1
|
Pavón-Peláez C, Diniz VSR, Paredes-Munguía W, Teixeira RA, Costa-Schmidt LE, Santos AJ, Buzatto BA, Albo MJ. Variability in Precipitation Weakens Sexual Selection for Nuptial Gifts in Spiders. Am Nat 2024; 204:453-467. [PMID: 39486029 DOI: 10.1086/732308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractEnvironmental conditions (i.e., climatic variation) can strongly influence the cost and benefits of reproductive traits. Yet there is still no consensus on whether changing environmental conditions strengthen or relax sexual selection. Evidence from the literature suggests that highly variable environments can limit mate choice and investment in sexual traits, hence relaxing sexual selection pressures. Here, we tested this hypothesis using the nuptial gift-giving spider Paratrechalea ornata, in which males can either wrap nutritive (fresh prey) or worthless (prey leftovers) items in silk. We examined changes in males' sexual trait and female choice among six populations living under different climatic conditions. We found that large variation in precipitation limits female choice, potentially favoring the spread of deceptive worthless gifts. In populations under highly variable conditions and with the highest frequencies of worthless gifts (70%), males offering such gifts acquire longer mating durations than those offering nutritive gifts. In contrast, in populations with less variable conditions and the lowest frequencies of worthless gift (36%), females shortened mating duration to males offering worthless gifts. Our findings are consistent with the prediction that highly variable environmental conditions relax sexual selection.
Collapse
|
2
|
Plesnar-Bielak A, Parrett JM, Chmielewski S, Dudek K, Łukasiewicz A, Marszałek M, Babik W, Konczal M. Transcriptomics of differences in thermal plasticity associated with selection for an exaggerated male sexual trait. Heredity (Edinb) 2024; 133:43-53. [PMID: 38802597 PMCID: PMC11222471 DOI: 10.1038/s41437-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The information about the magnitude of differences in thermal plasticity both between and within populations, as well as identification of the underlying molecular mechanisms are key to understanding the evolution of thermal plasticity. In particular, genes underlying variation in the physiological response to temperature can provide raw material for selection acting on plastic traits. Using RNAseq, we investigate the transcriptional response to temperature in males and females from bulb mite populations selected for the increased frequency of one of two discrete male morphs (fighter- and scrambler-selected populations) that differ in relative fitness depending on temperature. We show that different mechanisms underlie the divergence in thermal response between fighter- and scrambler-selected populations at decreased vs. increased temperature. Temperature decrease to 18 °C was associated with higher transcriptomic plasticity of males with more elaborate armaments, as indicated by a significant selection-by-temperature interaction effect on the expression of 40 genes, 38 of which were upregulated in fighter-selected populations in response to temperature decrease. In response to 28 °C, no selection-by-temperature interaction in gene expression was detected. Hence, differences in phenotypic response to temperature increase likely depended on genes associated with their distinct morph-specific thermal tolerance. Selection of males also drove gene expression patterns in females. These patterns could be associated with temperature-dependent fitness differences between females from fighter- vs. scrambler-selected populations reported in previous studies. Our study shows that selection for divergent male sexually selected morphologies and behaviors has a potential to drive divergence in metabolic pathways underlying plastic response to temperature in both sexes.
Collapse
Affiliation(s)
- Agata Plesnar-Bielak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | - Jonathan M Parrett
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Aleksandra Łukasiewicz
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Zhang L, Zhao ZW, Ma LX, Dong YW. Genome-wide sequencing reveals geographical variations in the thermal adaptation of an aquaculture species with frequent seedling introductions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172010. [PMID: 38575020 DOI: 10.1016/j.scitotenv.2024.172010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.
Collapse
Affiliation(s)
- Liang Zhang
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Zhan-Wei Zhao
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Lin-Xuan Ma
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Yun-Wei Dong
- Ministry Key Laboratory of Mariculture, Fisheries College, Ocean University of China, Qingdao, 266001, China.
| |
Collapse
|
4
|
Łukasiewicz A, Porwal N, Niśkiewicz M, Parrett JM, Radwan J. Sexually selected male weapon increases the risk of population extinction under environmental change: an experimental evidence. Evolution 2023; 77:2291-2300. [PMID: 37503764 DOI: 10.1093/evolut/qpad139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Exaggerated sexually selected traits (SSTs), occurring more commonly in males, help individuals to increase reproductive success but are costly to produce and maintain. These costs on the one hand may improve population fitness by intensifying selection against maladapted males, but on the other hand, may increase the risk of extinction under environmental challenges. However, the impact of SSTs on extinction risk has not been investigated experimentally. We used replicate populations of a male-dimorphic mite, Rhizoglyphus robini, to test if the prevalence of a sexually selected weapon affected the risk of extinction under temperature increase (TI) (2°C per each of three consecutive generations). In two independent experiments that utilized either inbred lines or lines mass selected for or against the weapon to establish experimental replicate populations differing in the prevalence of the weapon, we found that populations with high weapon prevalence were more likely to go extinct. Extinctions occurred despite partial suppression of the weapon expression at increased temperature and were not explained by increased male mortality. Our results provide the first, to our knowledge, experimental evidence demonstrating the dramatic effect of elaborated sexual traits on the risk of extinction under environmental challenges.
Collapse
Affiliation(s)
- Aleksandra Łukasiewicz
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Neelam Porwal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Małgorzata Niśkiewicz
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jonathan M Parrett
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Parrett JM, Łukasiewicz A, Chmielewski S, Szubert-Kruszyńska A, Maurizio PL, Grieshop K, Radwan J. A sexually selected male weapon characterized by strong additive genetic variance and no evidence for sexually antagonistic polyphenic maintenance. Evolution 2023; 77:1289-1302. [PMID: 36848265 PMCID: PMC10234106 DOI: 10.1093/evolut/qpad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Sexual selection and sexual antagonism are important drivers of eco-evolutionary processes. The evolution of traits shaped by these processes depends on their genetic architecture, which remains poorly studied. Here, implementing a quantitative genetics approach using diallel crosses of the bulb mite, Rhizoglyphus robini, we investigated the genetic variance that underlies a sexually selected weapon that is dimorphic among males and female fecundity. Previous studies indicated that a negative genetic correlation between these two traits likely exists. We found male morph showed considerable additive genetic variance, which is unlikely to be explained solely by mutation-selection balance, indicating the likely presence of large-effect loci. However, a significant magnitude of inbreeding depression also indicates that morph expression is likely to be condition-dependent to some degree and that deleterious recessives can simultaneously contribute to morph expression. Female fecundity also showed a high degree of inbreeding depression, but the variance in female fecundity was mostly explained by epistatic effects, with very little contribution from additive effects. We found no significant genetic correlation, nor any evidence for dominance reversal, between male morph and female fecundity. The complex genetic architecture underlying male morph and female fecundity in this system has important implications for our understanding of the evolutionary interplay between purifying selection and sexually antagonistic selection.
Collapse
Affiliation(s)
- Jonathan M Parrett
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Łukasiewicz
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Paul L Maurizio
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Illinois, United States
| | - Karl Grieshop
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Tregenza T, Niemelä PT, Rodríguez-Muñoz R, Hopwood PE. Environment and mate attractiveness in a wild insect. Behav Ecol 2022; 33:999-1006. [PMID: 36382230 PMCID: PMC9639583 DOI: 10.1093/beheco/arac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The role of female choice in sexual selection is well established, including the recognition that females choose their mates based on multiple cues. These cues may include intrinsic aspects of a male's phenotype as well as aspects of the environment associated with the male. The role of the spatial location of a potential mate has been well studied in territorial vertebrates. However, despite their role as laboratory models for studies of sexual selection, the potential for insects to choose their mates on the basis of location has scarcely been studied. We studied a natural population of individually tagged crickets (Gryllus campestris) in a meadow in Northern Spain. Adults typically move between burrows every few days, allowing us to examine how pairing success of males can be predicted by the burrow they occupy, independent of their own characteristics. We observed the entirety of ten independent breeding seasons to provide replication and to determine whether the relative importance of these factors is stable across years. We find that both male ID and the ID his burrow affect the likelihood that he is paired with a female, but the burrow has a consistently greater influence. Furthermore, the two factors interact: the relative attractiveness of an individual male depends on which burrow he occupies. Our finding demonstrates a close interaction between naturally and sexually selected traits. It also demonstrates that mate choice studies may benefit from considering not only obvious secondary sexual traits, but also more cryptic traits such as microhabitat choice.
Collapse
Affiliation(s)
- Tom Tregenza
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Exeter, UK
| | - Petri T Niemelä
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari, Biocenter, Helsinki, Finland
| | - Rolando Rodríguez-Muñoz
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Exeter, UK
| | - Paul E Hopwood
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Parrett JM, Chmielewski S, Aydogdu E, Łukasiewicz A, Rombauts S, Szubert-Kruszyńska A, Babik W, Konczal M, Radwan J. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat Ecol Evol 2022; 6:1330-1342. [DOI: 10.1038/s41559-022-01816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
|
8
|
Plesnar‐Bielak A, Łukasiewicz A. Sexual conflict in a changing environment. Biol Rev Camb Philos Soc 2021; 96:1854-1867. [PMID: 33960630 PMCID: PMC8518779 DOI: 10.1111/brv.12728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Sexual conflict has extremely important consequences for various evolutionary processes including its effect on local adaptation and extinction probability during environmental change. The awareness that the intensity and dynamics of sexual conflict is highly dependent on the ecological setting of a population has grown in recent years, but much work is yet to be done. Here, we review progress in our understanding of the ecology of sexual conflict and how the environmental sensitivity of such conflict feeds back into population adaptivity and demography, which, in turn, determine a population's chances of surviving a sudden environmental change. We link two possible forms of sexual conflict - intralocus and interlocus sexual conflict - in an environmental context and identify major gaps in our knowledge. These include sexual conflict responses to fluctuating and oscillating environmental changes and its influence on the interplay between interlocus and intralocus sexual conflict, among others. We also highlight the need to move our investigations into more natural settings and to investigate sexual conflict dynamics in wild populations.
Collapse
Affiliation(s)
- Agata Plesnar‐Bielak
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian Universityul. Gronostajowa 730‐387KrakówPoland
| | - Aleksandra Łukasiewicz
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandPO Box 11180101JoensuuFinland
- Evolutionary Biology Group, Faculty of BiologyAdam Mickiewicz Universityul. Uniwersytetu Poznańskiego 661‐614PoznańPoland
| |
Collapse
|
9
|
Li XY, Morozov A, Goymann W. Coevolution of female fidelity and male help in populations with alternative reproductive tactics. Proc Biol Sci 2021; 288:20202371. [PMID: 33499789 PMCID: PMC7893278 DOI: 10.1098/rspb.2020.2371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
In socially monogamous species, pair-bonded males often continue to provide care to all offspring in their nests despite some degree of paternity loss due to female extra-pair copulation. Previous theoretical models suggested that females can use their within-pair offspring as 'hostages' to blackmail their social mates, so that they continue to provide care to the brood at low levels of cuckoldry. These models, however, rely on the assumption of sufficiently accurate male detection of cuckoldry and the reduction of parental effort in case of suspicion. Therefore, they cannot explain the abundant cases where cuckolded males continue to provide extensive care to the brood. Here we use an analytical population genetics model and an individual-based simulation model to explore the coevolution of female fidelity and male help in populations with two genetically determined alternative reproductive tactics (ARTs): sneakers that achieve paternity solely via extra-pair copulations and bourgeois that form a mating pair and spend some efforts in brood care. We show that when the efficiency of mate guarding is intermediate, the bourgeois males can evolve to 'specialize' in providing care by spending more than 90% of time in helping their females while guarding them as much as possible, despite frequent cuckoldry by the sneakers. We also show that when sneakers have tactic-specific adaptations and thus are more competitive than the bourgeois in gaining extra-pair fertilizations, the frequency of sneakers and the degrees of female fidelity and male help can fluctuate in evolutionary cycles. Our theoretical predictions highlight the need for further empirical tests in species with ARTs.
Collapse
Affiliation(s)
- Xiang-Yi Li
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Andrew Morozov
- Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319, Germany
| |
Collapse
|
10
|
Plesnar-Bielak A, Skwierzyńska AM, Radwan J. Sexual and ecological selection on a sexual conflict gene. J Evol Biol 2020; 33:1433-1439. [PMID: 32654292 DOI: 10.1111/jeb.13680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
Abstract
Sexual selection and conflict can act on genes with important metabolic functions, potentially shaping standing genetic variance in such genes and thus evolutionary potential of populations. Here, using experimental evolution, we show how reproductive competition intensity and thermal environment affect selection on phosphogluconate dehydrogenase (6Pgdh)-a metabolic gene involved in sexual selection and conflict in the bulb mite. The S allele of 6Pgdh increases male success in reproductive competition, but is detrimental to S-bearing males' partners. We found that the rate of the S allele spread increased with the proportion of males in the experimental populations, illustrating that harm to females is more easily compensated for males under more intense sexual competition. Furthermore, we found that under equal sex ratio, the S allele spreads faster at higher temperature. While the direction of selection on 6Pgdh was not reversed in any of the conditions we tested, which would be required for environmental heterogeneity to maintain polymorphism at this locus, our study highlights that ecological and sexual selection can jointly affect selection on important metabolic enzymes.
Collapse
Affiliation(s)
- Agata Plesnar-Bielak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna M Skwierzyńska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
12
|
Bro-Jørgensen J, Franks DW, Meise K. Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190008. [PMID: 31352890 PMCID: PMC6710565 DOI: 10.1098/rstb.2019.0008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
The impact of environmental change on the reproduction and survival of wildlife is often behaviourally mediated, placing behavioural ecology in a central position to quantify population- and community-level consequences of anthropogenic threats to biodiversity. This theme issue demonstrates how recent conceptual and methodological advances in the discipline are applied to inform conservation. The issue highlights how the focus in behavioural ecology on understanding variation in behaviour between individuals, rather than just measuring the population mean, is critical to explaining demographic stochasticity and thereby reducing fuzziness of population models. The contributions also show the importance of knowing the mechanisms by which behaviour is achieved, i.e. the role of learning, reasoning and instincts, in order to understand how behaviours change in human-modified environments, where their function is less likely to be adaptive. More recent work has thus abandoned the 'adaptationist' paradigm of early behavioural ecology and increasingly measures evolutionary processes directly by quantifying selection gradients and phenotypic plasticity. To support quantitative predictions at the population and community levels, a rich arsenal of modelling techniques has developed, and interdisciplinary approaches show promising prospects for predicting the effectiveness of alternative management options, with the social sciences, movement ecology and epidemiology particularly pertinent. The theme issue furthermore explores the relevance of behaviour for global threat assessment, and practical advice is given as to how behavioural ecologists can augment their conservation impact by carefully selecting and promoting their study systems, and increasing their engagement with local communities, natural resource managers and policy-makers. Its aim to uncover the nuts and bolts of how natural systems work positions behavioural ecology squarely in the heart of conservation biology, where its perspective offers an all-important complement to more descriptive 'big-picture' approaches to priority setting. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Jakob Bro-Jørgensen
- Mammalian Behaviour and Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Neston CH64 7TE, UK
| | - Daniel W. Franks
- Department of Biology, University of York, York YO10 5DD, UK
- Department of Computer Science, University of York, York YO10 5GH, UK
| | - Kristine Meise
- Mammalian Behaviour and Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Neston CH64 7TE, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
13
|
Kirk Green C, Moore PJ, Sial AA. Impact of heat stress on development and fertility of Drosophila suzukii Matsumura (Diptera: Drosophilidae). JOURNAL OF INSECT PHYSIOLOGY 2019; 114:45-52. [PMID: 30796949 DOI: 10.1016/j.jinsphys.2019.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Drosophila suzukii is a globally invasive fruit pest that costs millions in yield losses and increased pest management costs. Management practices for D. suzukii currently rely heavily on calendar-based applications of broad-spectrum insecticides, but decision-based applications are theoretically possible with refined population modeling and monitoring. Temperature conditions are strongly deterministic of insect growth rates, fecundity, fertility, and resulting population densities. Therefore, information about the effects of temperature can be incorporated into population modeling to accurately predict D. suzukii population densities in the field which is crucial to maximize pesticide application efficiency and improve sustainability. Here, we investigated the effects of chronic heat stress during all of juvenile development on egg-to-adult viability and fertility. We also investigated egg-to-adult viability under heat stress after heat shock of the maternal parent. We found that heat stress during development results in lower egg-to-adult viability, and reduced lifespan and fertility for surviving adults. However, heat-shock treatment of females prior to egg laying increased the egg-to-adult viability of their eggs under heat stress. Female flies that developed at 30 °C had smaller ovaries than the untreated group and male flies had less sperm in their testes, and no sperm in their seminal vesicles. We conclude that heat stress during development is likely to have negative effect on D. suzukii population dynamics in the field. However, the intensity of such negative impact will depend on the phenotypic state of their maternal parents.
Collapse
Affiliation(s)
- C Kirk Green
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 413 Biological Sciences, Athens, GA 30602-2603, USA
| | - Patricia J Moore
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 413 Biological Sciences, Athens, GA 30602-2603, USA
| | - Ashfaq A Sial
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 413 Biological Sciences, Athens, GA 30602-2603, USA.
| |
Collapse
|
14
|
Stewart KA, Draaijer R, Kolasa MR, Smallegange IM. The role of genetic diversity in the evolution and maintenance of environmentally-cued, male alternative reproductive tactics. BMC Evol Biol 2019; 19:58. [PMID: 30777004 PMCID: PMC6379956 DOI: 10.1186/s12862-019-1385-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative reproductive tactics (ARTs) are taxonomically pervasive strategies adopted by individuals to maximize reproductive success within populations. Even for conditionally-dependent traits, consensus postulates most ARTs involve both genetic and environmental interactions (GEIs), but to date, quantifying genetic variation underlying the threshold disposing an individual to switch phenotypes in response to an environmental cue has been a difficult undertaking. Our study aims to investigate the origins and maintenance of ARTs within environmentally disparate populations of the microscopic bulb mite, Rhizoglyphus robini, that express 'fighter' and 'scrambler' male morphs mediated by a complex combination of environmental and genetic factors. RESULTS Using never-before-published individual genetic profiling, we found all individuals across populations are highly inbred with the exception of scrambler males in stressed environments. In fact within the poor environment, scrambler males and females showed no significant difference in genetic differentiation (Fst) compared to all other comparisons, and although fighters were highly divergent from the rest of the population in both poor or rich environments (e.g., Fst, STRUCTURE), fighters demonstrated approximately three times less genetic divergence from the population in poor environments. AMOVA analyses further corroborated significant genetic differentiation across subpopulations, between morphs and sexes, and among subpopulations within each environment. CONCLUSION Our study provides new insights into the origin of ARTs in the bulb mite, highlighting the importance of GEIs: genetic correlations, epistatic interactions, and sex-specific inbreeding depression across environmental stressors. Asymmetric reproductive output, coupled with the purging of highly inbred individuals during environmental oscillations, also facilitates genetic variation within populations, despite evidence for strong directional selection. This cryptic genetic variation also conceivably facilitates stable population persistence even in the face of spatially or temporally unstable environmental challenges. Ultimately, understanding the genetic context that maintains thresholds, even for conditionally-dependent ARTs, will enhance our understanding of within population variation and our ability to predict responses to selection.
Collapse
Affiliation(s)
- K A Stewart
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - R Draaijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - M R Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17 St., 31-016, Krakow, Poland
| | - I M Smallegange
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Skwierzyńska AM, Radwan J, Plesnar‐Bielak A. Male-limited secondary sexual trait interacts with environment in determining female fitness. Evolution 2018; 72:1716-1722. [PMID: 29984827 PMCID: PMC6175437 DOI: 10.1111/evo.13551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 12/16/2022]
Abstract
Selection for secondary sexual trait (SST) elaboration may increase intralocus sexual conflict over the optimal values of traits expressed from shared genomes. This conflict can reduce female fitness, and the resulting gender load can be exacerbated by environmental stress, with consequences for a population's ability to adapt to novel environments. However, how the evolution of SSTs interacts with environment in determining female fitness is not well understood. Here, we investigated this question using replicate lines of bulb mites selected for increased or decreased prevalence of a male SST-thickened legs used as weapons. The fitness of females from these lines was measured at a temperature to which the mites were adapted (24°C), as well as at two novel temperatures: 18°C and 28°C. We found the prevalence of the SST interacted with temperature in determining female fecundity. At 28°C, females from populations with high SST prevalence were less fecund than females from populations in which the SST was rare, but the reverse was true at 18°C. Thus, a novel environment does not universally depress female fitness more in populations with a high degree of sexually selected dimorphism. We discuss possible consequences of the interaction we detected for adaptation to novel environments.
Collapse
Affiliation(s)
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Agata Plesnar‐Bielak
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| |
Collapse
|