1
|
Brown MS, Carvalheiro R, Taylor RS, Mekkawy W, Luke TDW, Rands L, Nieuwesteeg D, Evans BS, Wade NM, Lind CE, Hilder PE. Probabilistic reaction norm reveals family-related variation in the association between size, condition, and sexual maturation onset in Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2024; 104:939-949. [PMID: 37996984 DOI: 10.1111/jfb.15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the relationship between the size, condition, year class, family, and sexual maturity of Atlantic salmon (Salmo salar) using data collected in an aquaculture selective breeding programme. Males that were sexually mature at 2 years of age (maiden spawn) have, on average, greater fork length and condition factor (K) at 1 year of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 1 year of age, the odds of sexual maturity at 2 years of age increased by 1.48 or 1.22 times, respectively. Females that were sexually mature at 3 years of age (maiden spawn) have, on average, greater fork length and K at 2 years of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 2 years of age, the odds of sexual maturity at 3 years of age increased by 1.06 or 1.44 times, respectively. The family explained 34.93% of the variation in sexual maturity among 2-year-old males that was not attributable to the average effects of fork length and K at 1 year of age and year class. The proportion of variation in sexual maturity among 3-year-old females explained by the family could not be investigated. These findings suggest that the onset of sexual maturation in Atlantic salmon is conditional on performance (with respect to energy availability) surpassing a threshold, the magnitude of which can vary between families and is determined by a genetic component. This could support the application of genetic selection to promote or inhibit the onset of sexual maturation in farmed stocks.
Collapse
Affiliation(s)
| | | | | | - Wagdy Mekkawy
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | | | - Lewis Rands
- Salmon Enterprises of Tasmania Pty. Ltd., Wayatinah, Tasmania, Australia
| | - Damien Nieuwesteeg
- Salmon Enterprises of Tasmania Pty. Ltd., Wayatinah, Tasmania, Australia
| | - Brad S Evans
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | - Nicholas M Wade
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Curtis E Lind
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | | |
Collapse
|
2
|
Besnier F, Ayllon F, Skaala Ø, Solberg MF, Fjeldheim PT, Anderson K, Knutar S, Glover KA. Introgression of domesticated salmon changes life history and phenology of a wild salmon population. Evol Appl 2022; 15:853-864. [PMID: 35603027 PMCID: PMC9108307 DOI: 10.1111/eva.13375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- F. Besnier
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - F. Ayllon
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - Ø. Skaala
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - M. F. Solberg
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | | | - K. Anderson
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - S. Knutar
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
| | - K. A. Glover
- Institute of Marine Research PO box 1870 Nordnes N‐5817 Norway
- Department of Biological Sciences University of Bergen N‐5020 Bergen Norway
| |
Collapse
|
3
|
Ayllon F, Solberg MF, Besnier F, Fjelldal PG, Hansen TJ, Wargelius A, Edvardsen RB, Glover KA. Autosomal sdY Pseudogenes Explain Discordances Between Phenotypic Sex and DNA Marker for Sex Identification in Atlantic Salmon. Front Genet 2020; 11:544207. [PMID: 33173531 PMCID: PMC7591749 DOI: 10.3389/fgene.2020.544207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Despite the key role that sex-determination plays in evolutionary processes, it is still poorly understood in many species. In salmonids, which are among the best studied fishes, the master sex-determining gene sexually dimorphic on the Y-chromosome (sdY) has been identified. However, sdY displays unexplained discordance to the phenotypic sex, with a variable frequency of phenotypic females being reported as genetic males. Multiple sex determining loci in Atlantic salmon have also been reported, possibly as a result of recent transposition events in this species. We hypothesized the existence of an autosomal copy of sdY, causing apparent discordance between phenotypic and genetic sex, that is transmitted in accordance with autosomal inheritance. To test this, we developed a qPCR methodology to detect the total number of sdY copies present in the genome. Based on the observed phenotype/genotype frequencies and linkage analysis among 2,025 offspring from 64 pedigree-controlled families of accurately phenotyped Atlantic salmon, we identified both males and females carrying one or two autosomal copies of sdY in addition to the Y-specific copy present in males. Patterns across families were highly consistent with autosomal inheritance. These autosomal sdY copies appear to have lost the ability to function as a sex determining gene and were only occasionally assigned to the actual sex chromosome in any of the affected families.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kevin Alan Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Glover KA, Harvey AC, Hansen TJ, Fjelldal PG, Besnier FN, Bos JB, Ayllon F, Taggart JB, Solberg MF. Chromosome aberrations in pressure-induced triploid Atlantic salmon. BMC Genet 2020; 21:59. [PMID: 32505176 PMCID: PMC7276064 DOI: 10.1186/s12863-020-00864-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Triploid organisms have three sets of chromosomes. In Atlantic salmon, hydrostatic pressure treatment of newly fertilized eggs has been extensively used to produce triploids which are functionally sterile due to their unpaired chromosomes. These fish often perform poorly on commercial farms, sometimes without explanation. Inheritance patterns in individuals subjected to pressure treatment have not been investigated in Atlantic salmon thus far. However, work on other species suggests that this treatment can result in aberrant inheritance. We therefore studied this in Atlantic salmon by genotyping 16 polymorphic microsatellites in eyed eggs and juveniles which had been subjected to pressure-induction of triploidy. Communally reared juveniles including fish subjected to pressure-induction of triploidy and their diploid siblings were included as a control. RESULTS No diploid offspring were detected in any of the eggs or juveniles which were subjected to hydrostatic pressure; therefore, the induction of triploidy was highly successful. Aberrant inheritance was nevertheless observed in 0.9% of the eggs and 0.9% of the juveniles that had been subjected to pressure treatment. In the communally reared fish, 0.3% of the fish subjected to pressure treatment displayed aberrant inheritance, while their diploid controls displayed 0% aberrant inheritance. Inheritance errors included two eyed eggs lacking maternal DNA across all microsatellites, and, examples in both eggs and juveniles of either the maternal or paternal allele lacking in one of the microsatellites. All individuals displaying chromosome aberrations were otherwise triploid. CONCLUSIONS This is the first study to document aberrant inheritance in Atlantic salmon that have been subjected to pressure-induction of triploidy. Our experiments unequivocally demonstrate that even when induction of triploidy is highly successful, this treatment can cause chromosome aberrations in this species. Based upon our novel data, and earlier studies in other organisms, we hypothesize that in batches of Atlantic salmon where low to modest triploid induction rates have been reported, aberrant inheritance is likely to be higher than the rates observed here. Therefore, we tentatively suggest that this could contribute to the unexplained poor performance of triploid salmon that is occasionally reported in commercial aquaculture. These hypotheses require further investigation.
Collapse
Affiliation(s)
- K A Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - A C Harvey
- Institute of Marine Research, Bergen, Norway.
| | - T J Hansen
- Institute of Marine Research, Bergen, Norway
| | | | - F N Besnier
- Institute of Marine Research, Bergen, Norway
| | - J B Bos
- ZEBCARE, Nederweert, The Netherlands
| | - F Ayllon
- Institute of Marine Research, Bergen, Norway
| | | | - M F Solberg
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
5
|
Bicskei B, Taggart JB, Bron JE, Glover KA. Transcriptomic comparison of communally reared wild, domesticated and hybrid Atlantic salmon fry under stress and control conditions. BMC Genet 2020; 21:57. [PMID: 32471356 PMCID: PMC7257211 DOI: 10.1186/s12863-020-00858-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Domestication is the process by which organisms become adapted to the human-controlled environment. Since the selection pressures that act upon cultured and natural populations differ, adaptations that favour life in the domesticated environment are unlikely to be advantageous in the wild. Elucidation of the differences between wild and domesticated Atlantic salmon may provide insights into some of the genomic changes occurring during domestication, and, help to predict the evolutionary consequences of farmed salmon escapees interbreeding with wild conspecifics. In this study the transcriptome of the offspring of wild and domesticated Atlantic salmon were compared using a common-garden experiment under standard hatchery conditions and in response to an applied crowding stressor. RESULTS Transcriptomic differences between wild and domesticated crosses were largely consistent between the control and stress conditions, and included down-regulation of environmental information processing, immune and nervous system pathways and up-regulation of genetic information processing, carbohydrate metabolism, lipid metabolism and digestive and endocrine system pathways in the domesticated fish relative to their wild counterparts, likely reflective of different selection pressures acting in wild and cultured populations. Many stress responsive functions were also shared between crosses and included down-regulation of cellular processes and genetic information processing and up-regulation of some metabolic pathways, lipid and energy in particular. The latter may be indicative of mobilization and reallocation of energy resources in response to stress. However, functional analysis indicated that a number of pathways behave differently between domesticated and wild salmon in response to stress. Reciprocal F1 hybrids permitted investigation of inheritance patterns that govern transcriptomic differences between these genetically divergent crosses. Additivity and maternal dominance accounted for approximately 42 and 25% of all differences under control conditions for both hybrids respectively. However, the inheritance of genes differentially expressed between crosses under stress was less consistent between reciprocal hybrids, potentially reflecting maternal environmental effects. CONCLUSION We conclude that there are transcriptomic differences between the domesticated and wild salmon strains studied here, reflecting the different selection pressures operating on them. Our results indicate that stress may affect certain biological functions differently in wild, domesticated and hybrid crosses and these should be further investigated.
Collapse
Affiliation(s)
- Beatrix Bicskei
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - John B. Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - James E. Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - Kevin A. Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|