, while all other effects of exposure were not different from experimental controls. In a second experiment, we compared the antimicrobial ability of surface extracts from bacteria-exposed and non-exposed S. invicta and B. chinensis worker ants, to see if exposure to E. coli or S. epidermidis led to an increase in antimicrobial compounds. We found no difference in the inhibitory effects from either treatment group in either species. Our results demonstrate the susceptibility to bacteria is varied across ant species. This variation may correlate with an ant species’ use of surface antimicrobials, as we found significant mortality effects in species which also were producing antimicrobials. Further exploration of a wide range of both bacteria and ant species is likely to reveal unique and nuanced antimicrobial strategies and deepen our understanding of how ant societies respond to microbial health threats.
Collapse
Affiliation(s)
- Omar Halawani
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Amy M Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Adrian A Smith
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| |
Collapse
|
17
|
Du YE, Byun WS, Lee SB, Hwang S, Shin YH, Shin B, Jang YJ, Hong S, Shin J, Lee SK, Oh DC. Formicins, N-Acetylcysteamine-Bearing Indenone Thioesters from a Wood Ant-Associated Bacterium. Org Lett 2020; 22:5337-5341. [DOI: 10.1021/acs.orglett.0c01584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Bora Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Joon Jang
- Natura Center of Life and Environment, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Ramalho MDO, Martins C, Morini MSC, Bueno OC. What Can the Bacterial Community of Atta sexdens (Linnaeus, 1758) Tell Us about the Habitats in Which This Ant Species Evolves? INSECTS 2020; 11:E332. [PMID: 32481532 PMCID: PMC7349130 DOI: 10.3390/insects11060332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Studies of bacterial communities can reveal the evolutionary significance of symbiotic interactions between hosts and their associated bacteria, as well as identify environmental factors that may influence host biology. Atta sexdens is an ant species native to Brazil that can act as an agricultural pest due to its intense behavior of cutting plants. Despite being extensively studied, certain aspects of the general biology of this species remain unclear, such as the evolutionary implications of the symbiotic relationships it forms with bacteria. Using high-throughput amplicon sequencing of 16S rRNA genes, we compared for the first time the bacterial community of A. sexdens (whole ant workers) populations according to the habitat (natural versus agricultural) and geographical location. Our results revealed that the bacterial community associated with A. sexdens is mainly influenced by the geographical location, and secondarily by the differences in habitat. Also, the bacterial community associated with citrus differed significantly from the other communities due to the presence of Tsukamurella. In conclusion, our study suggests that environmental shifts may influence the bacterial diversity found in A. sexdens.
Collapse
Affiliation(s)
- Manuela de Oliveira Ramalho
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY 14850, USA
| | - Cintia Martins
- Campus Ministro Reis Velloso, Universidade Federal do Piauí, Av. São Sebastião, 2819, Parnaíba, Piauí 64202-020, Brazil;
| | - Maria Santina Castro Morini
- Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida e Souza, 200, Centro Cívico, Mogi das Cruzes 08780-911, SP, Brazil;
| | - Odair Correa Bueno
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
| |
Collapse
|
19
|
Development but not diet alters microbial communities in the Neotropical arboreal trap jaw ant Daceton armigerum: an exploratory study. Sci Rep 2020; 10:7350. [PMID: 32355187 PMCID: PMC7192945 DOI: 10.1038/s41598-020-64393-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
To better understand the evolutionary significance of symbiotic interactions in nature, microbiome studies can help to identify the ecological factors that may shape host-associated microbial communities. In this study we explored both 16S and 18S rRNA microbial communities of D. armigerum from both wild caught individuals collected in the Amazon and individuals kept in the laboratory and fed on controlled diets. We also investigated the role of colony, sample type, development and caste on structuring microbial communities. Our bacterial results (16S rRNA) reveal that (1) there are colony level differences between bacterial communities; (2) castes do not structure communities; (3) immature stages (brood) have different bacterial communities than adults; and 4) individuals kept in the laboratory with a restricted diet showed no differences in their bacterial communities from their wild caught nest mates, which could indicate the presence of a stable and persistent resident bacterial community in this host species. The same categories were also tested for microbial eukaryote communities (18S rRNA), and (5) developmental stage has an influence on the diversity recovered; (6) the diversity of taxa recovered has shown this can be an important tool to understand additional aspects of host biology and species interactions.
Collapse
|
20
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host, Red Wood Ant Formica polyctena (Hymenoptera: Formicidae)-A Case Study. INSECTS 2020; 11:E134. [PMID: 32092972 PMCID: PMC7073670 DOI: 10.3390/insects11020134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/23/2023]
Abstract
Formica polyctena belongs to the red wood ant species group. Its nests provide a stable, food rich, and temperature and humidity controlled environment, utilized by a wide range of species, called myrmecophiles. Here, we used the high-throughput sequencing of the 16S rRNA gene on the Illumina platform for identification of the microbiome profiles of six selected myrmecophilous beetles (Dendrophilus pygmaeus, Leptacinus formicetorum, Monotoma angusticollis, Myrmechixenus subterraneus, Ptenidium formicetorum and Thiasophila angulata) and their host F. polyctena. Analyzed bacterial communities consisted of a total of 23 phyla, among which Proteobacteria, Actinobacteria, and Firmicutes were the most abundant. Two known endosymbionts-Wolbachia and Rickettsia-were found in the analyzed microbiome profiles and Wolbachia was dominant in bacterial communities associated with F. polyctena, M. subterraneus, L. formicetorum and P. formicetorum (>90% of reads). In turn, M. angusticollis was co-infected with both Wolbachia and Rickettsia, while in the microbiome of T. angulata, the dominance of Rickettsia has been observed. The relationships among the microbiome profiles were complex, and no relative abundance pattern common to all myrmecophilous beetles tested was observed. However, some subtle, species-specific patterns have been observed for bacterial communities associated with D. pygmaeus, M. angusticollis, and T. angulata.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| | - Grzegorz K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Ewa Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Bernard Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| |
Collapse
|
21
|
Martins C, Moreau CS. Influence of host phylogeny, geographical location and seed harvesting diet on the bacterial community of globally distributed Pheidole ants. PeerJ 2020; 8:e8492. [PMID: 32117618 PMCID: PMC7006521 DOI: 10.7717/peerj.8492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/30/2019] [Indexed: 11/20/2022] Open
Abstract
The presence of symbiotic relationships between organisms is a common phenomenon found across the tree of life. In particular, the association of bacterial symbionts with ants is an active area of study. This close relationship between ants and microbes can significantly impact host biology and is also considered one of the driving forces in ant evolution and diversification. Diet flexibility of ants may explain the evolutionary success of the group, which may be achieved by the presence of endosymbionts that aid in nutrition acquisition from a variety of food sources. With more than 1,140 species, ants from the genus Pheidole have a worldwide distribution and an important role in harvesting seeds; this behavior is believed to be a possible key innovation leading to the diversification of this group. This is the first study to investigate the bacterial community associated with Pheidole using next generation sequencing (NGS) to explore the influences of host phylogeny, geographic location and food preference in shaping the microbial community. In addition, we explore if there are any microbiota signatures related to granivory. We identified Proteobacteria and Firmicutes as the major phyla associated with these ants. The core microbiome in Pheidole (those found in >50% of all samples) was composed of 14 ASVs and the most prevalent are family Burkholderiaceae and the genera Acinetobacter, Streptococcus, Staphylococcus, Cloacibacterium and Ralstonia. We found that geographical location and food resource may influence the bacterial community of Pheidole ants. These results demonstrate that Pheidole has a relatively stable microbiota across species, which suggests the bacterial community may serve a generalized function in this group.
Collapse
Affiliation(s)
- Cíntia Martins
- Department of Biological Science, Campus Ministro Reis Velloso, Universidade Federal do Piauí, Parnaíba, Piauí, Brazil.,Department of Science and Education, Field Museum of Natural History, Chicago, IL, United States of America
| | - Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, Chicago, IL, United States of America.,Departments of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
22
|
Reeves DD, Price SL, Ramalho MO, Moreau CS. The Diversity and Distribution of Wolbachia, Rhizobiales, and Ophiocordyceps Within the Widespread Neotropical Turtle Ant, Cephalotes atratus (Hymenoptera: Formicidae). NEOTROPICAL ENTOMOLOGY 2020; 49:52-60. [PMID: 31912447 DOI: 10.1007/s13744-019-00735-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Ants are an ecologically and evolutionarily diverse group, and they harbor a wide range of symbiotic microbial communities that often greatly affect their biology. Turtle ants (genus Cephalotes) engage in mutualistic relationships with gut bacteria and are exploited by microbial parasites. Studies have shown that associations among these microbial lineages and the turtle ant hosts vary geographically. However, these studies have been limited, and thorough within-species analyses of the variation and structure of these microbial communities have yet to be conducted. The giant turtle ant, Cephalotes atratus (Linnaeus 1758), is a geographically widespread, genetically diverse Neotropical species that has been sampled extensively across its geographic range, making it ideal for analysis of microbial associations. In this study, we verified the presence, genetic variation, and geographic patterns at the individual, colony, and population level of three microbial groups associated with the giant turtle ant: Wolbachia, a genus of facultative bacteria which are often parasitic, affecting host reproduction; Rhizobiales, a mutualistic order of bacteria hypothesized to be an obligate nutritional symbiont in turtle ants; and Ophiocordyceps, a genus of endoparasitic fungi infecting many arthropod species by manipulating their behavior for fungal reproduction. In this study, we found varying degrees of prevalence for two distantly related genotypes (haplogroups) of Wolbachia and high degree of prevalence of Rhizobiales across colonies with little genetic variation. In addition, we found low occurrence of Ophiocordyceps. This study highlights a key first step in understanding the diversity, distribution, and prevalence of the microbial community of C. atratus.
Collapse
Affiliation(s)
- D D Reeves
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - S L Price
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - M O Ramalho
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
- Department of Entomology, Cornell University, Ithaca, NY, USA.
| | - C S Moreau
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Kaczmarek Ł, Roszkowska M, Poprawa I, Janelt K, Kmita H, Gawlak M, Fiałkowska E, Mioduchowska M. Integrative description of bisexual Paramacrobiotus experimentalis sp. nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Mol Phylogenet Evol 2020; 145:106730. [PMID: 31904510 DOI: 10.1016/j.ympev.2019.106730] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
In a moss samples collected on Madagascar two populations of Paramacrobiotus experimentalis sp. nov. were found. Paramacrobiotus experimentalis sp. nov. with the presence of a microplacoid and areolatus type of eggs is similar to Pam. danielae, Pam. garynahi, Pam. hapukuensis, Pam. peteri, Pam. rioplatensis and Pam. savai, but it differs from them by some morphological and morphometric characters of the eggs. The p-distance between two COI haplotypes of Pam. experimentalis sp. nov. was 0.17%. In turn, the ranges of uncorrected genetic p-distances of all Paramacrobiotus species available in GenBank was from 18.27% (for Pam. lachowskae) to 25.26% (for Pam. arduus) with an average distance of 20.67%. We also found that Pam. experimentalis sp. nov. is bisexual. This observation was congruent on three levels: (i) morphological - specimen size dimorphism; (ii) structural (primary sexual characteristics) - females have an unpaired ovary while males have an unpaired testis and (iii) molecular - heterozygous and homozygous strains of the ITS-2 marker. Although symbiotic associations of hosts with bacteria (including endosymbiotic bacteria) are common in nature and these interactions exert various effects on the evolution, biology and reproductive ecology of hosts, there is still very little information on the bacterial community associated with tardigrades. To fill this gap and characterise the bacterial community of Pam. experimentalis sp. nov. populations and microbiome of its microhabitat, high throughput sequencing of the V3-V4 hypervariable regions in the bacterial 16S rRNA gene fragment was performed. The obtained 16S rRNA gene sequences ranged from 92,665 to 131,163. In total, 135 operational taxonomic units (OTUs) were identified across the rarefied dataset. Overall, both Pam. experimentalis sp. nov. populations were dominated by OTUs ascribed to the phylum Proteobacteria (89-92%) and Firmicutes (6-7%). In the case of samples from tardigrades' laboratory habitat, the most abundant bacterial phylum was Proteobacteria (51-90%) and Bacteroides (9-48%). In all compared microbiome profiles, only 16 of 137 OTUs were shared. We found also significant differences in beta diversity between the partly species-specific microbiome of Pam. experimentalis sp. nov. and its culturing environment. Two OTUs belonging to a putative bacterial endosymbiont were identified - Rickettsiales and Polynucleobacter. We also demonstrated that each bacterial community was rich in genes involved in membrane transport, amino acid metabolism, and carbohydrate metabolism.
Collapse
Affiliation(s)
- Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Milena Roszkowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Kamil Janelt
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Magdalena Gawlak
- The Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznań, Poland.
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Monika Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
24
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. The microbiota of the Lasius fuliginosus – Pella laticollis myrmecophilous interaction. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1844322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- A. Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - M. Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - G. K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - E. Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - B. Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
25
|
Diversity of Wolbachia Associated with the Giant Turtle Ant, Cephalotes atratus. Curr Microbiol 2019; 76:1330-1337. [PMID: 31254009 DOI: 10.1007/s00284-019-01722-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Symbiotic relationships between organisms are common throughout the tree of life, and often these organisms share an evolutionary history. In turtle ants (Cephalotes), symbiotic associations with bacteria are known to be especially important for supplementing the nutrients that their herbivorous diets do not provide. However, much remains unknown about the diversity of many common bacterial symbionts with turtle ants, such as Wolbachia. Here, we surveyed the diversity of Wolbachia, focusing on one species of turtle ant with a particularly wide geographic range, Cephalotes atratus. Colonies were collected from the entire range of C. atratus, and we detected the presence of Wolbachia by sequencing multiple individuals per colony for wsp. Then, using the multilocus sequence typing (MLST) approach, we determined each individual's unique sequence type (ST) based on comparison to sequences published in the Wolbachia MLST Database ( https://pubmlst.org/wolbachia/ ). The results of this study suggest that there is a high level of diversity of Wolbachia strains among colonies from different regions, while the diversity within colonies is very low. Additionally, 13 novel variants (alleles) were uncovered. These results suggest that the level of diversity of Wolbachia within species is affected by geography, and the high level of diversity observed among Cephalotes atratus populations may be explained by their wide geographic range.
Collapse
|
26
|
Brown BP, Wernegreen JJ. Genomic erosion and extensive horizontal gene transfer in gut-associated Acetobacteraceae. BMC Genomics 2019; 20:472. [PMID: 31182035 PMCID: PMC6558740 DOI: 10.1186/s12864-019-5844-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Symbiotic relationships between animals and bacteria have profound impacts on the evolutionary trajectories of each partner. Animals and gut bacteria engage in a variety of relationships, occasionally persisting over evolutionary timescales. Ants are a diverse group of animals that engage in many types of associations with taxonomically distinct groups of bacterial associates. Here, we bring into culture and characterize two closely-related strains of gut associated Acetobacteraceae (AAB) of the red carpenter ant, Camponotus chromaiodes. RESULTS Genome sequencing, assembly, and annotation of both strains delineate stark patterns of genomic erosion and sequence divergence in gut associated AAB. We found widespread horizontal gene transfer (HGT) in these bacterial associates and report elevated gene acquisition associated with energy production and conversion, amino acid and coenzyme transport and metabolism, defense mechanisms, and lysine export. Both strains have acquired the complete NADH-quinone oxidoreductase complex, plausibly from an Enterobacteriaceae origin, likely facilitating energy production under diverse conditions. Conservation of several lysine biosynthetic and salvage pathways and accumulation of lysine export genes via HGT implicate L-lysine supplementation by both strains as a potential functional benefit for the host. These trends are contrasted by genome-wide erosion of several amino acid biosynthetic pathways and pathways in central metabolism. We perform phylogenomic analyses on both strains as well as several free living and host associated AAB. Based on their monophyly and deep divergence from other AAB, these C. chromaiodes gut associates may represent a novel genus. Together, our results demonstrate how extensive horizontal transfer between gut associates along with genome-wide deletions leads to mosaic metabolic pathways. More broadly, these patterns demonstrate that HGT and genomic erosion shape metabolic capabilities of persistent gut associates and influence their genomic evolution. CONCLUSIONS Using comparative genomics, our study reveals substantial changes in genomic content in persistent associates of the insect gastrointestinal tract and provides evidence for the evolutionary pressures inherent to this environment. We describe patterns of genomic erosion and horizontal acquisition that result in mosaic metabolic pathways. Accordingly, the phylogenetic position of both strains of these associates form a divergent, monophyletic clade sister to gut associates of honey bees and more distantly to Gluconobacter.
Collapse
Affiliation(s)
- Bryan P Brown
- Nicholas School of the Environment, Duke University, 9 Circuit Dr., Durham, NC, 27710, USA. .,Genomic and Computational Biology, Duke University, 101 Science Dr., Durham, NC, 27705, USA. .,Center for Global Infectious Disease Research, Seattle Children's Research Institute, 1900 9 Ave., Seattle, WA, 98101, USA.
| | - Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, 9 Circuit Dr., Durham, NC, 27710, USA.,Genomic and Computational Biology, Duke University, 101 Science Dr., Durham, NC, 27705, USA
| |
Collapse
|
27
|
Kaczmarczyk A, Kucharczyk H, Kucharczyk M, Kapusta P, Sell J, Zielińska S. First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Sci Rep 2018; 8:14376. [PMID: 30258200 PMCID: PMC6158184 DOI: 10.1038/s41598-018-32747-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022] Open
Abstract
Insects' exoskeleton, gut, hemocoel, and cells are colonized by various microorganisms that often play important roles in their host life. Moreover, insects are frequently infected by vertically transmitted symbionts that can manipulate their reproduction. The aims of this study were the characterization of bacterial communities of four developmental stages of the fungivorous species Hoplothrips carpathicus (Thysanoptera: Phlaeothripidae), verification of the presence of Wolbachia, in silico prediction of metabolic potentials of the microorganisms, and sequencing its mitochondrial COI barcode. Taxonomy-based analysis indicated that the bacterial community of H. carpathicus contained 21 bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, Bacterioidetes and Firmicutes, and the most abundant classes were Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Betaproteobacteria, with different proportions in the total share. For pupa and imago (adult) the most abundant genus was Wolbachia, which comprised 69.95% and 56.11% of total bacterial population respectively. Moreover, similarity analysis of bacterial communities showed that changes in microbiome composition are congruent with the successive stages of H. carpathicus development. PICRUSt analysis predicted that each bacterial community should be rich in genes involved in membrane transport, amino acid metabolism, carbohydrate metabolism, replication and repair processes.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Halina Kucharczyk
- Department of Zoology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marek Kucharczyk
- Department of Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Przemysław Kapusta
- Center for Medical Genomics - OMICRON, Jagiellonian University Medical College, Kopernika 7c, 31-034, Kraków, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Sylwia Zielińska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Phage Consultants, Partyzantow 10/18, 80-254, Gdansk, Poland
| |
Collapse
|
28
|
Microbial Community Composition Reveals Spatial Variation and Distinctive Core Microbiome of the Weaver Ant Oecophylla smaragdina in Malaysia. Sci Rep 2018; 8:10777. [PMID: 30018403 PMCID: PMC6050294 DOI: 10.1038/s41598-018-29159-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/22/2018] [Indexed: 11/20/2022] Open
Abstract
The weaver ant Oecophylla smaragdina is an aggressive predator of other arthropods and has been employed as a biological control agent against many insect pests in plantations. Despite playing important roles in pest management, information about the microbiota of O. smaragdina is limited. In this work, a number of O. smaragdina colonies (n = 12) from Malaysia had been studied on their microbiome profile using Illumina 16S rRNA gene amplicon sequencing. We characterized the core microbiota associated with these O. smaragdina and investigated variation between colonies from different environments. Across all 12 samples, 97.8% of the sequences were assigned to eight bacterial families and most communities were dominated by families Acetobacteraceae and Lactobacillaceae. Comparison among colonies revealed predominance of Acetobacteraceae in O. smaragdina from forest areas but reduced abundance was observed in colonies from urban areas. In addition, our findings also revealed distinctive community composition in O. smaragdina showing little taxonomic overlap with previously reported ant microbiota. In summary, our work provides information regarding microbiome of O. smaragdina which is essential for establishing healthy colonies. This study also forms the basis for further study on microbiome of O. smaragdina from other regions.
Collapse
|
29
|
Boucias DG, Zhou Y, Huang S, Keyhani NO. Microbiota in insect fungal pathology. Appl Microbiol Biotechnol 2018; 102:5873-5888. [PMID: 29802479 DOI: 10.1007/s00253-018-9089-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
Significant progress has been made in the biochemical and genetic characterization of the host-pathogen interaction mediated by insect pathogenic fungi, with the most widely studied being the Ascomycetes (Hypocrealean) fungi, Metarhizium robertsii and Beauveria bassiana. However, few studies have examined the consequences and effects of host (insect) microbes, whether compatible or antagonistic, on the development and survival of entomopathogenic fungi. Host microbes can act on the insect cuticular surface, within the gut, in specialized insect microbe hosting structures, and within cells, and they include a wide array of facultative and/or obligate exosymbionts and endosymbionts. The insect microbiome differs across developmental stages and in response to nutrition (e.g., different plant hosts for herbivores) and environmental conditions, including exposure to chemical insecticides. Here, we review recent advances indicating that insect-pathogenic fungi have evolved a spectrum of strategies for exploiting or suppressing host microbes, including the production of antimicrobial compounds that are expressed at discrete stages of the infection process. Conversely, there is increasing evidence that some insects have acquired microbes that may be specialized in the production of antifungal compounds to combat infection by (entomopathogenic) fungi. Consideration of the insect microbiome in fungal insect pathology represents a new frontier that can help explain previously obscure ecological and pathological aspects of the biology of entomopathogenic fungi. Such information may lead to novel approaches to improving the efficacy of these organisms in pest control efforts.
Collapse
Affiliation(s)
- Drion G Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Yonghong Zhou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Shuaishuai Huang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
30
|
Ivens ABF, Gadau A, Kiers ET, Kronauer DJC. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol 2018; 27:1898-1914. [PMID: 29411455 PMCID: PMC5935579 DOI: 10.1111/mec.14506] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
Mutualistic interactions with microbes have played a crucial role in the evolution and ecology of animal hosts. However, it is unclear what factors are most important in influencing particular host–microbe associations. While closely related animal species may have more similar microbiota than distantly related species due to phylogenetic contingencies, social partnerships with other organisms, such as those in which one animal farms another, may also influence an organism's symbiotic microbiome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming several honeydew‐producing Prociphilus aphids and Rhizoecus mealybugs to test whether the mutualistic microbiomes of these interacting insects are primarily correlated with their phylogeny or with their shared social partnerships. Our results confirm a phylogenetic signal in the microbiomes of aphid and mealybug trophobionts, with each species harbouring species‐specific endosymbiont strains of Buchnera (aphids), Tremblaya and Sodalis (mealybugs), and Serratia (both mealybugs and aphids) despite being farmed by the same ants. This is likely explained by strict vertical transmission of trophobiont endosymbionts between generations. In contrast, our results show the ants’ microbiome is possibly shaped by their social partnerships, with ants that farm the same trophobionts also sharing strains of sugar‐processing Acetobacteraceae bacteria, known from other honeydew‐feeding ants and which likely reside extracellularly in the ants’ guts. These ant–microbe associations are arguably more “open” and subject to horizontal transmission or social transmission within ant colonies. These findings suggest that the role of social partnerships in shaping a host's symbiotic microbiome can be variable and is likely dependent on how the microbes are transmitted across generations.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Alice Gadau
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - E Toby Kiers
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
31
|
Ramalho MO, Bueno OC, Moreau CS. Species-specific signatures of the microbiome from Camponotus and Colobopsis ants across developmental stages. PLoS One 2017; 12:e0187461. [PMID: 29166404 PMCID: PMC5699820 DOI: 10.1371/journal.pone.0187461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/22/2017] [Indexed: 01/21/2023] Open
Abstract
Symbiotic relationships between hosts and bacteria are common in nature, and these may be responsible for the evolutionary success of various groups of animals. Among ants, these associations have been well studied in some genera of the Camponotini, but several questions remain regarding the generality of the previous findings across all the members of this ant tribe and if bacterial communities change across development in these hosts. This study is the first to characterize the bacterial community associated with a colony of the recently recognized genus Colobopsis and three colonies of Camponotus (two distinct species) and show how different the composition of the bacterial community is when compared across the different genera. Our data reveal that Colobopsis (species: Co. riehlii) and Camponotus (species: Ca. floridanus and Ca. planatus) have distinct microbiota, and we were able to verify that the identity of the species contributes more to the bacterial diversity. We also demonstrated that there were no significant differences between colonies of the same species (Camponotus planatus), and between stages of development from different colonies. We did find that some developmental stages have distinct bacteria, confirming that each stage of development could have a specific microbiota. Our results show species are one of the factors that shape the bacterial community in these Camponotini ants. Additional studies of the intra-colonial microbiome of other hosts and across development may reveal additional clues about the function and importance of bacteria in colony recognition, individual and colony health, and nutritional upgrading.
Collapse
Affiliation(s)
- Manuela Oliveira Ramalho
- Universidade Estadual Paulista “Júlio de Mesquita Filho” UNESP–Instituto de Biociências—Campus Rio Claro, Departamento de Biologia e Centro de Estudos de Insetos Sociais, Bela Vista, Rio Claro-SP, Brasil
- Field Museum of Natural History, Department of Science and Education, Integrative Research Center, Chicago, IL, United States of America
- * E-mail:
| | - Odair Correa Bueno
- Universidade Estadual Paulista “Júlio de Mesquita Filho” UNESP–Instituto de Biociências—Campus Rio Claro, Departamento de Biologia e Centro de Estudos de Insetos Sociais, Bela Vista, Rio Claro-SP, Brasil
| | - Corrie Saux Moreau
- Field Museum of Natural History, Department of Science and Education, Integrative Research Center, Chicago, IL, United States of America
| |
Collapse
|
32
|
Vieira AS, Ramalho MO, Martins C, Martins VG, Bueno OC. Microbial Communities in Different Tissues of Atta sexdens rubropilosa Leaf-cutting Ants. Curr Microbiol 2017; 74:1216-1225. [PMID: 28721658 DOI: 10.1007/s00284-017-1307-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
Abstract
Bacterial endosymbionts are common in all insects, and symbiosis has played an integral role in ant evolution. Atta sexdens rubropilosa leaf-cutting ants cultivate their symbiotic fungus using fresh leaves. They need to defend themselves and their brood against diseases, but they also need to defend their obligate fungus gardens, their primary food source, from infection, parasitism, and usurpation by competitors. This study aimed to characterize the microbial communities in whole workers and different tissues of A. sexdens rubropilosa queens using Ion Torrent NGS. Our results showed that the microbial community in the midgut differs in abundance and diversity from the communities in the postpharyngeal gland of the queen and in whole workers. The main microbial orders in whole workers were Lactobacillales, Clostridiales, Enterobacteriales, Actinomycetales, Burkholderiales, and Bacillales. In the tissues of the queens, the main orders were Burkholderiales, Clostridiales, Syntrophobacterales, Lactobacillales, Bacillales, and Actinomycetales (midgut) and Entomoplasmatales, unclassified γ-proteobacteria, and Actinomycetales (postpharyngeal glands). The high abundance of Entomoplasmatales in the postpharyngeal glands (77%) of the queens was an unprecedented finding. We discuss the role of microbial communities in different tissues and castes. Bacteria are likely to play a role in nutrition and immune defense as well as helping antimicrobial defense in this ant species.
Collapse
Affiliation(s)
- Alexsandro S Vieira
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil.
| | - Manuela O Ramalho
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Cintia Martins
- Universidade Federal do Piauí - Campus Ministro Reis Velloso, Av. São Sebastião, 2819, Parnaíba, Piauí, 64.202-020, Brazil
| | - Vanderlei G Martins
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Odair C Bueno
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| |
Collapse
|