1
|
Hermanson G, Evers S. Shell Constraints on Evolutionary Body Size-Limb Size Allometry Can Explain Morphological Conservatism in the Turtle Body Plan. Ecol Evol 2024; 14:e70504. [PMID: 39539674 PMCID: PMC11557996 DOI: 10.1002/ece3.70504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Turtles are a small clade of vertebrates despite having existed since the Late Triassic. Turtles have a conservative body plan relative to other amniotes, characterized by the presence of a shell and quadrupedality. This morphology is even retained in strong ecological specialists, such as sea turtles, which are secondarily adapted to marine locomotion by strong allometric scaling in their hands. It is possible that the body plan of turtles is strongly influenced by the presence of the shell, acting as a constraint to achieving greater diversity of body forms. Here, we explore the evolutionary allometric relationships of fore- and hindlimb stylopodia (i.e., humerus and femur) with one another as well as their relationship with shell size (carapace length) to assess evidence of constraint. All turtles, including Triassic shelled stem turtles, have near-isometric relationships that do not vary strongly between clades, and evolve at slow evolutionary rates. This indeed indicates that body proportions of turtles are constrained to a narrow range of possibilities. Minor allometric deviations are seen in highly aquatic sea turtles and softshell turtles, which modified their shells by bone losses. Our allometric regressions allow accurate body size estimations for fossils. Several independent sea turtle lineages converged on maximum sizes of 2.2 m of shell length, which may be a biological maximum for the group.
Collapse
|
2
|
Shipley AE, Elsler A, Singh SA, Stubbs TL, Benton MJ. Locomotion and the early Mesozoic success of Archosauromorpha. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231495. [PMID: 38328568 PMCID: PMC10846959 DOI: 10.1098/rsos.231495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
The Triassic was a time of ecological upheaval as life recovered from the Permian-Triassic mass extinction. Archosauromorphs were a key component of the recovery, diversifying substantially during the Triassic and encompassing the origins of dinosaurs, pterosaurs and crocodylomorphs. Here, we explore the evolution of locomotion in Archosauromorpha to test whether dinosaurs show any distinctive locomotory features that might explain their success. We implement geometric morphometrics on limb bone shapes and use limb ratios to calculate bipedality and cursoriality metrics. We find that the Avemetatarsalia (dinosaurs, pterosaurs and relatives) exhibit more variable limb form and limb ratios than any other group, indicating a wider range of locomotory modes. The earliest avemetatarsalians were bipedal and cursorial, and their range of form increased through the Triassic with notable diversification shifts following extinction events. This is especially true of dinosaurs, even though these changes cannot be discriminated from a stochastic process. By contrast, the Pseudosuchia (crocodilians and relatives) were more restricted in limb form and locomotor mode with disparity decreasing through time, suggesting more limited locomotor adaptation and vulnerability to extinction. Perhaps the greater locomotor plasticity of dinosaurs gave them a competitive advantage in the changing climates of the Late Triassic.
Collapse
Affiliation(s)
- Amy E. Shipley
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Armin Elsler
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Suresh A. Singh
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Thomas L. Stubbs
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Michael J. Benton
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| |
Collapse
|
3
|
ElShafie SJ. Body size estimation from isolated fossil bones reveals deep time evolutionary trends in North American lizards. PLoS One 2024; 19:e0296318. [PMID: 38180961 PMCID: PMC10769094 DOI: 10.1371/journal.pone.0296318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Lizards play vital roles in extant ecosystems. However, their roles in extinct ecosystems are poorly understood because the fossil record of lizards consists mostly of isolated bones. This makes it difficult to document changes in lizard morphology and body size over time, which is essential for studies of lizard paleoecology and evolution. It is also difficult to compare available fossil lizard data with existing sources of extant lizard data because extant studies rarely measure individual bones. Furthermore, no previous study has regressed measurements of individual bones to body length across crown lizard groups, nor tested those regressions on fossil skeletons. An extensive dataset of individual bone measurements from extant lizards across crown taxonomic groups is here employed to develop novel methods for estimating lizard body size from isolated fossil elements. These methods were applied to a comparably large dataset of fossil lizard specimens from the robust Paleogene record (66-23 Ma) of the Western Interior of North America. This study tests the hypothesis that anatomical proportions have been conserved within higher-level crown lizard groups since the Paleogene and can therefore be used to reconstruct snout-vent length (SVL) and mass for fossil specimens referred to the same groups. Individual bones demonstrated strong correlation with SVL in extant as well as fossil lizard specimens (R2 ≥ 0.69). Equations for mass estimation from individual bones were derived from the SVL regressions using published equations for calculating lizard body mass from SVL. The resulting body size estimates from regression equations for the entire fossil dataset revealed that lizards reached greatest maximum body size in the middle Paleogene, with the largest size class dominated by anguid lizards that exceeded 1 meter in SVL and 1.5 kg in body mass. Maximum body size decreased to under 400 mm and below 1.5 kg in the late Paleogene. No association was found between changes in maximum lizard body size and marine isotope proxies of global temperature through the Paleogene. This is the first study to investigate body size evolution across lizard clades over a deep time interval and for a large geographic region. The proposed methods can be used to generate body size regressions and provide estimates of body size for isolated lizard bones referred to any crown group.
Collapse
Affiliation(s)
- Sara J. ElShafie
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California, United States of America
| |
Collapse
|
4
|
Payne ARD, Mannion PD, Lloyd GT, Davis KE. Decoupling speciation and extinction reveals both abiotic and biotic drivers shaped 250 million years of diversity in crocodile-line archosaurs. Nat Ecol Evol 2024; 8:121-132. [PMID: 38049481 PMCID: PMC10781641 DOI: 10.1038/s41559-023-02244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Whereas living representatives of Pseudosuchia, crocodylians, number fewer than 30 species, more than 700 pseudosuchian species are known from their 250-million-year fossil record, displaying far greater ecomorphological diversity than their extant counterparts. With a new time-calibrated tree of >500 species, we use a phylogenetic framework to reveal that pseudosuchian evolutionary history and diversification dynamics were directly shaped by the interplay of abiotic and biotic processes over hundreds of millions of years, supported by information theory analyses. Speciation, but not extinction, is correlated with higher temperatures in terrestrial and marine lineages, with high sea level associated with heightened extinction in non-marine taxa. Low lineage diversity and increased speciation in non-marine species is consistent with opportunities for niche-filling, whereas increased competition may have led to elevated extinction rates. In marine lineages, competition via increased lineage diversity appears to have driven both speciation and extinction. Decoupling speciation and extinction, in combination with ecological partitioning, reveals a more complex picture of pseudosuchian evolution than previously understood. As the number of species threatened with extinction by anthropogenic climate change continues to rise, the fossil record provides a unique window into the drivers that led to clade success and those that may ultimately lead to extinction.
Collapse
Affiliation(s)
- Alexander R D Payne
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London, UK
| | | | - Katie E Davis
- Department of Biology, University of York, York, UK.
| |
Collapse
|
5
|
Dunne EM, Farnsworth A, Benson RBJ, Godoy PL, Greene SE, Valdes PJ, Lunt DJ, Butler RJ. Climatic controls on the ecological ascendancy of dinosaurs. Curr Biol 2023; 33:206-214.e4. [PMID: 36528026 DOI: 10.1016/j.cub.2022.11.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1,2,3 During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, only attaining wider distributions and greater abundance following the end-Triassic mass extinction event.4,5,6 This pattern is consistent with an opportunistic expansion model, initiated by the extinction of co-occurring groups such as aetosaurs, rauisuchians, and therapsids.4,7,8 However, this pattern could instead be a response to changes in global climatic distributions through the Triassic to Jurassic transition, especially given the increasing evidence that climate played a key role in constraining Triassic dinosaur distributions.7,9,10,11,12,13,14,15,16 Here, we test this hypothesis and elucidate how climate influenced early dinosaur distribution by quantitatively examining changes in dinosaur and tetrapod "climatic niche space" across the Triassic-Jurassic boundary. Statistical analyses show that Late Triassic sauropodomorph dinosaurs occupied a more restricted climatic niche space than other tetrapods and dinosaurs, being excluded from the hottest, low-latitude climate zones. A subsequent, earliest Jurassic expansion of sauropodomorph geographic distribution is linked to the expansion of their preferred climatic conditions. Evolutionary model-fitting analyses provide evidence for an important evolutionary shift from cooler to warmer climatic niches during the origin of Sauropoda. These results are consistent with the hypothesis that global abundance of sauropodomorph dinosaurs was facilitated by climatic change and provide support for the key role of climate in the ascendancy of dinosaurs.
Collapse
Affiliation(s)
- Emma M Dunne
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Alexander Farnsworth
- School of Geographical Sciences, University of Bristol, University Rd, Bristol, BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Lincui Road, Chaoyang District, Beijing 100101, China
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Pedro L Godoy
- Department of Biology, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Anatomical Sciences, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Sarah E Greene
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, University Rd, Bristol, BS8 1SS, UK
| | - Daniel J Lunt
- School of Geographical Sciences, University of Bristol, University Rd, Bristol, BS8 1SS, UK
| | - Richard J Butler
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Slater GJ. Topographically distinct adaptive landscapes for teeth, skeletons, and size explain the adaptive radiation of Carnivora (Mammalia). Evolution 2022; 76:2049-2066. [PMID: 35880607 PMCID: PMC9546082 DOI: 10.1111/evo.14577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 01/22/2023]
Abstract
Models of adaptive radiation were originally developed to explain the early, rapid appearance of distinct modes of life within diversifying clades. Phylogenetic tests of this hypothesis have yielded limited support for temporally declining rates of phenotypic evolution across diverse clades, but the concept of an adaptive landscape that links form to fitness, while also crucial to these models, has received more limited attention. Using methods that assess the temporal accumulation of morphological variation and estimate the topography of the underlying adaptive landscape, I found evidence of an early partitioning of mandibulo-dental morphological variation in Carnivora (Mammalia) that occurs on an adaptive landscape with multiple peaks, consistent with classic ideas about adaptive radiation. Although strong support for this mode of adaptive radiation is present in traits related to diet, its signal is not present in body mass data or for traits related to locomotor behavior and substrate use. These findings suggest that adaptive radiations may occur along some axes of ecomorphological variation without leaving a signal in others and that their dynamics are more complex than simple univariate tests might suggest.
Collapse
Affiliation(s)
- Graham J. Slater
- Department of the Geophysical SciencesUniversity of ChicagoChicagoIllinois60637
| |
Collapse
|
7
|
Abstract
General rules are useful tools for understanding how organisms evolve. Cope’s rule (tendency to increase in size over evolutionary time) and Bergmann’s rule (tendency to grow to larger sizes in cooler climates) both relate to body size, an important factor that affects the biology, ecology, and physiology of organisms. These rules are well studied in endotherms but remain poorly understood among ectotherms. Here, we show that paleoclimatic changes strongly shaped the trajectory of body size evolution in tetraodontiform fishes. Their body size evolution is explained by both Cope’s and Bergmann’s rules, highlighting the impact of paleoclimatic changes on aquatic organisms, which rely on their environment for temperature regulation and are likely more susceptible than terrestrial vertebrates to climatic changes. Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth’s geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann’s rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope’s rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann’s and Cope’s rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann’s and Cope’s rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.
Collapse
|
8
|
Reconstructed evolutionary patterns for crocodile-line archosaurs demonstrate impact of failure to log-transform body size data. Commun Biol 2022; 5:171. [PMID: 35217775 PMCID: PMC8881462 DOI: 10.1038/s42003-022-03071-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
|
9
|
Stockdale MT, Benton MJ. Reply to: 'Reconstructed evolutionary patterns from crocodile-line archosaurs demonstrate the impact of failure to log-transform body size data'. Commun Biol 2022; 5:170. [PMID: 35217770 PMCID: PMC8881626 DOI: 10.1038/s42003-022-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RL, UK
| |
Collapse
|
10
|
Chiarenza AA, Mannion PD, Farnsworth A, Carrano MT, Varela S. Climatic constraints on the biogeographic history of Mesozoic dinosaurs. Curr Biol 2021; 32:570-585.e3. [PMID: 34921764 DOI: 10.1016/j.cub.2021.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Dinosaurs dominated Mesozoic terrestrial ecosystems globally. However, whereas a pole-to-pole geographic distribution characterized ornithischians and theropods, sauropods were restricted to lower latitudes. Here, we evaluate the role of climate in shaping these biogeographic patterns through the Jurassic-Cretaceous (201-66 mya), combining dinosaur fossil occurrences, past climate data from Earth System models, and habitat suitability modeling. Results show that, uniquely among dinosaurs, sauropods occupied climatic niches characterized by high temperatures and strongly bounded by minimum cold temperatures. This constrained the distribution and dispersal pathways of sauropods to tropical areas, excluding them from latitudinal extremes, especially in the Northern Hemisphere. The greater availability of suitable habitat in the southern continents, particularly in the Late Cretaceous, might be key to explaining the high diversity of sauropods there, relative to northern landmasses. Given that ornithischians and theropods show a flattened or bimodal latitudinal biodiversity gradient, with peaks at higher latitudes, the closer correspondence of sauropods to a subtropical concentration could hint at fundamental thermophysiological differences to the other two clades.
Collapse
Affiliation(s)
- Alfio Alessandro Chiarenza
- Grupo de Ecología Animal, Centro de Investigacion Mariña, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain; Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
| | - Alex Farnsworth
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1RL, UK; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Matthew T Carrano
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20013-7012, USA.
| | - Sara Varela
- Grupo de Ecología Animal, Centro de Investigacion Mariña, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| |
Collapse
|
11
|
García-Navas V, Tobias JA, Schweizer M, Wegmann D, Schodde R, Norman JA, Christidis L. Trophic niche shifts and phenotypic trait evolution are largely decoupled in Australasian parrots. BMC Ecol Evol 2021; 21:212. [PMID: 34837943 PMCID: PMC8626917 DOI: 10.1186/s12862-021-01940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Trophic shifts from one dietary niche to another have played major roles in reshaping the evolutionary trajectories of a wide range of vertebrate groups, yet their consequences for morphological disparity and species diversity differ among groups. METHODS Here, we use phylogenetic comparative methods to examine whether the evolution of nectarivory and other trophic shifts have driven predictable evolutionary pathways in Australasian psittaculid parrots in terms of ecological traits such as body size, beak shape, and dispersal capacity. RESULTS We found no evidence for an 'early-burst' scenario of lineage or morphological diversification. The best-fitting models indicate that trait evolution in this group is characterized by abrupt phenotypic shifts (evolutionary jumps), with no sign of multiple phenotypic optima correlating with different trophic strategies. Thus, our results point to the existence of weak directional selection and suggest that lineages may be evolving randomly or slowly toward adaptive peaks they have not yet reached. CONCLUSIONS This study adds to a growing body of evidence indicating that the relationship between avian morphology and feeding ecology may be more complex than usually assumed and highlights the importance of adding more flexible models to the macroevolutionary toolbox.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology, Doñana Biological Station EBD (CSIC), Seville, Spain.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Lisbon, Portugal.
| | - Joseph A Tobias
- Department of Life Sciences (Silwood Park), Faculty of Natural Sciences, Imperial College London, London, UK
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Richard Schodde
- Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, Canberra, Australia
| | | | - Les Christidis
- Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
12
|
Gearty W, Carrillo E, Payne JL. Ecological Filtering and Exaptation in the Evolution of Marine Snakes. Am Nat 2021; 198:506-521. [PMID: 34559607 DOI: 10.1086/716015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractConvergent evolution is often attributed to adaptation of form to function, but it can also result from ecological filtering, exaptation, or nonaptation. Testing among these possibilities is critical to understanding how and why morphological similarities emerge independently in multiple lineages. To address this challenge, we combined multiple preexisting phylogenetic methods to jointly estimate the habitats and morphologies of lineages within a phylogeny. We applied this approach to the invasions of snakes into the marine realm. We utilized a data set for 1,243 extant snake species consisting of newly compiled biome occupancy information and preexisting data on reproductive strategy, body mass, and environmental temperature and elevation. We find evidence for marine clades arising from a variety of aquatic and terrestrial habitats. Furthermore, there is strong evidence of ecological filtering for nonmarine ancestors that were already viviparous, had slightly larger-than-average body sizes, and lived in environments with higher-than-average temperatures and lower-than-average elevations. In aggregate, similarities among independent lineages of marine snakes result from a combination of exaptation and strong ecological filtering. Strong barriers to entry of new habitats appear to be more important than common adaptations following invasions for producing similarities among independent lineages invading a shared, novel habitat.
Collapse
|
13
|
Rio JP, Mannion PD. Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem. PeerJ 2021; 9:e12094. [PMID: 34567843 PMCID: PMC8428266 DOI: 10.7717/peerj.12094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
First appearing in the latest Cretaceous, Crocodylia is a clade of semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister taxon relationship, in which they are more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia based on a critical reappraisal of published crocodylian character data matrices and extensive firsthand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone. This result is recovered regardless of the weighting strategy and treatment of quantitative characters. However, analyses using continuous characters and extended implied weighting (with high k-values) produced the most resolved, well-supported, and stratigraphically congruent topologies overall. Resolution of the gharial problem reveals that: (1) several gavialoids lack plesiomorphic features that formerly drew them towards the stem of Crocodylia; and (2) more widespread similarities occur between species traditionally divided into tomistomines and gavialoids, with these interpreted here as homology rather than homoplasy. There remains significant temporal incongruence regarding the inferred divergence timing of the extant gharials, indicating that several putative gavialids ('thoracosaurs') are incorrectly placed and require future re-appraisal. New alligatoroid interrelationships include: (1) support for a North American origin of Caimaninae in the latest Cretaceous; (2) the recovery of the early Paleogene South American taxon Eocaiman as a 'basal' alligatoroid; and (3) the paraphyly of the Cenozoic European taxon Diplocynodon. Among crocodyloids, notable results include modifications to the taxonomic content of Mekosuchinae, including biogeographic affinities of this clade with latest Cretaceous-early Paleogene Asian crocodyloids. In light of our new results, we provide a comprehensive review of the evolutionary and biogeographic history of Crocodylia, which included multiple instances of transoceanic and continental dispersal.
Collapse
Affiliation(s)
- Jonathan P. Rio
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, London, United Kingdom
| |
Collapse
|
14
|
Nieto MN, Degrange FJ, Sellers KC, Pol D, Holliday CM. Biomechanical performance of the cranio-mandibular complex of the small notosuchian Araripesuchus gomesii (Notosuchia, Uruguaysuchidae). Anat Rec (Hoboken) 2021; 305:2695-2707. [PMID: 34132040 DOI: 10.1002/ar.24697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Notosuchia is a clade of crocodyliforms that was highly successful and diverse in the Cretaceous of Gondwana. Araripesuchus gomesii is a small notosuchian from the Early Cretaceous of Brazil that belongs to Uruguaysuchidae, one of the subgroups of notosuchians that first radiated, during the Aptian-Albian. Here we present a finite element analysis of A. gomesii based on a model reconstructed from CT scans and performed using published bone properties for crocodiles. The adductor musculature and their respective attachment areas were reconstructed based on Extant Phylogenetic Bracket. Different functional scenarios were tested applying an estimated 158 N bite force: unilateral bite, bilateral bite, pullback, head-shake, and head-twist. The results obtained were compared with those of Alligator mississippiensis, one of its closest living relatives. In the different simulations, the skull and lower jaws of Araripesuchus suffers more stress in the head-shake movement, followed by the unilateral and pullback bites with stress focalized in the premaxillary region. In contrast, the head-twist is the one with smaller stress values. Araripesuchus possess an oreinirostral skull that may provide greater overall resistance in the different scenarios on average, unlike Alligator that has a platyrostral skull with less resistance to dorsoventral mechanical loads. Previous hypotheses that considered A. gomesii as omnivorous coupled with our results, its small size, and likely limited bite force, suggest this taxon probably fed on small prey and other trophic items that could catch and handle entirely with its mouth, such as insects and small vertebrates.
Collapse
Affiliation(s)
- Mauro N Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Diego Pol
- Museo Paleontológico Egidio Feruglio-CONICET, Trelew, Chubut, Argentina
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Erb A, Turner AH. Braincase anatomy of the Paleocene crocodyliform Rhabdognathus revealed through high resolution computed tomography. PeerJ 2021; 9:e11253. [PMID: 33986990 PMCID: PMC8103917 DOI: 10.7717/peerj.11253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/20/2021] [Indexed: 11/20/2022] Open
Abstract
Dyrosaurids were highly specialized, largely marine, relatives of living crocodylians, and one of the few archosaur lineages to survive the K-Pg extinction. Dyrosaurids lived during the Cretaceous to the Eocene and represent a unique combination of morphology and ecology not seen in living crocodylians. Little is known about their endocranial anatomy, leaving many questions about their neurosensory adaptations unaddressed. Recently, µCT (micro-computed tomography) scans were made of a well-preserved skull of Rhabdognathus, a Paleocene dyrosaurid from Mali. This marks the first time the braincase and neurosensory features of a dyrosaurid have been examined using CT. We focus our attention to three specific internal structures: the cranial endocast; the inner ear; and the paratympanic sinuses. The cranial endocast of Rhabdognathus revealed novel features including a unique conformation of its paratympanic system, a prominent dorsal venous system that communicates with the external skull table, extremely enlarged tympanic vestibules that meet at the midline of the endocranium, a prominent spherical cerebrum, and elongate olfactory tracts accounting for half the total endocast length. The bizarre laterally facing lateral Eustachian foramen of dyrosaurids is now understood to be a complex fossa including both a ventrally directed lateral Eustachian foramen and a laterally directed foramen for the basioccipital diverticulum. A novel median pterygopharyngeal canal was discovered connecting the pharynx to the adductor chamber. These revelations require a reinterpretation of the associated external foramina visible on the posterior of the skull in dyrosaurids and potentially their close relatives the pholidosaurids. The olfactory tract terminates in an enlarged olfactory region possessing complex bony projections—a unique morphology perhaps serving to increase surface area for olfaction. The inner ear of Rhabdognathus exhibits characteristics seen in both Pelagosaurus and Gavialis. The vestibule is spherical, as in Gavialis, but is significantly expanded. The semicircular canals are enlarged but pyramidal in shape as in the thalattosuchian Pelagosaurus. The proportion of the cochlear length to total endosseous labyrinth height is roughly 0.5 in Rhabdognathus implying that the hearing capabilities resemble that of thalattosuchians. A suite of expanded sense organs (e.g., bony olfactory lamina; hypertrophied vestibule of the inner ear), and the clear expansion of the cerebrum to a more symmetrical and spherical shape suggest that dyrosaurids possess neuroanatomical modifications facilitating an agile predatory near-shore ecology.
Collapse
Affiliation(s)
- Arthur Erb
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
16
|
Bronzati M, Benson RBJ, Evers SW, Ezcurra MD, Cabreira SF, Choiniere J, Dollman KN, Paulina-Carabajal A, Radermacher VJ, Roberto-da-Silva L, Sobral G, Stocker MR, Witmer LM, Langer MC, Nesbitt SJ. Deep evolutionary diversification of semicircular canals in archosaurs. Curr Biol 2021; 31:2520-2529.e6. [PMID: 33930303 DOI: 10.1016/j.cub.2021.03.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Living archosaurs (birds and crocodylians) have disparate locomotor strategies that evolved since their divergence ∼250 mya. Little is known about the early evolution of the sensory structures that are coupled with these changes, mostly due to limited sampling of early fossils on key stem lineages. In particular, the morphology of the semicircular canals (SCCs) of the endosseous labyrinth has a long-hypothesized relationship with locomotion. Here, we analyze SCC shapes and sizes of living and extinct archosaurs encompassing diverse locomotor habits, including bipedal, semi-aquatic, and flying taxa. We test form-function hypotheses of the SCCs and chronicle their evolution during deep archosaurian divergences. We find that SCC shape is statistically associated with both flight and bipedalism. However, this shape variation is small and is more likely explained by changes in braincase geometry than by locomotor changes. We demonstrate high disparity of both shape and size among stem-archosaurs and a deep divergence of SCC morphologies at the bird-crocodylian split. Stem-crocodylians exhibit diverse morphologies, including aspects also present in birds and distinct from other reptiles. Therefore, extant crocodylian SCC morphologies do not reflect retention of a "primitive" reptilian condition. Key aspects of bird SCC morphology that hitherto were interpreted as flight related, including large SCC size and enhanced sensitivity, appeared early on the bird stem-lineage in non-flying dinosaur precursors. Taken together, our results indicate a deep divergence of SCC traits at the bird-crocodylian split and that living archosaurs evolved from an early radiation with high sensory diversity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Mario Bronzati
- Departamento de Biologia, Universidade de São Paulo, Av. Bandeirantes 1900, Ribeirão Preto-SP 14040-091, Brazil.
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, OX13AN Oxford, UK; Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein, Private Bag 3, Johannesburg WITS2050, South Africa.
| | - Serjoscha W Evers
- Department of Earth Sciences, University of Oxford, South Parks Road, OX13AN Oxford, UK; Department of Geosciences, University of Fribourg, Chemin du Musée 4, 1700 Fribourg, Switzerland
| | - Martín D Ezcurra
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Sergio F Cabreira
- Avenida Antônio Bozzetto 305, Faxinal do Soturno-RS 97220-000, Brazil
| | - Jonah Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein, Private Bag 3, Johannesburg WITS2050, South Africa
| | - Kathleen N Dollman
- Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein, Private Bag 3, Johannesburg WITS2050, South Africa
| | - Ariana Paulina-Carabajal
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-Universidad Nacional del Comahue, Quintral 1250 (8400), San Carlos de Bariloche, Argentina
| | - Viktor J Radermacher
- Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein, Private Bag 3, Johannesburg WITS2050, South Africa
| | | | - Gabriela Sobral
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, Suttgart 70191, Germany
| | - Michelle R Stocker
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA
| | - Lawrence M Witmer
- Department of Biomedical Science, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Max C Langer
- Departamento de Biologia, Universidade de São Paulo, Av. Bandeirantes 1900, Ribeirão Preto-SP 14040-091, Brazil
| | - Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA.
| |
Collapse
|
17
|
Mongiardino Koch N. Exploring adaptive landscapes across deep time: A case study using echinoid body size. Evolution 2021; 75:1567-1581. [PMID: 33782962 DOI: 10.1111/evo.14219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Adaptive landscapes are a common way of conceptualizing the phenotypic evolution of lineages across deep time. Although multiple approaches exist to implement this concept into operational models of trait evolution, inferring adaptive landscapes from comparative datasets remains challenging. Here, I explore the macroevolutionary dynamics of echinoid body size using data from over 5000 specimens and a phylogenetic framework incorporating a dense fossil sampling and spanning approximately 270 million years. Furthermore, I implement a novel approach of exploring alternative parameterizations of adaptive landscapes that succeeds in finding simpler, yet better-fitting models. Echinoid body size has been constrained to evolve within a single adaptive optimum for much of the clade's history. However, most of the morphological disparity of echinoids was generated by multiple regime shifts that drove the repeated evolution of miniaturized and gigantic forms. Events of body size innovation occurred predominantly in the Late Cretaceous and were followed by a drastic slowdown following the Cretaceous-Paleogene mass extinction. The discovery of these patterns is contingent upon directly sampling fossil taxa. The macroevolution of echinoid body size is therefore characterized by a late increase in disparity (likely linked to an expansion of ecospace), generated by active processes driving lineages toward extreme morphologies.
Collapse
|
18
|
Stubbs TL, Pierce SE, Elsler A, Anderson PSL, Rayfield EJ, Benton MJ. Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation. Proc Biol Sci 2021; 288:20210069. [PMID: 33757349 PMCID: PMC8059953 DOI: 10.1098/rspb.2021.0069] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the origin, expansion and loss of biodiversity is fundamental to evolutionary biology. The approximately 26 living species of crocodylomorphs (crocodiles, caimans, alligators and gharials) represent just a snapshot of the group's rich 230-million-year history, whereas the fossil record reveals a hidden past of great diversity and innovation, including ocean and land-dwelling forms, herbivores, omnivores and apex predators. In this macroevolutionary study of skull and jaw shape disparity, we show that crocodylomorph ecomorphological variation peaked in the Cretaceous, before declining in the Cenozoic, and the rise and fall of disparity was associated with great heterogeneity in evolutionary rates. Taxonomically diverse and ecologically divergent Mesozoic crocodylomorphs, like marine thalattosuchians and terrestrial notosuchians, rapidly evolved novel skull and jaw morphologies to fill specialized adaptive zones. Disparity in semi-aquatic predatory crocodylians, the only living crocodylomorph representatives, accumulated steadily, and they evolved more slowly for most of the last 80 million years, but despite their conservatism there is no evidence for long-term evolutionary stagnation. These complex evolutionary dynamics reflect ecological opportunities, that were readily exploited by some Mesozoic crocodylomorphs but more limited in Cenozoic crocodylians.
Collapse
Affiliation(s)
| | - Stephanie E Pierce
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Armin Elsler
- School of Earth Sciences, University of Bristol, UK
| | - Philip S L Anderson
- Animal Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | | |
Collapse
|
19
|
Stockdale MT, Benton MJ. Environmental drivers of body size evolution in crocodile-line archosaurs. Commun Biol 2021; 4:38. [PMID: 33414557 PMCID: PMC7790829 DOI: 10.1038/s42003-020-01561-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Ever since Darwin, biologists have debated the relative roles of external and internal drivers of large-scale evolution. The distributions and ecology of living crocodilians are controlled by environmental factors such as temperature. Crocodilians have a rich history, including amphibious, marine and terrestrial forms spanning the past 247 Myr. It is uncertain whether their evolution has been driven by extrinsic factors, such as climate change and mass extinctions, or intrinsic factors like sexual selection and competition. Using a new phylogeny of crocodilians and their relatives, we model evolutionary rates using phylogenetic comparative methods. We find that body size evolution follows a punctuated, variable rate model of evolution, consistent with environmental drivers of evolution, with periods of stability interrupted by periods of change. Regression analyses show warmer environmental temperatures are associated with high evolutionary rates and large body sizes. We confirm that environmental factors played a significant role in the evolution of crocodiles.
Collapse
Affiliation(s)
- Maximilian T. Stockdale
- grid.5337.20000 0004 1936 7603School of Geographical Sciences, University Road, Bristol, BS8 1RL United Kingdom
| | - Michael J. Benton
- School of Earth Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ United Kingdom
| |
Collapse
|
20
|
Iijima M, Kubo T. Vertebrae-Based Body Length Estimation in Crocodylians and Its Implication for Sexual Maturity and the Maximum Sizes. Integr Org Biol 2020; 2:obaa042. [PMID: 33791579 PMCID: PMC7891683 DOI: 10.1093/iob/obaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Body size is fundamental to the physiology and ecology of organisms. Crocodyliforms are no exception, and several methods have been developed to estimate their absolute body sizes from bone measurements. However, species-specific sizes, such as sexually mature sizes and the maximum sizes were not taken into account due to the challenging maturity assessment of osteological specimens. Here, we provide a vertebrae-based method to estimate absolute and species-specific body lengths in crocodylians. Lengths of cervical to anterior caudal centra were measured and relations between the body lengths (snout-vent and total lengths [TLs]) and lengths of either a single centrum or a series of centra were modeled for extant species. Additionally, states of neurocentral (NC) suture closure were recorded for the maturity assessment. Comparisons of TLs and timings of NC suture closure showed that most extant crocodylians reach sexual maturity before closure of precaudal NC sutures. Centrum lengths (CLs) of the smallest individuals with closed precaudal NC sutures within species were correlated with the species maximum TLs in extant taxa; therefore, the upper or lower limit of the species maximum sizes can be determined from CLs and states of NC suture closure. The application of the current method to noncrocodylian crocodyliforms requires similar numbers of precaudal vertebrae, body proportions, and timings of NC suture closure as compared to extant crocodylians.
Collapse
Affiliation(s)
- Masaya Iijima
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Nagoya University Museum, Furocho, Chikusa-Ku, Nagoya, Aichi 464-8601, Japan
- Engineering Research Center for Mineral Resources and Mine Environments, School of Resource and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Baohe, Hefei, Anhui 230009, China
| | - Tai Kubo
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Womack MC, Bell RC. Two-hundred million years of anuran body-size evolution in relation to geography, ecology and life history. J Evol Biol 2020; 33:1417-1432. [PMID: 32672849 DOI: 10.1111/jeb.13679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
Abstract
Surprisingly, little is known about body-size evolution within the most diverse amphibian order, anurans (frogs and toads), despite known effects of body size on the physiological, ecological and life-history traits of animals more generally. Here, we examined anuran body-size evolution among 2,434 species with over 200 million years of shared evolutionary history. We found clade-specific evolutionary shifts to new body-size optima along with numerous independent transitions to gigantic and miniature body sizes, despite the upper limits of anuran body size remaining quite consistent throughout the fossil record. We found a weak, positive correlation between a species' body size and maximum latitude and elevation, including a dearth of small species at higher elevations and broader latitudinal and elevational ranges in larger anurans. Although we found modest differences in mean anuran body size among microhabitats, there was extensive overlap in the range of body sizes across microhabitats. Finally, we found that larger anurans are more likely to consume vertebrate prey than smaller anurans are and that species with a free-swimming larval phase during development are larger on average than those in which development into a froglet occurs within the egg. Overall, anuran body size does not conform to geographic and ecological patterns observed in other tetrapods but is perhaps more notable for variation in body size within geographic regions, ecologies and life histories. Here, we document this variation and propose target clades for detailed studies aimed at disentangling how and why variation in body size was generated and is maintained in anurans.
Collapse
Affiliation(s)
- Molly C Womack
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Biology, Utah State University, Logan, Utah, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Herpetology Department, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
22
|
Montefeltro FC, Lautenschlager S, Godoy PL, Ferreira GS, Butler RJ. A unique predator in a unique ecosystem: modelling the apex predator within a Late Cretaceous crocodyliform-dominated fauna from Brazil. J Anat 2020; 237:323-333. [PMID: 32255518 DOI: 10.1111/joa.13192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropod Allosaurus fragilis and the living crocodylian Alligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi-arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa.
Collapse
Affiliation(s)
- Felipe C Montefeltro
- Laboratório de Paleontologia e Evolução de Ilha Solteira, UNESP, Ilha Solteira, Brazil.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pedro L Godoy
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Gabriel S Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Gearty W, Payne JL. Physiological constraints on body size distributions in Crocodyliformes. Evolution 2020; 74:245-255. [PMID: 31943148 DOI: 10.1111/evo.13901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 11/29/2022]
Abstract
At least 26 species of crocodylian populate the globe today, but this richness represents a minute fraction of the diversity and disparity of Crocodyliformes. Fossil forms are far more varied, spanning from erect, fully terrestrial species to flippered, fully marine species. To quantify the influence of a marine habitat on the directionality, rate, and variance of evolution of body size in Crocodyliformes and thereby identify underlying selective pressures, we compiled a database of body sizes for 264 fossil and modern species of crocodyliform covering terrestrial, semi-aquatic, and marine habitats. We find increases in body size coupled with increases in strength of selection and decreases in variance following invasions of marine habitats but not of semiaquatic habitats. A model combining constraints from thermoregulation and lung capacity provides a physiological explanation for the larger minimum and average sizes of marine species. It appears that constraints on maximum size are shared across Crocodyliformes, perhaps through factors such as the allometric scaling of feeding rate versus basal metabolism with body size. These findings suggest that broad-scale patterns of body size evolution and the shapes of body size distributions within higher taxa are often determined more by physiological constraints than by ecological interactions or environmental fluctuations.
Collapse
Affiliation(s)
- William Gearty
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588.,Department of Geological Sciences, Stanford University, Stanford, California, 94305
| | - Jonathan L Payne
- Department of Geological Sciences, Stanford University, Stanford, California, 94305
| |
Collapse
|
24
|
Godoy PL. Crocodylomorph cranial shape evolution and its relationship with body size and ecology. J Evol Biol 2019; 33:4-21. [DOI: 10.1111/jeb.13540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Pedro L. Godoy
- Department of Anatomical Sciences Stony Brook University Stony Brook NY USA
| |
Collapse
|