1
|
Liu Y, Miao B, Li W, Hu X, Bai F, Abuduresule Y, Liu Y, Zheng Z, Wang W, Chen Z, Zhu S, Feng X, Cao P, Ping W, Yang R, Dai Q, Liu F, Tian C, Yang Y, Fu Q. Bronze Age cheese reveals human-Lactobacillus interactions over evolutionary history. Cell 2024; 187:5891-5900.e8. [PMID: 39326418 DOI: 10.1016/j.cell.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024]
Abstract
Despite the long history of consumption of fermented dairy, little is known about how the fermented microbes were utilized and evolved over human history. Here, by retrieving ancient DNA of Bronze Age kefir cheese (∼3,500 years ago) from the Xiaohe cemetery, we explored past human-microbial interactions. Although it was previously suggested that kefir was spread from the Northern Caucasus to Europe and other regions, we found an additional spreading route of kefir from Xinjiang to inland East Asia. Over evolutionary history, the East Asian strains gained multiple gene clusters with defensive roles against environmental stressors, which can be a result of the adaptation of Lactobacillus strains to various environmental niches and human selection. Overall, our results highlight the role of past human activities in shaping the evolution of human-related microbes, and such insights can, in turn, provide a better understanding of past human behaviors.
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wenying Li
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi 830000, China
| | - Xingjun Hu
- Research Center for Governance of China's Northwest Frontier in the Historical Periods, School of History, Xinjiang University, Ürümqi 830046, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zequan Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yimin Yang
- Department of Archaeology and Anthropology, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhang S, Zhang R, Yuan K, Yang L, Liu C, Liu Y, Ni X, Xu S. Reconstructing complex admixture history using a hierarchical model. Brief Bioinform 2024; 25:bbad540. [PMID: 38261339 PMCID: PMC10805183 DOI: 10.1093/bib/bbad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Various methods have been proposed to reconstruct admixture histories by analyzing the length of ancestral chromosomal tracts, such as estimating the admixture time and number of admixture events. However, available methods do not explicitly consider the complex admixture structure, which characterizes the joining and mixing patterns of different ancestral populations during the admixture process, and instead assume a simplified one-by-one sequential admixture model. In this study, we proposed a novel approach that considers the non-sequential admixture structure to reconstruct admixture histories. Specifically, we introduced a hierarchical admixture model that incorporated four ancestral populations and developed a new method, called HierarchyMix, which uses the length of ancestral tracts and the number of ancestry switches along genomes to reconstruct the four-way admixture history. By automatically selecting the optimal admixture model using the Bayesian information criterion principles, HierarchyMix effectively estimates the corresponding admixture parameters. Simulation studies confirmed the effectiveness and robustness of HierarchyMix. We also applied HierarchyMix to Uyghurs and Kazakhs, enabling us to reconstruct the admixture histories of Central Asians. Our results highlight the importance of considering complex admixture structures and demonstrate that HierarchyMix is a useful tool for analyzing complex admixture events.
Collapse
Affiliation(s)
- Shi Zhang
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Yang
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Chang Liu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuting Liu
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Xumin Ni
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032 , China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Halili B, Yang X, Wang R, Zhu K, Hai X, Wang CC. Inferring the population history of Kyrgyz in Xinjiang, Northwest China from genome-wide array genotyping. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:611-625. [PMID: 37310136 DOI: 10.1002/ajpa.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Xinjiang plays a vital role in the trans-Eurasian population migration, language diffusion, and culture and technology exchange. However, the underrepresentation of Xinjiang's genomes has hindered a more comprehensive understanding of Xinjiang's genetic structure and population history. MATERIALS AND METHODS We collected and genotyped 70 southern Xinjiang's Kyrgyz (SXJK) individuals and combined the data with modern and ancient Eurasians published. We used allele-frequency methods, including PCA, ADMIXTURE, f-statistics, qpWave/qpAdm, ALDER, Treemix, and haplotype-shared methods including shared-IBD segments, fineSTRUCTURE, and GLOBETROTTER to unveil the fine-scale population structure and reconstruct admixture history. RESULTS We identified genetic substructure within the SXJK population with subgroups showing different genetic affinities to West and East Eurasians. All SXJK subgroups were suggested to have close genetic relationships with surrounding Turkic-speaking groups that is, Uyghur, Kyrgyz from north Xinjiang and Tajikistan, and Chinese Kazakh, suggesting a shared ancestry among those populations. Outgroup-f3 and symmetrical f4 statistics showed a high genetic affinity of SXJK to present-day Tungusic, Mongolic-speaking populations and Ancient Northeast Asian (ANA) related groups. Allele sharing and haplotype sharing profiles revealed the east-west admixture pattern of SXJK. The qpAdm-based admixture models showed that SXJK derived ancestry from East Eurasian (ANA and East Asian, 42.7%-83.3%) and West Eurasian (Western Steppe herders and Central Asian, 16.7%-57.3%), the recent east-west admixture event could be traced to 1000 years ago based on ALDER and GLOBETROTTER analysis. DISCUSSION The high genetic affinity of SXJK to present-day Tungusic and Mongolic-speaking populations and short-shared IBD segments indicated their shared common ancestry. SXJK harbored a close genetic affinity to ANA-related populations, indicating the Northeast Asian origin of SXJK. The West and East Eurasian admixture models observed in SXJK further provided evidence of the dynamic admixture history in Xinjiang. The east-west admixture pattern and the identified ancestral makeup of SXJK suggested a genetic continuity from some Iron Age Xinjiang populations to present-day SXJK.
Collapse
Affiliation(s)
- Bubibatima Halili
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Askapuli A, Vilar M, Garcia-Ortiz H, Zhabagin M, Sabitov Z, Akilzhanova A, Ramanculov E, Schamiloglu U, Martinez-Hernandez A, Contreras-Cubas C, Barajas-Olmos F, Schurr TG, Zhumadilov Z, Flores-Huacuja M, Orozco L, Hawks J, Saitou N. Kazak mitochondrial genomes provide insights into the human population history of Central Eurasia. PLoS One 2022; 17:e0277771. [PMID: 36445929 PMCID: PMC9707748 DOI: 10.1371/journal.pone.0277771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex history for this population. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. Our analyses further indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.
Collapse
Affiliation(s)
- Ayken Askapuli
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Miguel Vilar
- The Genographic Project, National Geographic Society, Washington, DC, United States of America
- Department of Anthropology, University of Maryland, College Park, Maryland, United States of America
| | - Humberto Garcia-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Maxat Zhabagin
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Ainur Akilzhanova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Erlan Ramanculov
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
| | - Uli Schamiloglu
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Angelica Martinez-Hernandez
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhaxybay Zhumadilov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Marlen Flores-Huacuja
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - John Hawks
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Okinawa Ken, Japan
| |
Collapse
|
5
|
Kumar V, Wang W, Zhang J, Wang Y, Ruan Q, Yu J, Wu X, Hu X, Wu X, Guo W, Wang B, Niyazi A, Lv E, Tang Z, Cao P, Liu F, Dai Q, Yang R, Feng X, Ping W, Zhang L, Zhang M, Hou W, Liu Y, Bennett EA, Fu Q. Bronze and Iron Age population movements underlie Xinjiang population history. Science 2022; 376:62-69. [PMID: 35357918 DOI: 10.1126/science.abk1534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Xinjiang region in northwest China is a historically important geographical passage between East and West Eurasia. By sequencing 201 ancient genomes from 39 archaeological sites, we clarify the complex demographic history of this region. Bronze Age Xinjiang populations are characterized by four major ancestries related to Early Bronze Age cultures from the central and eastern Steppe, Central Asian, and Tarim Basin regions. Admixtures between Middle and Late Bronze Age Steppe cultures continued during the Late Bronze and Iron Ages, along with an inflow of East and Central Asian ancestry. Historical era populations show similar admixed and diverse ancestries as those of present-day Xinjiang populations. These results document the influence that East and West Eurasian populations have had over time in the different regions of Xinjiang.
Collapse
Affiliation(s)
- Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,National Centre for Archaeology, Beijing 100013, China
| | - Jie Zhang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Yongqiang Wang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Qiurong Ruan
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jianjun Yu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Xingjun Hu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xinhua Wu
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Wu Guo
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Bo Wang
- Xinjiang Uygur Autonomous Region Museum, Urumqi 830002, China
| | - Alipujiang Niyazi
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Enguo Lv
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Zihua Tang
- Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100020, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Chen B, Wang Z, Wang J, Zheng H, Zhou J, Chen X, Wang B, Zhou Y, Peng Z. Ultrasensitive dual enhanced electrochemical immunosensor to detect ancient wool relics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:394-400. [PMID: 34981794 DOI: 10.1039/d1ay01514a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The identification of ancient wool is of great significance in archaeology; however, conventional methods are unwieldy or even ineffective when testing contaminated or severely degraded ancient samples. Therefore, it is highly desirable to develop an ultrasensitive detection method for ancient wool. In this study, an ultrasensitive electrochemical immunosensor is proposed and developed to detect ancient wool, where graphene oxide (GO), aldehyde-functionalized ionic liquid (AFIL) composites and gold nanoparticles (AuNPs) are synthesized as efficient signal amplifiers. With their large surface area and excellent electron transfer efficiency, the combination of GO-AFIL and AuNPs endows the immunosensor with excellent electrochemical properties. The fabricated immunosensor measures over a wide linear range of 0.01-100 ng mL-1 with a low detection limit of 0.9 ± 0.2 pg mL-1. Moreover, the immunosensor demonstrates excellent performance for detecting ancient wool. The identification of wool fabrics unearthed from Xinjiang, Tibet and Kazakhstan supports the historicity of prosperous sheepherding and wool trade in Central Asia during the Bronze Age.
Collapse
Affiliation(s)
- Boyi Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhongyuan Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Junsen Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hailing Zheng
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China.
| | - Junyi Zhou
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xushi Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bing Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China.
| | - Zhiqin Peng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Doumani Dupuy PN. The unexpected ancestry of Inner Asian mummies. Nature 2021; 599:204-206. [PMID: 34707262 DOI: 10.1038/d41586-021-02872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Wang W, Ding M, Gardner JD, Wang Y, Miao B, Guo W, Wu X, Ruan Q, Yu J, Hu X, Wang B, Wu X, Tang Z, Niyazi A, Zhang J, Chang X, Tang Y, Ren M, Cao P, Liu F, Dai Q, Feng X, Yang R, Zhang M, Wang T, Ping W, Hou W, Li W, Ma J, Kumar V, Fu Q. Ancient Xinjiang mitogenomes reveal intense admixture with high genetic diversity. SCIENCE ADVANCES 2021; 7:7/14/eabd6690. [PMID: 33789892 PMCID: PMC8011967 DOI: 10.1126/sciadv.abd6690] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Xinjiang is a key region in northwestern China, connecting East and West Eurasian populations and cultures for thousands of years. To understand the genetic history of Xinjiang, we sequenced 237 complete ancient human mitochondrial genomes from the Bronze Age through Historical Era (41 archaeological sites). Overall, the Bronze Age Xinjiang populations show high diversity and regional genetic affinities with Steppe and northeastern Asian populations along with a deep ancient Siberian connection for the Tarim Basin Xiaohe individuals. In the Iron Age, in general, Steppe-related and northeastern Asian admixture intensified, with North and East Xinjiang populations showing more affinity with northeastern Asians and South Xinjiang populations showing more affinity with Central Asians. The genetic structure observed in the Historical Era of Xinjiang is similar to that in the Iron Age, demonstrating genetic continuity since the Iron Age with some additional genetic admixture with populations surrounding the Xinjiang region.
Collapse
Affiliation(s)
- Wenjun Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Manyu Ding
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob D Gardner
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Wang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Bo Miao
- College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wu Guo
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Xinhua Wu
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Qiurong Ruan
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jianjun Yu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xingjun Hu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Bo Wang
- Xinjiang Uygur Autonomous Region Museum, Urumqi 830002, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Zihua Tang
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Alipujiang Niyazi
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jie Zhang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xien Chang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Yunpeng Tang
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Meng Ren
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wenying Li
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jian Ma
- School of Cultural Heritage, Northwest University, Xi'an 710069, China
| | - Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Seasonal movements of Bronze Age transhumant pastoralists in western Xinjiang. PLoS One 2020; 15:e0240739. [PMID: 33147229 PMCID: PMC7641598 DOI: 10.1371/journal.pone.0240739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/01/2020] [Indexed: 01/20/2023] Open
Abstract
The paper explores seasonal movements of Bronze Age mobile pastoralists in the western Tianshan mountainous region of Xinjiang, China. Fieldwork by a team from the Institute of Archaeology of the Chinese Academy of Social Science (CASS) and the University of Sydney, Australia have identified cyclical land use practices associated with the Andronovo cultural complex. Their pattern of seasonal movements has been reconstructed through ethnographic studies and analysis of modern snow and grass cover. Using this detailed combination of data, the study defines requirements for seasonal pastures–winter, summer and spring/autumn–and shows a clear correlation between modern land use and seasonal patterns of movement in the Bronze Age.
Collapse
|
10
|
Chen P, Wu J, Luo L, Gao H, Wang M, Zou X, Li Y, Chen G, Luo H, Yu L, Han Y, Jia F, He G. Population Genetic Analysis of Modern and Ancient DNA Variations Yields New Insights Into the Formation, Genetic Structure, and Phylogenetic Relationship of Northern Han Chinese. Front Genet 2019; 10:1045. [PMID: 31737039 PMCID: PMC6832103 DOI: 10.3389/fgene.2019.01045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
Modern East Asians derived from the admixture of aborigines and incoming farmers expanding from Yellow and Yangtze River Basins. Distinct genetic differentiation and subsequent admixture between Northeast Asians and Southeast Asians subsequently evidenced by the mitochondrial DNA, Y-chromosomal variations, and autosomal SNPs. Recently, population geneticists have paid more attention to the genetic polymorphisms and background of southern-Han Chinese and southern native populations. The genetic legacy of northern-Han remains uncharacterized. Thus, we performed this comprehensive population genetic analyses of modern and ancient genetic variations aiming to yield new insight into the formation of modern Han, and the genetic ancestry and phylogenetic relationship of the northern-Han Chinese population. We first genotyped 25 forensic associated markers in 3,089 northern-Han Chinese individuals using the new-generation of the Huaxia Platinum System. And then we performed the first meta-analysis focused on the genetic affinity between Asian Neolithic∼Iron Age ancients and modern northern-Han Chinese by combining mitochondrial variations in 417 ancient individuals from 13 different archeological sites and 812 modern individuals, as well as Y-chromosomal variations in 114 ancient individuals from 12 Neolithic∼Iron Age sites and 2,810 modern subjects. We finally genotyped 643,897 genome-wide nucleotide polymorphisms (SNPs) in 20 Shanxi Han individuals and combined with 1,927 modern humans and 40 Eurasian ancient genomes to explore the genetic structure and admixture of northern-Han Chinese. We addressed genetic legacy, population structure and phylogenetic relationship of northern-Han Chinese via various analyses. Our population genetic results from five different reference datasets indicated that Shanxi Han shares a closer phylogenetic relationship with northern-neighbors and southern ethnically close groups than with Uyghur and Tibetan. Genome-wide variations revealed that modern northern-Han derived their ancestry from Yakut-related population (25.2%) and She-related population (74.8%). Summarily, the genetic mixing that led to the emergence of a Han Chinese ethnicity occurred at a very early period, probably in Neolithic times, and this mixing involved an ancient Tibeto-Burman population and a local pre-Sinitic population, which may have been linguistically Altaic.
Collapse
Affiliation(s)
- Pengyu Chen
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Jian Wu
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Li Luo
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Hongyan Gao
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingxiang Li
- Department of Bioinformatics, WeGene, Shenzhen, China
| | - Gang Chen
- Department of Bioinformatics, WeGene, Shenzhen, China
| | - Haibo Luo
- Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanyan Han
- Department of Nutrition and Food Hygiene, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Fuquan Jia
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang T, Wei D, Chang X, Yu Z, Zhang X, Wang C, Hu Y, Fuller BT. Tianshanbeilu and the Isotopic Millet Road: reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe. Natl Sci Rev 2019; 6:1024-1039. [PMID: 34691966 PMCID: PMC8291513 DOI: 10.1093/nsr/nwx015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/27/2016] [Accepted: 02/20/2017] [Indexed: 11/16/2022] Open
Abstract
The westward expansion of human millet consumption from north China has important implications for understanding early interactions between the East and West. However, few studies have focused on the Xinjiang Uyghur Autonomous Region, the vast geographical area directly linking the ancient cultures of the Eurasian Steppe and the Gansu Corridor of China. In this study, we present the largest isotopic investigation of Bronze Age China (n = 110) on material from the key site of Tianshanbeilu, in eastern Xinjiang. The large range of δ13C values (–17.6‰ to –7.2‰; –15.5 ± 1.2‰) provides direct evidence of unique dietary diversity and consumption of significant C4 resources (millets). The high δ15N results (10.3‰ to 16.7‰; 14.7 ± 0.8‰) likely reflect sheep/goat and wild game consumption and the arid climate of the Taklamakan Desert. Radiocarbon dates from four individuals indicate Tianshanbeilu was in use between 1940 and 1215 cal bc. The Tianshanbeilu results are then analysed with respect to 52 Bronze Age sites from across Eurasia, to investigate the spread and chronology of significant human millet consumption and human migration. This isotopic survey finds novel evidence that the second millennium bc was a dynamic period, with significant dietary interconnectivity occurring between north China, Central Asia and Siberia. Further, we argue that this ‘Isotopic Millet Road’ extended all the way to the Mediterranean and Central Europe, and conclude that these C4 dietary signatures of millet consumption reflect early links (migration and/or resource transfer) between the Bronze Age inhabitants of modern-day China and Europe.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Anthropology, School of Sociology and Anthropology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dong Wei
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| | - Xien Chang
- Institute of Archaeology and Cultural Relics of Xinjiang Uyghur Autonomous Region, Urumqi 830000, China
| | - Zhiyong Yu
- Institute of Archaeology and Cultural Relics of Xinjiang Uyghur Autonomous Region, Urumqi 830000, China
| | - Xinyu Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsui Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaowu Hu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benjamin T Fuller
- Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ancient Genomes Reveal Yamnaya-Related Ancestry and a Potential Source of Indo-European Speakers in Iron Age Tianshan. Curr Biol 2019; 29:2526-2532.e4. [DOI: 10.1016/j.cub.2019.06.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 11/21/2022]
|
13
|
Wu X, Ding B, Zhang B, Feng J, Wang Y, Ning C, Wu H, Zhang F, Zhang Q, Li N, Zhang Z, Sun X, Zhang Q, Li W, Liu B, Cui Y, Gong L. Phylogenetic and population structural inference from genomic ancestry maintained in present-day common wheat Chinese landraces. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:201-215. [PMID: 31134682 DOI: 10.1111/tpj.14421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Hexaploid common wheat is one of the most important food crops worldwide. Common wheat domestication began in the Fertile Crescent of the Near East approximately 10 000 years ago and then spread west into Europe and eastward into East Asia and China. However, the possible spreading route into and within China is still unclear. In this study, we successfully extracted DNA from single ancient wheat seeds and sequenced the whole genome of seven ancient samples from Xiaohe and Gumugou cemeteries in Xinjiang, China. Genomic inference and morphological observation confirmed their identity as hexaploid common wheat grown in prehistoric China at least 3200 years before present (BP). Phylogenetic and admixture analyses with RNA-seq data of modern hexaploid wheat cultivars from both China and Western countries demonstrated a close kinship of the ancient wheat to extant common wheat landraces in southwestern China. The highly similar allelic frequencies in modern landraces of the Qinghai-Tibetan plateau with the ancient wheat support the previously suggested southwestern spreading route into highland China. A subsequent dispersal route from the Qinghai-Tibetan plateau margins to the Yangtze valley was proposed in this study. Furthermore, the common wheat populations grown in the Middle and Lower Yangtze valley wheat zones were also proposed to be established by population admixture with the wheat grown in the Upper Yangtze valley. Our study reports ancient common wheat sequences at a genome-wide scale, providing important information on the origin, dispersal, and genetic improvement under cultivation of present-day wheat landraces grown in China.
Collapse
Affiliation(s)
- Xiyan Wu
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Jiaojiao Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yibing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Chao Ning
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Qun Zhang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Xuhan Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Quanchao Zhang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Wenying Li
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi, 830000, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| |
Collapse
|
14
|
Hollard C, Zvénigorosky V, Kovalev A, Kiryushin Y, Tishkin A, Lazaretov I, Crubézy E, Ludes B, Keyser C. New genetic evidence of affinities and discontinuities between bronze age Siberian populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:97-107. [PMID: 29900529 DOI: 10.1002/ajpa.23607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVES This work focuses on the populations of South Siberia during the Eneolithic and Bronze Age and specifically on the contribution of uniparental lineage and phenotypical data to the question of the genetic affinities and discontinuities between western and eastern populations. MATERIALS AND METHODS We performed molecular analyses on the remains of 28 ancient humans (10 Afanasievo (3600-2500 BC) and 18 Okunevo (2500-1800 BC) individuals). For each sample, two uniparentally inherited systems (mitochondrial DNA and Y-chromosome DNA) were studied, in order to trace back maternal and paternal lineages. Phenotype-informative SNPs (Single Nucleotide Polymorphisms) were also analyzed, along with autosomal STRs (Short Tandem Repeats). RESULTS Most of the Afanasievo men submitted to analysis belonged to a single sub-haplogroup, R1b1a1a, which reveals the predominance of this haplogroup in these early Bronze Age populations. Conversely, Okunevo individuals carried more diverse paternal lineages that mostly belonged to Asian/Siberian haplogroups. These differences are also apparent, although less strongly, in mitochondrial lineage composition and phenotype marker variant frequencies. DISCUSSION This study provides new elements that contribute to our understanding of the genetic interactions between populations in Eneolithic and Bronze Age southern Siberia. Our results support the hypothesis of a genetic link between Afanasievo and Yamnaya (in western Eurasia), as suggested by previous studies of other markers. However, we found no Y-chromosome lineage evidence of a possible Afanasievo migration to the Tarim Basin. Moreover, the presence of Y-haplogroup Q in Okunevo individuals links them to Native American populations, as was suggested by whole-genome sequencing.
Collapse
Affiliation(s)
- Clémence Hollard
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France
| | - Vincent Zvénigorosky
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France.,Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France
| | - Alexey Kovalev
- Institute of Archaeology, Russian Academy of Sciences, Moscow, Russia
| | - Yurii Kiryushin
- The Laboratory of Interdisciplinary Studies in Archaeology of Western Siberia and Altai, Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Alexey Tishkin
- The Laboratory of Interdisciplinary Studies in Archaeology of Western Siberia and Altai, Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Igor Lazaretov
- Institute of the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Eric Crubézy
- Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France
| | - Bertrand Ludes
- Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France.,Institut Médico-légal de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Christine Keyser
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France.,Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France
| |
Collapse
|
15
|
Feng Q, Lu Y, Ni X, Yuan K, Yang Y, Yang X, Liu C, Lou H, Ning Z, Wang Y, Lu D, Zhang C, Zhou Y, Shi M, Tian L, Wang X, Zhang X, Li J, Khan A, Guan Y, Tang K, Wang S, Xu S. Genetic History of Xinjiang’s Uyghurs Suggests Bronze Age Multiple-Way Contacts in Eurasia. Mol Biol Evol 2017; 34:2572-2582. [DOI: 10.1093/molbev/msx177] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Origin and spread of human mitochondrial DNA haplogroup U7. Sci Rep 2017; 7:46044. [PMID: 28387361 PMCID: PMC5384202 DOI: 10.1038/srep46044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 01/17/2023] Open
Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
Collapse
|
17
|
Wang X, Tang Z, Wu J, Wu X, Wu Y, Zhou X. Strontium isotope evidence for a highly mobile population on the Pamir Plateau 2500 years ago. Sci Rep 2016; 6:35162. [PMID: 27762330 PMCID: PMC5071833 DOI: 10.1038/srep35162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/26/2016] [Indexed: 12/04/2022] Open
Abstract
Archeological researches have proposed arguments for human mobility and long-distance trading over the Eurasia before the Silk Roads. Here we utilize biologically available strontium isotope analysis to assess the extent of pre-Silk Road population movements and cultural communications across the Asian interior. From an early Iron Age cemetery (ca. 2500 yr B.P.) on the eastern Pamir Plateau, mean 87Sr/86Sr ratios from 34 individuals display considerable isotopic variability, and 10 individuals are distinguished as migrants based on the local strontium isotope range of 0.710296–0.710572 defined by 12 ovicaprine bones. Comparison of the proportion (10/34) with the regional census data completed in 1909 A.D. (3% non-locals) suggests a highly migratory behavior on the plateau 2500 years ago. Furthermore, exotic mortuary objects, such as silk fabrics from eastern China and angular harp originated from the Near East, clearly demonstrate an interaction between different cultures on the plateau before the establishment of the Silk Road.
Collapse
Affiliation(s)
- Xueye Wang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihua Tang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Jing Wu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xinhua Wu
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100071, China
| | - Yiqun Wu
- History Department of Humanities School, Xinjiang University, Urumqi 830046, China
| | - Xinying Zhou
- Key Laboratory of Vertebrate Evolution and Human Origin, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| |
Collapse
|