1
|
Hao CL, Yang YY, Wei NW, Liu YJ, Shi CX, Wang JP, Zhang L, Xia SZ, Yue C. Complete mitochondrial genomes of Dactylogyrus crucifer and Dactylogyrus zandti reveal distinct patterns of codon usage within Dactylogyrus. Gene 2024; 933:148935. [PMID: 39255859 DOI: 10.1016/j.gene.2024.148935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Monogeneans of the genus Dactylogyrus Diesing, 1850, the largest genus in the family Dactylogyridae, mostly parasitize the gills of cyprinoid hosts; however, only 3 Dactylogyrus' mitochondrial genomes (mitogenomes) are studied so far. The aim of this research is to extend our understanding of the mitogenomes of Dactylogyrus. We sequenced the mitogenomes of D. crucifer and D. zandti isolated from Rutilus rutilus and Abramis brama orientalis in northwest China, and then we compared these mitogenomes with other monogeneans. We used Illumina NovaSeq to sequence the entire mitochondrial genomes of D. crucifer and D. zandti and characterized the mitogenomes to understand the gene structure, gene identity, the secondary structures of the 22 tRNA genes, and relative synonymous codon usage. We used the analytic Bayesian Information and Maximum Likelihood methods to determine their associated phylogenetic trees. The mitogenomes of D. crucifer and D. zandti were 14,403 and 18,584 bp, respectively. Organization and positioning of these genes were in accordance with Dactylogyrus lamellatus and Dactylogyrus tuba. The nucleotide composition of Dactylogyridae was different from other families of Monogenea, and the A+T count of genus Dactylogyrus (54 - 58.4 %) was lower than other genus species of the family Dactylogyridea (63.9 - 78.4 %) in protein-coding genes. Dactylogyrus members displayed a codon usage bias. The relative synonymous codon used by Dactylogyrus was not conserved and was lower than other monogeneans. The codon use patterns of closely-related species isolated from closely-related hosts were identical. Phylogenetic analyses using mitogenomic dataset produced Dactylogyrus isolated from host subfamily Leuciscinae formed a sister-group. Our results contributed significantly to an increased database of mitogenomes, more than 50 %, for Dactylogyrus that may help future studies of mitochondrial genes and codon uses for the analysis of monogenean phylogenetics.
Collapse
Affiliation(s)
- Cui-Lan Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, China.
| | - Yuan-Yuan Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Nian-Wen Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yan-Jun Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Cai-Xia Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Jin-Pu Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Li Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Shen-Zhen Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Cheng Yue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| |
Collapse
|
2
|
Zhang D, Jakovlić I, Zou H, Liu F, Xiang CY, Gusang Q, Tso S, Xue S, Zhu WJ, Li Z, Wu J, Wang GT. Strong mitonuclear discordance in the phylogeny of Neodermata and evolutionary rates of Polyopisthocotylea. Int J Parasitol 2024; 54:213-223. [PMID: 38185351 DOI: 10.1016/j.ijpara.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The genomic evolution of Polyopisthocotylea remains poorly understood in comparison to the remaining three classes of Neodermata: Monopisthocotylea, Cestoda, and Trematoda. Moreover, the evolutionary sequence of major events in the phylogeny of Neodermata remains unresolved. Herein we sequenced the mitogenome and transcriptome of the polyopisthocotylean Diplorchis sp., and conducted comparative evolutionary analyses using nuclear (nDNA) and mitochondrial (mtDNA) genomic datasets of Neodermata. We found strong mitonuclear discordance in the phylogeny of Neodermata. Polyopisthocotylea exhibited striking mitonuclear discordance in relative evolutionary rates: the fastest-evolving mtDNA in Neodermata and a comparatively slowly-evolving nDNA genome. This was largely attributable to its very long stem branch in mtDNA topologies, not exhibited by the nDNA data. We found indications that the fast evolution of mitochondrial genomes of Polyopisthocotylea may be driven both by relaxed purifying selection pressures and elevated levels of directional selection. We identified mitochondria-associated genes encoded in the nuclear genome: they exhibited unique evolutionary rates, but not correlated with the evolutionary rate of mtDNA, and there is no evidence for compensatory evolution (they evolved slower than the rest of the genome). Finally, there appears to exist an exceptionally large (≈6.3 kb) nuclear mitochondrial DNA segment (numt) in the nuclear genome of newly sequenced Diplorchis sp. A 3'-end segment of the 16S rRNA gene encoded by the numt was expressed, suggesting that this gene acquired novel, regulatory functions after the transposition to the nuclear genome. In conclusion, Polyopisthocotylea appears to be the lineage with the fastest-evolving mtDNA sequences among all of Bilateria, but most of the substitutions were accumulated deep in the evolutionary history of this lineage. As the nuclear genome does not exhibit a similar pattern, the circumstances underpinning this evolutionary phenomenon remain a mystery.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Ivan Jakovlić
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Liu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; Institute of Aquatic Sciences, Tibet Academy of Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China
| | - Chuan-Yu Xiang
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qunzong Gusang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Sonam Tso
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Shenggui Xue
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Wen-Jin Zhu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Zhenxin Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Jihua Wu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Gui-Tang Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Vorel J, Kmentová N, Hahn C, Bureš P, Kašný M. An insight into the functional genomics and species classification of Eudiplozoon nipponicum (Monogenea, Diplozoidae), a haematophagous parasite of the common carp Cyprinus carpio. BMC Genomics 2023; 24:363. [PMID: 37380941 DOI: 10.1186/s12864-023-09461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, Diepenbeek, B-3590, Belgium
| | - Christoph Hahn
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, A-8010, Austria
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
4
|
Hao CL, Wei NW, Liu YJ, Shi CX, Arken K, Yue C. Mitochondrial phylogenomics provides conclusive evidence that the family Ancyrocephalidae is deeply paraphyletic. Parasit Vectors 2023; 16:83. [PMID: 36859280 PMCID: PMC9979435 DOI: 10.1186/s13071-023-05692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Unresolved taxonomic classification and paraphyly pervade the flatworm class Monogenea: the class itself may be paraphyletic and split into Polyopisthocotylea and Monopisthocotylea; there are some indications that the monopisthocotylean order Dactylogyridea may also be paraphyletic; single-gene markers and some morphological traits indicate that the family Ancyrocephalidae is paraphyletic and intertwined with the family Dactylogyridae. METHODS To attempt to study the relationships of Ancyrocephalidae and Monopisthocotylea using a phylogenetic marker with high resolution, we sequenced mitochondrial genomes of two fish ectoparasites from the family Dactylogyridae: Dactylogyrus simplex and Dactylogyrus tuba. We conducted phylogenetic analyses using three datasets and three methods. Datasets were ITS1 (nuclear) and nucleotide and amino acid sequences of almost complete mitogenomes of almost all available Monopisthocotylea mitogenomes. Methods were maximum likelihood (IQ-TREE), Bayesian inference (MrBayes) and CAT-GTR (PhyloBayes). RESULTS Both mitogenomes exhibited the ancestral gene order for Neodermata, and both were compact, with few and small intergenic regions and many and large overlaps. Gene sequences were remarkably divergent for nominally congeneric species, with only trnI exhibiting an identity value > 80%. Both mitogenomes had exceptionally low A + T base content and AT skews. We found evidence of pervasive compositional heterogeneity in the dataset and indications that base composition biases cause phylogenetic artefacts. All six mitogenomic analyses produced unique topologies, but all nine analyses produced topologies that rendered Ancyrocephalidae deeply paraphyletic. Mitogenomic data consistently resolved the order Capsalidea as nested within the Dactylogyridea. CONCLUSIONS The analyses indicate that taxonomic revisions are needed for multiple Polyopisthocotylea lineages, from genera to orders. In combination with previous findings, these results offer conclusive evidence that Ancyrocephalidae is a paraphyletic taxon. The most parsimonious solution to resolve this is to create a catch-all Dactylogyridae sensu lato clade comprising the current Ancyrocephalidae, Ancylodiscoididae, Pseudodactylogyridae and Dactylogyridae families, but the revision needs to be confirmed by another marker with a sufficient resolution.
Collapse
Affiliation(s)
- Cui-Lan Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Nian-Wen Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yan-Jun Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Cai-Xia Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Kadirden Arken
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Cheng Yue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
5
|
Under the radar: co-introduced monogeneans (Polyopisthocotylea: Gastrocotylinea) of the invasive fish Scomberomorus commerson in the Mediterranean Sea. Parasitol Res 2022; 121:2275-2293. [PMID: 35713734 DOI: 10.1007/s00436-022-07560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The Levant Basin is in many ways the world's most invaded marine ecosystem owing to the existence of the man-made Suez Canal. The invasion of free-living organisms through this pathway is increasingly documented and monitored in the past two decades, and their ecological impact recognized. Nonetheless, while tremendous scientific effort is invested in documenting introduced fishes, co-introduction events of these fishes and their parasites have drawn relatively little interest. In our research, we examined the presence of gill parasites (Monogenea) on the invasive narrow barred Spanish mackerel Scomberomorus commerson which has been known in the Mediterranean Sea for 80 years. The gills of S. commerson supported numerous, relatively large monogeneans (Monogenea: Gastrocotylinea), reaching prevalence levels of 100% with a mean intensity of ~ 80 worms per host. Using an integrated molecular and morphological approach, four gastrocotylinean species were identified: Gotocotyla acanthura, Cathucotyle cathuaui, Pricea multae, and Pseudothoracocotyla ovalis. Two species, C. cathuaui and P. ovalis, are reported here for the first time from the Mediterranean. Sequences of the 28S rRNA gene of G. acanthura from native hosts, Pomatomus saltatrix and Trachinotus ovatus, differed from individuals collected from S. commerson by 1.8%. We therefore suggest that the taxonomic status and distribution of G. acanthura should be revisited, and we recommend an integrated approach as essential to accurately detect co-introductions.
Collapse
|
6
|
Hao CL, Arken K, Kadir M, Zhang WR, Rong MJ, Wei NW, Liu YJ, Yue C. The complete mitochondrial genomes of Paradiplozoon yarkandense and Paradiplozoon homoion confirm that Diplozoidae evolve at an elevated rate. Parasit Vectors 2022; 15:149. [PMID: 35477556 PMCID: PMC9044634 DOI: 10.1186/s13071-022-05275-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diplozoidae are monogenean (Monogenea: Polyopisthocotylea) fish parasites characterised by a unique life history: two larvae permanently fuse into an X-shaped "Siamese" organism. Taxonomy and phylogeny of Diplozoidae and Polyopisthocotylea remain unresolved due to the unavailability of molecular markers with sufficiently high resolution. Mitogenomes may be a suitable candidate, but there are currently only 12 available for the Polyopisthocotylea (three for Diplozoidae). The only available study of diplozoid mitogenomes found unique base composition patterns and elevated evolution rates in comparison with other Monogenean mitogenomes. METHODS To further explore their evolution and generate molecular data for evolutionary studies, we sequenced the complete mitogenomes of two Diplozoidae species, Paradiplozoon homoion and Paradiplozoon yarkandense, and conducted a number of comparative mitogenomic analyses with other polyopisthocotyleans. RESULTS We found further evidence that mitogenomes of Diplozoidae evolve at a unique, elevated rate, which was reflected in their exceptionally long branches, large sizes, unique base composition, skews, and very low gene sequence similarity levels between the two newly sequenced species. They also exhibited remarkably large overlaps between some genes. Phylogenetic analysis of Polyopisthocotylea resolved all major taxa as monophyletic, and Mazocraeidea was split into two major clades: (Diplozoidae) + (all four remaining families: Diclidophoridae, Chauhaneidae, Mazocraeidae and Microcotylidae). It also provided further confirmation that the genus Paradiplozoon is paraphyletic and requires a taxonomic revision, so the two species may have to be renamed Indodiplozoon homoion and Diplozoon yarkandense comb. nov. CONCLUSIONS Although our findings indicate that mitogenomes may be a promising tool for resolving the phylogeny of Polyopisthocotylea, elevated evolutionary rates of Diplozoidae may cause phylogenetic artefacts, so future studies should pay caution to this problem. Furthermore, as the reason for their elevated evolution remains unknown, Diplozoidae are a remarkably interesting lineage for other types of evolutionary mitogenomic studies.
Collapse
Affiliation(s)
- Cui-Lan Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Kadirden Arken
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Munira Kadir
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Wen-Run Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Meng-Jie Rong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Nian-Wen Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yan-Jun Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Cheng Yue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
7
|
Wang C, Ye P, Liu M, Zhang Y, Feng H, Liu J, Zhou H, Wang J, Chen X. Comparative Analysis of Four Complete Mitochondrial Genomes of Epinephelidae (Perciformes). Genes (Basel) 2022; 13:genes13040660. [PMID: 35456466 PMCID: PMC9029768 DOI: 10.3390/genes13040660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/19/2023] Open
Abstract
Groupers are commercial, mainly reef-associated fishes, classified in the family Epinephelidae (Perciformes). This study first sequenced the complete mitogenomes of Cephalopholis leopardus, Cephalopholis spiloparaea, Epinephelus amblycephalus, and Epinephelus hexagonatus. The lengths of the four Epinephelidae mitogenomes ranged from 16,585 base pair (bp) to 16,872 bp with the typical gene order. All tRNA genes had a typical cloverleaf structure, except the tRNA-Ser (AGY) gene which was lacking the entire dihydrouridine arm. The ratio of nonsynonymous substitution (Ka) and synonymous substitution (Ks) indicated that four groupers were suffering a purifying selection. Phylogenetic relationships were reconstructed by Bayesian inference (BI) and maximum likelihood (ML) methods based on all mitogenomic data of 41 groupers and 2 outgroups. The identical topologies result with high support values showed that Cephalopholis and Epinephelus are not monophyletic genera. Anyperodon and Cromileptes clustered to Epinephelus. Aethaloperca rogaa and Cephalopholis argus assembled a clad. Cephalopholis leopardus, C. spiloparaea, and Cephalopholis miniata are also in a clade. Epinephelushexagonatus is close to Epinephelus tauvina and Epinephelus merra, and E. amblycephalus is a sister group with Epinephelus stictus. More mitogenomic data from Epinephelidae species are essential to understand its taxonomic status with the family Serranidae.
Collapse
Affiliation(s)
- Chen Wang
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Peiyuan Ye
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Min Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China;
| | - Yue Zhang
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Haiqing Feng
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Jingyu Liu
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Haolang Zhou
- Guangxi Mangrove Research Center, Beihai 536000, China;
| | - Junjie Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Correspondence: (J.W.); (X.C.); Tel.: +86-137-9817-8534 (J.W.); +86-139-2210-4624 (X.C.)
| | - Xiao Chen
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
- Guangxi Mangrove Research Center, Beihai 536000, China;
- Correspondence: (J.W.); (X.C.); Tel.: +86-137-9817-8534 (J.W.); +86-139-2210-4624 (X.C.)
| |
Collapse
|
8
|
Xiao J, Liu J, Ma L, Hao X, Yu R, Yuan X. Mitogenomes of Nine Asian Skipper Genera and Their Phylogenetic Position (Lepidoptera: Hesperiidae: Pyrginae). INSECTS 2022; 13:68. [PMID: 35055910 PMCID: PMC8779469 DOI: 10.3390/insects13010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
In this study, complete mitochondrial genomes of nine species representing three tribes in the subfamily Pyrginae sensu lato were newly sequenced. The mitogenomes are closed double-stranded circular molecules, with the length ranging from 15,232 bp to 15,559 bp, which all encode 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region. The orientation and gene order of these nine mitogenomes are identical to the inferred ancestral arrangement of insects. All PCGs exhibit the typical start codon ATN except for cox1 (using CGA) and cox2 (using TTG) in Mooreana trichoneura. Most of the PCGs terminate with a TAA stop codon, while cox1, cox2, nad4, and nad5 end with the incomplete codon single T. For the different datasets, we found that the one comprising all 37 genes of the mitogenome produced the highest nodal support, indicating that the inclusion of RNAs improves the phylogenetic signal. This study re-confirmed the status of Capila, Pseudocoladenia, and Sarangesa; namely, Capila belongs to the tribe Tagiadini, and Pseudocoladenia and Sarangesa to the tribe Celaenorrhini. Diagnostic characters distinguishing the two tribes, the length of the forewing cell and labial palpi, are no longer significant. Two populations of Pseudocoladenia dan fabia from China and Myanmar and P. dan dhyana from Thailand are confirmed as conspecific.
Collapse
Affiliation(s)
- Jintian Xiao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Jiaqi Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Luyao Ma
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Xiangyu Hao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Ruitao Yu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Xiangqun Yuan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| |
Collapse
|
9
|
Fu YT, Zhang Y, Xun Y, Liu GH, Suleman, Zhao Y. Characterization of the complete mitochondrial genomes of six horseflies (Diptera: Tabanidae). INFECTION GENETICS AND EVOLUTION 2021; 95:105054. [PMID: 34461311 DOI: 10.1016/j.meegid.2021.105054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
The family Tabanidae (Insecta: Diptera) is one of the economically most important group of haematophagous insects, causing millions of livestock deaths per year. However, current knowledge on the mitochondrial genomes (mitogenomes) from this family is limited. Additional tabanid mitogenomes characterization is of utmost importance for their identification, epidemiologic and phylogenetic studies. We sequenced the mt genomes of six horseflies with an Illumina platform and their phylogenetic relationship was conducted with other infraorder Tabanomorpha members with available mt genome datasets. All six newly sequenced mitogenomes were typical 37-gene circular structures retaining the gene order of Tabanomorpha. The trnQ, trnM and trnA were highly conserved among the six mitogenomes (identity = 100%). The TΨC arm and variable loop regions were relatively more variable compared to the amino acid receptor arm, anticodon arm and DHU arm of the tRNAs. Among 13 protein-coding genes (PCGs) of tabanids mitogenomes, the highest nucleotide diversity was detected in atp8, cox1, cox3, nad6 and cytb (0.1 for each). In addition, atp8 genes exhibited the highest evolutionary rate (ω = 0.24) among 13 PCGs. The interspecies K2P genetic distances among some Tabanus spp. across the mitogenome was greater (0.08) than intergeneric genetic distance between T. amaenus and Atylotus miser (0.07). Phylogenetic analyses revealed non-monophyletic relationships among horseflies of the genus Tabanus. The present study showed mt gene order is highly conserved within Tabanus species. Our mito-phylogenomic analysis supports the paraphyly of the genus Tabanus. The new data provide novel genetic markers for studies of population genetics and systematics of horseflies.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Yu Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Ying Xun
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Suleman
- Department of Zoology, University of Swabi, Swabi 23340, Khyber Pakhtunkhwa, Pakistan.
| | - Yu Zhao
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China; College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan province 464000, PR China.
| |
Collapse
|
10
|
Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved. Sci Rep 2021; 11:13552. [PMID: 34193932 PMCID: PMC8245539 DOI: 10.1038/s41598-021-92994-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: Polydora brevipalpa and Polydora websteri. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated trnM gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identified an unusually large (putative) overlap of 14 bases between nad2 and cox1 genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, Polydora is the third identified sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures.
Collapse
|
11
|
Jirsová D, Koubková B, Jirounková E, Vorel J, Zhou X, Ding X, Gelnar M, Kašný M. Redescription of Paradiplozoon opsariichthydis (Jiang, Wu et Wang 1984) Jiang, Wu et Wang, 1989 (Monogenea, Diplozoidae). Parasitol Int 2021; 84:102409. [PMID: 34157414 DOI: 10.1016/j.parint.2021.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Paradiplozoon opsariichthydis (Jiang, Wu et Wang, 1984) Jiang, Wu et Wang, 1989 (Platyhelminthes, Monogenea, Diplozoidae) is blood-feeding parasite from the gills of Asian cyprinid fish Opsariichthys bidens Günther, 1873. In this study, we present a morphological redescription of P. opsariichthydis neotype main morphological features e.g. size of body and clamps due to the fact that the type material is missing. We decided to supplement morphological descriptions by the relevant molecular data (internal transcribed spacer - ITS2) related to P. opsariichthydis adult worm isolates and other representatives of genus Paradiplozoon to cross verify our findings. In addition to that, this study also brings an attention to the host identification. Thus, parasite data were complemented by the determinant cytochrome oxidase b (cytb) sequences of its hosts. All novel sequences are deposited in GenBank. This combination of the morphological and molecular data related to both the parasite and its host seems to be the optimal approach to the general process of (re)description of highly host-specific parasitic organisms, which can then lead to a meaningful phylogenetic analysis.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Božena Koubková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Eliška Jirounková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Xing Zhou
- School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xuejuan Ding
- School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
12
|
Wang Q, Huang J, Wu H. Mitogenomes provide insights into the phylogeny of Mycetophilidae (Diptera: Sciaroidea). Gene 2021; 783:145564. [PMID: 33711408 DOI: 10.1016/j.gene.2021.145564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
The family Mycetophilidae (Diptera: Sciaroidea) consists of more than 4,500 described species distributed worldwide. Among them, dozens of species have been reported to be economically important to cultivated mushrooms and crops. Relationships among subfamilies in Mycetophilidae have been controversial by using morphological characters or gene markers. In this study, five mycetophilid mitogenomes representing four subfamilies were sequenced and analyzed with 15 published sciaroid mitogenomes as ingroup, while another two species representing two closely related families were chosen as outgroup. All of the sequenced mitogenomes contain 37 genes arranged in the ancestral order, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNA) genes, two ribosomal RNA (rRNA) genes and a control region (CR). Among mycetophilid mitogenomes, Leu, Ile, Phe, and Met are the most frequently encoded amino acids (AA), with TTA (Leu), ATT (Ile), TTT (Phe) and ATA (Met) being the most frequent codons. Meanwhile, the phylogenetic results reconstructed based on PCGs, PCGs + rRNAs and AA sequences respectively show that the clade of Sciaroidea was well separated from outgroup, further confirming its monophyly. The phylogenetic relationships within Mycetophilidae were recovered as (Manotinae + Sciophilinae) + (Mycomyinae + Mycetophilinae). Mapped to the phylogram, the gene rearrangements occur frequently in the crown group, implying extremely rapid evolutionary rates in Sciaridae and Cecidomyiidae, which might be the reason why the two families have such high species diversity.
Collapse
Affiliation(s)
- Qingyun Wang
- Department of Forestry Protection, School of Forestry and Biotechnology, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Junhao Huang
- Department of Forestry Protection, School of Forestry and Biotechnology, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China.
| | - Hong Wu
- Department of Forestry Protection, School of Forestry and Biotechnology, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
13
|
Suleman, Muhammad N, Khan MS, Tkach VV, Ullah H, Ehsan M, Ma J, Zhu XQ. Mitochondrial genomes of two eucotylids as the first representatives from the superfamily Microphalloidea (Trematoda) and phylogenetic implications. Parasit Vectors 2021; 14:48. [PMID: 33446249 PMCID: PMC7807500 DOI: 10.1186/s13071-020-04547-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background The Eucotylidae Cohn, 1904 (Superfamily: Microphalloidea), is a family of digeneans parasitic in kidneys of birds as adults. The group is characterized by the high level of morphological similarities among genera and unclear systematic value of morphological characters traditionally used for their differentiation. In the present study, we sequenced the complete or nearly complete mitogenomes (mt genome) of two eucotylids representing the genera Tamerlania (T. zarudnyi) and Tanaisia (Tanaisia sp.). They represent the first sequenced mt genomes of any member of the superfamily Microphalloidea. Methods A comparative mitogenomic analysis of the two newly sequenced eucotylids was conducted for the investigation of mitochondrial gene arrangement, contents and genetic distance. Phylogenetic position of the family Eucotylidae within the order Plagiorchiida was examined using nucleotide sequences of mitochondrial protein-coding genes (PCGs) plus RNAs using maximum likelihood (ML) and Bayesian inference (BI) methods. BI phylogeny based on concatenated amino acids sequences of PCGs was also conducted to determine possible effects of silent mutations. Results The complete mt genome of T. zarudnyi was 16,188 bp and the nearly complete mt genome of Tanaisia sp. was 13,953 bp in length. A long string of additional amino acids (about 123 aa) at the 5′ end of the cox1 gene in both studied eucotylid mt genomes has resulted in the cox1 gene of eucotylids being longer than in all previously sequenced digeneans. The rrnL gene was also longer than previously reported in any digenean mitogenome sequenced so far. The TΨC and DHU loops of the tRNAs varied greatly between the two eucotylids while the anticodon loop was highly conserved. Phylogenetic analyses based on mtDNA nucleotide and amino acids sequences (as a separate set) positioned eucotylids as a sister group to all remaining members of the order Plagiorchiida. Both ML and BI phylogenies revealed the paraphyletic nature of the superfamily Gorgoderoidea and the suborder Xiphidiata. Conclusions The average sequence identity, combined nucleotide diversity and Kimura-2 parameter distances between the two eucotylid mitogenomes demonstrated that atp6, nad5, nad4L and nad6 genes are better markers than the traditionally used cox1 or nad1 for the species differentiation and population-level studies of eucotylids because of their higher variability. The position of the Dicrocoeliidae and Eucotylidae outside the clade uniting other xiphidiatan trematodes strengthened the argument for the need for re-evaluation of the taxonomic content of the Xiphidiata.![]()
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Shanghai, 20041, People's Republic of China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
14
|
Dos Santos QM, Avenant-Oldewage A. Review on the molecular study of the Diplozoidae: analyses of currently available genetic data, what it tells us, and where to go from here. Parasit Vectors 2020; 13:539. [PMID: 33126913 PMCID: PMC7602351 DOI: 10.1186/s13071-020-04417-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
The use of molecular tools in the study of parasite taxonomy and systematics have become a substantial and crucial component of parasitology. Having genetic characterisation at the disposal of researchers has produced mostly useful, and arguably more objective conclusions. However, there are several groups for which limited genetic information is available and, coupled with the lack of standardised protocols, renders molecular study of these groups challenging. The Diplozoidae are fascinating and unique monogeneans parasitizing mainly freshwater cyprinid fishes in Europe, Asia and Africa. This group was studied from a molecular aspect since the turn of the century and as such, limitations and variability concerning the use of these techniques have not been clearly defined. In this review, all literature and molecular information, primarily from online databases such as GenBank, were compiled and scrupulously analysed for the Diplozoidae. This was done to review the information, detect possible pitfalls, and provide a "checkpoint" for future molecular studies of the family. Hindrances detected are the availability of sequence data for only a limited number of species, frequently limited to a single sequence per species, and the heavy reliance on one non-coding ribosomal marker (ITS2 rDNA) which is difficult to align objectively and displays massive divergences between taxa. Challenging species identification and limited understanding of diplozoid species diversity and plasticity are also likely restricting factors, all of which hamper the accurate taxonomic and phylogenetic study of this group. Thus, a more integrated taxonomic approach through the inclusion of additional markers, application of more rigorous morphological assessment, more structured barcoding techniques, alongside thorough capturing of species descriptions including genetypes, genophore vouchers and reference collections in open sources are encouraged. The pitfalls highlighted are not singular to the Diplozoidae, and the study of other groups may benefit from the points raised here as well.
Collapse
Affiliation(s)
- Quinton Marco Dos Santos
- Department of Zoology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006 South Africa
| | - Annemariè Avenant-Oldewage
- Department of Zoology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006 South Africa
| |
Collapse
|
15
|
Ceruso M, Mascolo C, De Luca P, Venuti I, Smaldone G, Biffali E, Anastasio A, Pepe T, Sordino P. A Rapid Method for the Identification of Fresh and Processed Pagellus erythrinus Species against Frauds. Foods 2020; 9:E1397. [PMID: 33023115 PMCID: PMC7600753 DOI: 10.3390/foods9101397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
The commercialization of porgies or seabreams of the family Sparidae has greatly increased in the last decade, and some valuable species have become subject to seafood substitution. DNA regions currently used for fish species identification in fresh and processed products belong to the mitochondrial (mt) genes cytochrome b (Cytb), cytochrome c oxidase I (COI), 16S and 12S. However, these markers amplify for fragments with lower divergence within and between some species, failing to provide informative barcodes. We adopted comparative mitogenomics, through the analysis of complete mtDNA sequences, as a compatible approach toward studying new barcoding markers. The intent is to develop a specific and rapid assay for the identification of the common pandora Pagellus erythrinus, a sparid species frequently subject to fraudulent replacement. The genetic diversity analysis (Hamming distance, p-genetic distance, gene-by-gene sequence variability) between 16 sparid mtDNA genomes highlighted the discriminating potential of a 291 bp NAD2 gene fragment. A pair of species-specific primers were successfully designed and tested by end-point and real-time PCR, achieving amplification only in P. erythrinus among several fish species. The use of the NAD2 barcoding marker provides a rapid presence/absence method for the identification of P. erythrinus.
Collapse
Affiliation(s)
- Marina Ceruso
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino, n.1, 80137 Naples, Italy; (M.C.); (C.M.); (I.V.); (A.A.)
| | - Celestina Mascolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino, n.1, 80137 Naples, Italy; (M.C.); (C.M.); (I.V.); (A.A.)
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Pasquale De Luca
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (P.D.L.); (E.B.)
| | - Iolanda Venuti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino, n.1, 80137 Naples, Italy; (M.C.); (C.M.); (I.V.); (A.A.)
| | - Giorgio Smaldone
- Department Agricultural Sciences, University of Naples Federico II, via Università, n.100, Portici, 80055 Naples, Italy;
| | - Elio Biffali
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (P.D.L.); (E.B.)
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino, n.1, 80137 Naples, Italy; (M.C.); (C.M.); (I.V.); (A.A.)
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino, n.1, 80137 Naples, Italy; (M.C.); (C.M.); (I.V.); (A.A.)
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| |
Collapse
|
16
|
Nishihira T, Urabe M. Morphological and molecular studies of Eudiplozoon nipponicum (Goto, 1891) and Eudiplozoon kamegaii sp. n. (Monogenea; Diplozoidae). Folia Parasitol (Praha) 2020; 67. [PMID: 32764186 DOI: 10.14411/fp.2020.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985 (Monogenea: Diplozoidae), is known to parasitise Cyprinus carpio Linnaeus and species of Carassius. In this study, we conducted a taxonomic re-examination of E. nipponicum using genetic analysis and morphological comparisons from different host species from a single water system. rDNA nucleotide sequences of the internal transcription spacer 2 (ITS-2) region (645 bp) showed interspecific-level genetic differences among diplozoids from species of Carassius and C. carpio (p-distance: 3.1-4.0%) but no difference among those from different species of Carassius (0-0.4%) or between those from C. carpio collected in Asia and Europe (0-1.1%). Large variation was observed among 346 bp cytochrome c oxidase subunit I (COI) sequences (0.3-16.0 %); the topology of the phylogenetic tree showed no relationship to host genera or geographical regions of origin. Morphological observation showed that average clamp size of diplozoids from C. carpio was larger than those from Carassius spp. The number of folds on the hindbody was 10-25 for diplozoids from C. carpio and 12-19 for those from Carassius spp. Thus, our ITS-2 sequence and morphological comparison results indicate that diplozoids from C. carpio and species of Carassius belong to different species. The scientific name E. nipponicum should be applied to the species infected to the type host, Carassius sp. of Nakabo (2013) (Japanese name ginbuna). The diplozoid infecting C. carpio (Eurasian type) should be established as a new species: Eudiplozoon kamegaii sp. n. A neotype of E. nipponicum is designated in this report because the original E. nipponicum specimens are thought to have been lost.
Collapse
Affiliation(s)
- Tomoki Nishihira
- Division of Environmental Dynamics, Graduate School of Environmental Science, University of Shiga Prefecture, Hikone-City, Japan
| | - Misako Urabe
- School of Environmental Science, The University of Shiga Prefecture, Hikone-City, Japan
| |
Collapse
|
17
|
Yang F, Zhou C, Tran NT, Sun Z, Wu J, Ge H, Lu Z, Zhong C, Zhu Z, Yang Q, Lin Q. Comparison of the complete mitochondrial genome of Phyllophorus liuwutiensis (Echinodermata: Holothuroidea: Phyllophoridae) to that of other sea cucumbers. FEBS Open Bio 2020; 10:1587-1600. [PMID: 32573974 PMCID: PMC7396427 DOI: 10.1002/2211-5463.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/31/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Sea cucumber species are abundant (>1400 species) and widely distributed globally. mtDNA sequencing is frequently used to identify the phylogenetic and evolutionary relationships among species. However, there are no reports on the mitochondrial genome of Phyllophorus liuwutiensis. Here, we performed mtDNA sequencing of P. liuwutiensis to examine its phylogenetic relationships with other echinoderms. Its mitochondrial genome (15 969 bp) contains 37 coding genes, including 13 protein‐coding genes, 22 tRNA genes and 2 rRNA genes. Except for one protein‐coding gene (nad6) and five tRNA genes encoded on the negative strand, all other genes were encoded on the positive strand. The mitochondrial bases of P. liuwutiensis were composed of 29.55% T, 22.16% C, 35.64% A and 12.64% G. The putative control region was 703 bp in length. Seven overlapping regions (1–10 bp) were found. The noncoding region between the genes ranged from 1 to 130 bp in length. One putative control region has been found in the P. liuwutiensis mitogenome. All of the tRNA genes were predicted to fold into a cloverleaf structure. In addition, we compared the gene arrangements of six echinoderms, revealing that the gene order of P. liuwutiensis was a new arrangement.
Collapse
Affiliation(s)
- Fuyuan Yang
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China.,College of Fisheries and Life Science, Shanghai Ocean University, China
| | - Chen Zhou
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, China
| | - Zaiqiao Sun
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Jianshao Wu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Hui Ge
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Zhen Lu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Chenhui Zhong
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Zhihuang Zhu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Qiuhua Yang
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Qi Lin
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China.,College of Fisheries and Life Science, Shanghai Ocean University, China
| |
Collapse
|
18
|
Kim JH, Lee BS, Jung SJ. The complete mitochondrial genome of Neoheterobothrium hirame (Platyhelminthes: Monogenea) from olive flounder ( Paralichthys olivaceus). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1735953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jeong-Ho Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Korea
| | - Beom-Seok Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea
| |
Collapse
|
19
|
Kim JH, Nam UH, Kim H, Whang I. The complete mitochondrial genome of Mazocraeoides gonialosae (Platyhelminthes: Monogenea) from dotted gizzard shad, Konosirus punctatus. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1742606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jeong-Ho Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Korea
| | - U-Hwa Nam
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Korea
| | - Hana Kim
- National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup, Korea
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup, Korea
| |
Collapse
|
20
|
Suleman, Khan MS, Tkach VV, Muhammad N, Zhang D, Zhu XQ, Ma J. Molecular phylogenetics and mitogenomics of three avian dicrocoeliids (Digenea: Dicrocoeliidae) and comparison with mammalian dicrocoeliids. Parasit Vectors 2020; 13:74. [PMID: 32054541 PMCID: PMC7020495 DOI: 10.1186/s13071-020-3940-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background The Dicrocoeliidae are digenetic trematodes mostly parasitic in the bile ducts and gall bladder of various avian and mammalian hosts. Until recently their systematics was based on morphological data only. Due to the high morphological uniformity across multiple dicrocoeliid taxa and insufficient knowledge of relative systematic value of traditionally used morphological characters, their taxonomy has always been unstable. Therefore, DNA sequence data provide a critical independent source of characters for phylogenetic inference and improvement of the system. Methods We examined the phylogenetic affinities of three avian dicrocoeliids representing the genera Brachylecithum, Brachydistomum and Lyperosomum, using partial sequences of the nuclear large ribosomal subunit (28S) RNA gene. We also sequenced the complete or nearly complete mitogenomes of these three isolates and conducted a comparative mitogenomic analysis with the previously available mitogenomes from three mammalian dicrocoeliids (from 2 different genera) and examined the phylogenetic position of the family Dicrocoeliidae within the order Plagiorchiida based on concatenated nucleotide sequences of all mitochondrial genes (except trnG and trnE). Results Combined nucleotide diversity, Kimura-2-parameter distance, non-synonymous/synonymous substitutions ratio and average sequence identity analyses consistently demonstrated that cox1, cytb, nad1 and two rRNAs were the most conserved and atp6, nad5, nad3 and nad2 were the most variable genes across dicrocoeliid mitogenomes. Phylogenetic analyses based on mtDNA sequences did not support the close relatedness of the Paragonimidae and Dicrocoeliidae and suggested non-monophyly of the Gorgoderoidea as currently recognized. Conclusions Our results show that fast-evolving mitochondrial genes atp6, nad5 and nad3 would be better markers than slow-evolving genes cox1 and nad1 for species discrimination and population level studies in the Dicrocoeliidae. Furthermore, the Dicrocoeliidae being outside of the clade containing other xiphidiatan trematodes suggests a need for the re-evaluation of the taxonomic content of the Xiphidiata.
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
21
|
Mitochondrial genomes and 28S rDNA contradict the proposed obsoletion of the order Tetraonchidea (Platyhelminthes: Monogenea). Int J Biol Macromol 2020; 143:891-901. [PMID: 31726130 DOI: 10.1016/j.ijbiomac.2019.09.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
Due to the incongruence of morphology-based hypotheses and scarcity of molecular data, validity of the order Tetraonchidea remains contentious. The only complete mitogenome currently available for the entire order is that of Paratetraonchoides inermis (Tetraonchoididae). To study the phylogeny of Tetraonchidea from mitogenomic perspective, we sequenced the first mitogenome for the family Tetraonchidae: Tetraonchus monenteron (Tetraonchidea). To get a nuclear-data perspective, we also sequenced nuclear 28S rDNA gene of both species. The mitogenome of T. monenteron does not have high A + T content, nor tRNA pseudo-genes, both of which were unique features reported in P. inermis. However, T. monenteron exhibits a unique gene order, with a large number of tRNA rearrangements in comparison to P. inermis and other monogeneans. Phylogenetic analyses conducted using Bayesian inference and maximum likelihood methods, complemented with partitioning, consistently support the sister-group relationship of T. monenteron (Tetraonchidae) and P. inermis (Tetraonchoididae). This is also partially supported by the 28S rDNA data and two morphologic apomorphies. This close relationship of Tetraonchidae and Tetraonchoididae challenges the latest major morphology-based classification, which proposed obsoletion of the Tetraonchidea order, and grouped Tetraonchoididae into the Gyrodactylidea clade. The validity of this order shall have to be further confirmed with more data.
Collapse
|
22
|
Sun S, Wu Y, Ge X, Jakovlić I, Zhu J, Mahboob S, Al-Ghanim KA, Al-Misned F, Fu H. Disentangling the interplay of positive and negative selection forces that shaped mitochondrial genomes of Gammarus pisinnus and Gammarus lacustris. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190669. [PMID: 32218929 PMCID: PMC7029888 DOI: 10.1098/rsos.190669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/29/2019] [Indexed: 05/16/2023]
Abstract
We hypothesized that the mitogenome of Gammarus lacustris (GL), native to the Qinghai-Tibet Plateau, might exhibit genetic adaptations to the extreme environmental conditions associated with high altitudes (greater than 3000 m). To test this, we also sequenced the mitogenome of Gammarus pisinnus (GP), whose native range is close to the Tibetan plateau, but at a much lower altitude (200-1500 m). The two mitogenomes exhibited conserved mitochondrial architecture, but low identity between genes (55% atp8 to 76.1% cox1). Standard (homogeneous) phylogenetic models resolved Gammaridae as paraphyletic, but 'heterogeneous' CAT-GTR model as monophyletic. In indirect support of our working hypothesis, GL, GP and Gammarus fossarum exhibit evidence of episodic diversifying selection within the studied Gammaroidea dataset. The mitogenome of GL generally evolves under a strong purifying selection, whereas GP evolves under directional (especially pronounced in atp8) and/or relaxed selection. This is surprising, as GP does not inhabit a unique ecological niche compared to other gammarids. We propose that this rapid evolution of the GP mitogenome may be a reflection of its relatively recent speciation and heightened non-adaptive (putatively metabolic rate-driven) mutational pressures. To test these hypotheses, we urge sequencing mitogenomes of remaining Gammarus species populating the same geographical range as GP.
Collapse
Affiliation(s)
- Shengming Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Ying Wu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan, People's Republic of China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, People's Republic of China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Khalid Abdullah Al-Ghanim
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| |
Collapse
|
23
|
Zhang D, Li WX, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang G. Homoplasy or plesiomorphy? Reconstruction of the evolutionary history of mitochondrial gene order rearrangements in the subphylum Neodermata. Int J Parasitol 2019; 49:819-829. [PMID: 31401064 DOI: 10.1016/j.ijpara.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Recent mitogenomic studies have exposed a gene order (GO) shared by two classes, four orders and 31 species ('common GO') within the flatworm subphylum Neodermata. There are two possible hypotheses for this phenomenon: convergent evolution (homoplasy) or shared ancestry (plesiomorphy). To test those, we conducted a meta-analysis on all available mitogenomes to infer the evolutionary history of GO in Neodermata. To improve the resolution, we added a newly sequenced mitogenome that exhibited the common GO, Euryhaliotrema johni (Ancyrocephalinae), to the dataset. Phylogenetic analyses conducted on two datasets (nucleotides of all 36 genes and amino acid sequences of 12 protein coding genes) and four algorithms (MrBayes, RAxML, IQ-TREE and PhyloBayes) produced topology instability towards the tips, so ancestral GO reconstructions were conducted using TreeREx and MLGO programs using all eight obtained topologies, plus three unique topologies from previous studies. The results consistently supported the second hypothesis, resolving the common GO as a plesiomorphic ancestral GO for Neodermata, Cestoda, Monopisthocotylea, Cestoda + Trematoda and Cestoda + Trematoda + Monopisthocotylea. This allowed us to trace the evolutionary GO scenarios from each common ancestor to its descendants amongst the Monogenea and Cestoda classes, and propose that the common GO was most likely retained throughout all of the common ancestors, leading to the extant species possessing the common GO. Neodermatan phylogeny inferred from GOs was largely incongruent with all 11 topologies described above, but it did support the mitogenomic dataset in resolving Polyopisthocotylea as the earliest neodermatan branch. Although highly derived GOs might be of some use in resolving isolated taxonomic and phylogenetic uncertainties, we conclude that, due to the discontinuous nature of their evolution, they tend to produce artefactual phylogenetic relationships, which makes them unsuitable for phylogenetic reconstruction in Neodermata. Wider and denser sampling of neodermatan mitogenomic sequences will be needed to infer the evolutionary pathways leading to the observed diversity of GOs with confidence.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Wen X Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shan G Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | | | - Jin Zhang
- Bio-Transduction Lab, Wuhan 430075, PR China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan 430075, PR China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
24
|
Ma L, Liu F, Chiba H, Yuan X. The mitochondrial genomes of three skippers: Insights into the evolution of the family Hesperiidae (Lepidoptera). Genomics 2019; 112:432-441. [PMID: 30898470 DOI: 10.1016/j.ygeno.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
We sequenced the mitogenomes of Astictopterus jama, Isoteinon lamprospilus and Notocrypta curvifascia to obtain further insight into the mitogenomic architecture evolution and performed phylogenetic reconstruction using 29 Hesperiidae mitogenome sequences. The complete mitogenome sequences of A. jama, I. lamprospilus and N. curvifascia are 15,430, 15,430 and 15,546 bp in size, respectively. All contain 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region. Nucleotide composition is A + T biased, and the majority of the protein-coding genes exhibit a negative AT-skew, which is reflected in the nucleotide composition, codon, and amino acid usage. The A + T-rich region is comprised of nonrepetitive sequences, including the motif ATAGA followed by a poly-T stretch, a microsatellite-like element next to the ATTTA motif, and a poly-A adjacent to tRNAs. Although most genes evolve under a strong purifying selection, the entire nad gene family (especially nad6) exhibits somewhat relaxed purifying selection, and atp8, evolving under a highly relaxed selection, is an outlier in the family Hesperiidae. Several different approaches relatively consistently indicated that nad6, atp8 and nad4 are comparatively fast-evolving genes in this family, which may have implications for future phylogenetic, population genetics and species diagnostics studies. For phylogenetic analyses of Hesperiidae, we tested a few datasets, and found that the one comprising all 37 genes produced the highest node support, indicating that the inclusion of RNAs improves the phylogenetic signal. Results indicate that subfamilies Euschemoninae, Heteropterinae, and Coeliadinae are monophyletic with strong nodal support, but Pyrginae and Eudaminae are paraphyletic. Finally, we confirm that A. jama and I. lamprospilus are close relatives.
Collapse
Affiliation(s)
- Luyao Ma
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangfang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hideyuki Chiba
- B.P. Bishop Museum, Honolulu, HI, United States of America
| | - Xiangqun Yuan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|