1
|
Dong Y, Li G, Zhang X, Feng Z, Li T, Li Z, Xu S, Xu S, Liu W, Xue J. Genome-Wide Association Study for Maize Hybrid Performance in a Typical Breeder Population. Int J Mol Sci 2024; 25:1190. [PMID: 38256265 PMCID: PMC10816832 DOI: 10.3390/ijms25021190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Maize is one of the major crops that has demonstrated success in the utilization of heterosis. Developing high-yield hybrids is a crucial part of plant breeding to secure global food demand. In this study, we conducted a genome-wide association study (GWAS) for 10 agronomic traits using a typical breeder population comprised 442 single-cross hybrids by evaluating additive, dominance, and epistatic effects. A total of 49 significant single nucleotide polymorphisms (SNPs) and 69 significant pairs of epistasis were identified, explaining 26.2% to 64.3% of the phenotypic variation across the 10 traits. The enrichment of favorable genotypes is significantly correlated to the corresponding phenotype. In the confident region of the associated site, 532 protein-coding genes were discovered. Among these genes, the Zm00001d044211 candidate gene was found to negatively regulate starch synthesis and potentially impact yield. This typical breeding population provided a valuable resource for dissecting the genetic architecture of yield-related traits. We proposed a novel mating strategy to increase the GWAS efficiency without utilizing more resources. Finally, we analyzed the enrichment of favorable alleles in the Shaan A and Shaan B groups, as well as in each inbred line. Our breeding practice led to consistent results. Not only does this study demonstrate the feasibility of GWAS in F1 hybrid populations, it also provides a valuable basis for further molecular biology and breeding research.
Collapse
Affiliation(s)
- Yuan Dong
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Guoliang Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhiqian Feng
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ting Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhoushuai Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenxin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Dong Y, Feng ZQ, Ye F, Li T, Li GL, Li ZS, Hao YC, Zhang XH, Liu WX, Xue JQ, Xu ST. Genome-wide association analysis for grain moisture content and dehydration rate on maize hybrids. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:5. [PMID: 37312866 PMCID: PMC10248682 DOI: 10.1007/s11032-022-01349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 06/15/2023]
Abstract
For mechanized maize production, a low grain water content (GWC) at harvest is necessary. However, as a complex quantitative trait, understand the genetic mechanism of GWC remains a large gap, especially in hybrids. In this study, a hybrid population through two environments including 442 F1 was used for genome-wide association analysis of GWC and the grain dehydration rate (GDR), using the area under the dry down curve (AUDDC) as the index. Then, we identified 19 and 17 associated SNPs for GWC and AUDDC, including 10 co-localized SNPs, along with 64 and 77 pairs of epistatic SNPs for GWC and AUDDC, respectively. These loci could explain 11.39-68.2% of the total phenotypic variation for GWC and 41.07-67.02% for AUDDC at different stages, whose major effect was the additive and epistatic effect. By exploring the candidate genes around the significant sites, a total of 398 and 457 possible protein-coding genes were screened, including autophagy pathway and auxin regulation-related genes, and five inbred lines with the potential to reduce GWC in the combined F1 hybrid were identified. Our research not only provides a certain reference for the genetic mechanism analysis of GWC in hybrids but also provides an added reference for breeding low-GWC materials. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01349-x.
Collapse
Affiliation(s)
- Yuan Dong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Zhi-qian Feng
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Fan Ye
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Guo-liang Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhou-Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Yin-chuan Hao
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Xing-hua Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Wen-xin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Ji-quan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Shu-tu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| |
Collapse
|
3
|
Fu Y, Liu J, Xia Z, Wang Q, Zhang S, Zhang G, Lu H. Genome-Wide Association Studies of Maize Seedling Root Traits under Different Nitrogen Levels. PLANTS (BASEL, SWITZERLAND) 2022; 11:1417. [PMID: 35684192 PMCID: PMC9182862 DOI: 10.3390/plants11111417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
Nitrogen (N) is one of the important factors affecting maize root morphological construction and growth development. An association panel of 124 maize inbred lines was evaluated for root and shoot growth at seedling stage under normal N (CK) and low N (LN) treatments, using the paper culture method. Twenty traits were measured, including three shoot traits and seventeen root traits, a genome-wide association study (GWAS) was performed using the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) methods. The results showed that LN condition promoted the growth of the maize roots, and normal N promoted the growth of the shoots. A total of 185 significant SNPs were identified, including 27 SNPs for shoot traits and 158 SNPs for root traits. Four important candidate genes were identified. Under LN conditions, the candidate gene Zm00001d004123 was significantly correlated with the number of crown roots, Zm00001d025554 was correlated with plant height. Under CK conditions, the candidate gene Zm00001d051083 was correlated with the length and area of seminal roots, Zm00001d050798 was correlated with the total root length. The four candidate genes all responded to the LN treatment. The research results provide genetic resources for the genetic improvement of maize root traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haidong Lu
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.F.); (J.L.); (Z.X.); (Q.W.); (S.Z.); (G.Z.)
| |
Collapse
|
4
|
Analysis of MC1R, MITF, TYR, TYRP1, and MLPH Genes Polymorphism in Four Rabbit Breeds with Different Coat Colors. Animals (Basel) 2021; 11:ani11010081. [PMID: 33466315 PMCID: PMC7824738 DOI: 10.3390/ani11010081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Coat color is an important breed characteristic and economic trait for rabbits, and it is regulated by a few genes. In this study, the gene frequencies of some pigmentation genes were investigated in four Chinese native rabbit breeds with different coat colors. A total of 14 genetic variants were detected in the gene fragments of MC1R, MITF, TYR, TYRP1, and MLPH genes, and there was low-to-moderate polymorphism in the populations. The gene frequency showed significant differences among the four rabbit populations. The above results suggest that these genetic variations play an important role in regulating the coat color of rabbits. This study will provide potential molecular markers for the breeding of coat color traits in rabbits. Abstract Pigmentation genes such as MC1R, MITF, TYR, TYRP1, and MLPH play a major role in rabbit coat color. To understand the genotypic profile underlying coat color in indigenous Chinese rabbit breeds, portions of the above-mentioned genes were amplified and variations in them were analyzed by DNA sequencing. Based on the analysis of 24 Tianfu black rabbits, 24 Sichuan white rabbits, 24 Sichuan gray rabbits, and 24 Fujian yellow rabbits, two indels in MC1R, three SNPs in MITF, five SNPs (single nucleotide polymorphisms) in TYR, one SNP in TYRP1, and three SNPs in MLPH were discovered. These variations have low-to-moderate polymorphism, and there are significant differences in their distribution among the different breeds (p < 0.05). These results provide more information regarding the genetic background of these native rabbit breeds and reveal their high-quality genetic resources.
Collapse
|
5
|
Emeriewen OF, Richter K, Berner T, Keilwagen J, Schnable PS, Malnoy M, Peil A. Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Sci Rep 2020; 10:16358. [PMID: 33005026 PMCID: PMC7529804 DOI: 10.1038/s41598-020-73393-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Although, the Pacific crabapple, Malus fusca, is a hardy and disease resistant species, studies relating to the genetics of its unique traits are very limited partly due to the lack of a genetic map of this interesting wild apple. An accession of M. fusca (MAL0045) of Julius Kühn-Institut collection in Germany is highly resistant to fire blight disease, incited by different strains of the causative pathogen—Erwinia amylovora. This is the most destructive bacterial disease of Malus of which most of the domesticated apples (Malus domestica) are susceptible. Using a scarcely dense genetic map derived from a population of 134 individuals of MAL0045 × ‘Idared’, the locus (Mfu10) controlling fire blight resistance mapped on linkage group 10 (LG10) and explained up to 66% of the phenotypic variance with different strains. Although the development of robust and tightly linked molecular markers on LG10 through chromosome walking approach led to the identification of a major candidate gene, any minor effect locus remained elusive possibly due to the lack of marker density of the entire genetic map. Therefore, we have developed a dense genetic map of M. fusca using tunable genotyping-by-sequencing (tGBS) approach. Of thousands of de novo SNPs identified, 2677 were informative in M. fusca and 90.5% of these successfully mapped. In addition, integration of SNP data and microsatellite (SSR) data resulted in a final map comprising 17 LGs with 613 loci spanning 1081.35 centi Morgan (cM). This map will serve as a template for mapping using different strains of the pathogen.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326, Dresden, Germany.
| | - Klaus Richter
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Thomas Berner
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Jens Keilwagen
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Patrick S Schnable
- Data2Bio LLC, Ames, IA, 50011-3650, USA.,Plant Sciences Institute, Iowa State University, 2035B Carver, Ames, IA, 50011-3650, USA
| | - Mickael Malnoy
- Research and Innovation Centre, Genomics and Biology of Fruit Crops Department, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all 'Adige (Trentino), Italy
| | - Andreas Peil
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326, Dresden, Germany.
| |
Collapse
|
6
|
Sant’Ana GC, Espolador FG, Granato ÍSC, Mendonça LF, Fritsche-Neto R, Borém A. Population structure analysis and identification of genomic regions under selection associated with low-nitrogen tolerance in tropical maize lines. PLoS One 2020; 15:e0239900. [PMID: 32991596 PMCID: PMC7523979 DOI: 10.1371/journal.pone.0239900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
Increasing low nitrogen (N) tolerance in maize is an important goal for food security and agricultural sustainability. In order to analyze the population structure of tropical maize lines and identify genomic regions associated with low-N tolerance, a set of 64 inbred lines were evaluated under low-N and optimal-N conditions. The low-N Agronomic Efficiency index (LNAE) of each line was calculated. The maize lines were genotyped using 417,112 SNPs markers. The grouping based on the LNAE values classified the lines into two phenotypic groups, the first comprised by genotypes with high LNAE (named H_LNAE group), while the second one comprised genotypes with low LNAE (named L_LNAE group). The H_LNAE and L_LNAE groups had LNAE mean values of 3,304 and 1,644, respectively. The population structure analysis revealed a weak relationship between genetic and phenotypic diversity. Pairs of lines were identified, having at the same time high LNAE and high genetic distance from each other. A set of 29 SNPs markers exhibited a significant difference in allelic frequencies (Fst > 0.2) between H_LNAE and L_LNAE groups. The Pearson's correlation between LNAE and the favorable alleles in this set of SNPs was 0.69. These SNPs could be useful for marker-assisted selection for low-N tolerance in maize breeding programs. The results of this study could help maize breeders identify accessions to be used in the development of low-N tolerant cultivars.
Collapse
Affiliation(s)
| | - Fernando Garcia Espolador
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Leandro Freitas Mendonça
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Roberto Fritsche-Neto
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- * E-mail:
| | - Aluízio Borém
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Li T, Qu J, Tian X, Lao Y, Wei N, Wang Y, Hao Y, Zhang X, Xue J, Xu S. Identification of Ear Morphology Genes in Maize ( Zea mays L.) Using Selective Sweeps and Association Mapping. Front Genet 2020; 11:747. [PMID: 32793283 PMCID: PMC7384441 DOI: 10.3389/fgene.2020.00747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
The performance of maize hybrids largely depend on two parental inbred lines. Improving inbred lines using artificial selection is a key task in breeding programs. However, it is important to elucidate the effects of this selection on inbred lines. Altogether, 208 inbred lines from two maize heterosis groups, named Shaan A and Shaan B, were sequenced by the genotype-by-sequencing to detect genomic changes under selection pressures. In addition, we completed genome-wide association analysis in 121 inbred lines to identify candidate genes for ear morphology related traits. In a genome-wide selection scan, the inbred lines from Shaan A and Shaan B groups showed obvious population divergences and different selective signals distributed in 337 regions harboring 772 genes. Meanwhile, functional enrichment analysis showed those selected genes are mainly involved in regulating cell development. Interestingly, some ear morphology related traits showed significant differentiation between the inbred lines from the two heterosis groups. The genome-wide association analysis of ear morphology related traits showed that four associated genes were co-localized in the selected regions with high linkage disequilibrium. Our spatiotemporal pattern and gene interaction network results for the four genes further contribute to our understanding of the mechanisms behind ear and fruit length development. This study provides a novel insight into digging a candidate gene for complex traits using breeding materials. Our findings in relation to ear morphology will help accelerate future maize improvement.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Jianzhou Qu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Xiaokang Tian
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Yonghui Lao
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Ningning Wei
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Yahui Wang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Yinchuan Hao
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Xinghua Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| |
Collapse
|
8
|
Li S, Liu L, Li T, Lan T, Wang Y, Zhang Z, Liu J, Xu S, Zhang X, Zhu J, Xue J, Guo D. The distribution pattern of endopolyploidy in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1487-1503. [PMID: 30734115 DOI: 10.1007/s00122-019-03294-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/24/2019] [Indexed: 05/27/2023]
Abstract
We discovered that endopolyploidization is common in various organs and tissues of maize at different development stages. Endopolyploidy is not specific in maize germplasm populations. Endopolyploidy is caused by DNA endoreplication, a special type of mitosis with normal DNA synthesis and a lack of cell division; it is a common phenomenon and plays an important role in plant development. To systematically study the distribution pattern of endopolyploidy in maize, flow cytometry was used to determine the ploidy by measuring the cycle (C) value in various organs at different developmental stages, in embryos and endosperm during grain development, in roots under stress conditions, and in the roots of 119 inbred lines from two heterotic groups, Shaan A and Shaan B. Endopolyploidy was observed in most organs at various developmental stages except in expanded leaves and filaments. The endosperm showed the highest C value among all organs. During tissue development, the ploidy increased in all organs except the leaves. In addition, the endopolyploidization of the roots was significantly affected by drought stress. Multiple comparisons of the C values of seven subgroups revealed that the distribution of endopolyploidization was not correlated with the population structure. A correlation analysis at the seedling stage showed a positive relationship between the C value and both the length of the whole plant and the length of main root. A genome-wide association study (GWAS) identified a total of 9 significant SNPs associated with endopolyploidy (C value) in maize, and 8 candidate genes that participate in cell cycle regulation and DNA replication were uncovered in 119 maize inbred lines.
Collapse
Affiliation(s)
- Silu Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Linsan Liu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Tianru Lan
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Yahui Wang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Zhengquan Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianchao Liu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Xinghua Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianchu Zhu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Dongwei Guo
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China.
| |
Collapse
|