1
|
Cai M, Wu C, Jing C, Shen X, He M, Wang L, Guo Q, Yan Y, Yan X, Yang R. Blood Metabolomics Analysis Identifies Differential Serum Metabolites in Elite and Sub-elite Swimmers. Front Physiol 2022; 13:858869. [PMID: 35600307 PMCID: PMC9118345 DOI: 10.3389/fphys.2022.858869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Metabolites in body fluids, such as lactate, glucose, and creatinine, have been measured by conventional methods to evaluate physical function and performance or athletic status. The objectives of the current study were to explore the novel metabolite biomarkers in professional swimmers with different competition levels using nuclear magnetic resonance (NMR) metabolomics, and try to establish a model to identify the athletic status or predict the competitive potential. Methods: Serum samples were collected from 103 elite and 84 sub-elite level Chinese professional swimmers, and were profiled by NMR analysis. Results: Out of the thirty-six serum metabolites profiled, ten were associated with the athletic status of swimmers (with p < 0.05). When compared with sub-elite swimmers, elite swimmers had higher levels of high-density lipoprotein (HDL), unsaturated fatty acid, lactic acid, and methanol. Elite swimmers had lower levels of isoleucine, 3-hydroxybutyric acid, acetoacetate, glutamine, glycine, and α-glucose. A model with four metabolites, including HDL, glutamine, methanol, and α-glucose, was established to predict athletic status by adjusting with different covariates. The area under the curve (AUC) of the best model was 0.904 (95% CI: 0.862-0.947), with a sensitivity and specificity of 75.5 and 90.2%, respectively. Conclusion: We have identified ten metabolite biomarkers with differentially expressed levels between elite and sub-elite swimmers, the differences could result from genetic or sports level between the two cohorts. A model with four metabolites has successfully differentiated professional swimmers with different competitive levels.
Collapse
Affiliation(s)
- Ming Cai
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chao Wu
- Foundation of Shanghai Vocational College of Agriculture and Forestry, Shanghai, China
| | - Chen Jing
- Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Center), Shanghai, China
| | - Xunzhang Shen
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Center), Shanghai, China
| | - Mian He
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yan Yan
- School of Life Science, Qufu Normal University, Qufu, China
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Xu Yan, ; Ruoyu Yang,
| | - Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Xu Yan, ; Ruoyu Yang,
| |
Collapse
|
2
|
Antrobus MR, Brazier J, Callus PC, Herbert AJ, Stebbings GK, Khanal P, Day SH, Kilduff LP, Bennett MA, Erskine RM, Raleigh SM, Collins M, Pitsiladis YP, Heffernan SM, Williams AG. Concussion-Associated Polygenic Profiles of Elite Male Rugby Athletes. Genes (Basel) 2022; 13:820. [PMID: 35627205 PMCID: PMC9141383 DOI: 10.3390/genes13050820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Due to the high-velocity collision-based nature of elite rugby league and union, the risk of sustaining a concussion is high. Occurrence of and outcomes following a concussion are probably affected by the interaction of multiple genes in a polygenic manner. This study investigated whether suspected concussion-associated polygenic profiles of elite rugby athletes differed from non-athletes and between rugby union forwards and backs. We hypothesised that a total genotype score (TGS) using eight concussion-associated polymorphisms would be higher in elite rugby athletes than non-athletes, indicating selection for protection against incurring or suffering prolonged effects of, concussion in the relatively high-risk environment of competitive rugby. In addition, multifactor dimensionality reduction was used to identify genetic interactions. Contrary to our hypothesis, TGS did not differ between elite rugby athletes and non-athletes (p ≥ 0.065), nor between rugby union forwards and backs (p = 0.668). Accordingly, the TGS could not discriminate between elite rugby athletes and non-athletes (AUC ~0.5), suggesting that, for the eight polymorphisms investigated, elite rugby athletes do not have a more ‘preferable’ concussion-associated polygenic profile than non-athletes. However, the COMT (rs4680) and MAPT (rs10445337) GC allele combination was more common in rugby athletes (31.7%; p < 0.001) and rugby union athletes (31.8%; p < 0.001) than non-athletes (24.5%). Our results thus suggest a genetic interaction between COMT (rs4680) and MAPT (rs10445337) assists rugby athletes in achieving elite status. These findings need exploration vis-à-vis sport-related concussion injury data and could have implications for the management of inter-individual differences in concussion risk.
Collapse
Affiliation(s)
- Mark R. Antrobus
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
- Sport and Exercise Science, University of Northampton, Northampton NN1 5PH, UK
| | - Jon Brazier
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
- Department of Psychology and Sports Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Peter C. Callus
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
| | - Adam J. Herbert
- Research Centre for Life and Sport Sciences (C-LaSS), School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK;
| | - Georgina K. Stebbings
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
| | - Praval Khanal
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
| | - Stephen H. Day
- School of Medicine and Clinical Practice, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Liam P. Kilduff
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
| | - Mark A. Bennett
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
| | - Robert M. Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| | - Stuart M. Raleigh
- Cardiovascular and Lifestyle Medicine Research Group, CSELS, Coventry University, Coventry CV1 5FB, UK;
| | - Malcolm Collins
- Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, and the International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa;
| | - Yannis P. Pitsiladis
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton BN20 7SP, UK;
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Shane M. Heffernan
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
| | - Alun G. Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK; (J.B.); (P.C.C.); (G.K.S.); (P.K.); (A.G.W.)
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea SA1 8EN, UK; (L.P.K.); (M.A.B.); (S.M.H.)
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Smith C, Lin X, Scott D, Brennan-Speranza TC, Al Saedi A, Moreno-Asso A, Woessner M, Bani Hassan E, Eynon N, Duque G, Levinger I. Uncovering the Bone-Muscle Interaction and Its Implications for the Health and Function of Older Adults (the Wellderly Project): Protocol for a Randomized Controlled Crossover Trial. JMIR Res Protoc 2021; 10:e18777. [PMID: 33835038 PMCID: PMC8065561 DOI: 10.2196/18777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bone and muscle are closely linked anatomically, biochemically, and metabolically. Acute exercise affects both bone and muscle, implying a crosstalk between the two systems. However, how these two systems communicate is still largely unknown. We will explore the role of undercarboxylated osteocalcin (ucOC) in this crosstalk. ucOC is involved in glucose metabolism and has a potential role in muscle maintenance and metabolism. OBJECTIVE The proposed trial will determine if circulating ucOC levels in older adults at baseline and following acute exercise are associated with parameters of muscle function and if the ucOC response to exercise varies between older adults with low muscle quality and those with normal or high muscle quality. METHODS A total of 54 men and women aged 60 years or older with no history of diabetes and warfarin and vitamin K use will be recruited. Screening tests will be performed, including those for functional, anthropometric, and clinical presentation. On the basis of muscle quality, a combined equation of lean mass (leg appendicular skeletal muscle mass in kg) and strength (leg press; one-repetition maximum), participants will be stratified into a high or low muscle function group and randomized into the controlled crossover acute intervention. Three visits will be performed approximately 7 days apart, and acute aerobic exercise, acute resistance exercise, and a control session (rest) will be completed in any order. Our primary outcome for this study is the effect of acute exercise on ucOC in older adults with low muscle function and those with high muscle function. RESULTS The trial is active and ongoing. Recruitment began in February 2018, and 38 participants have completed the study as of May 26, 2019. CONCLUSIONS This study will provide novel insights into bone and muscle crosstalk in older adults, potentially identifying new clinical biomarkers and mechanistic targets for drug treatments for sarcopenia and other related musculoskeletal conditions. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12618001756213; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375925. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/18777.
Collapse
Affiliation(s)
- Cassandra Smith
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Xuzhu Lin
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - David Scott
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.,Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Tara C Brennan-Speranza
- School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Mary Woessner
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ebrahim Bani Hassan
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nir Eynon
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Itamar Levinger
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Dai N. The Diverse Functions of IMP2/IGF2BP2 in Metabolism. Trends Endocrinol Metab 2020; 31:670-679. [PMID: 32586768 DOI: 10.1016/j.tem.2020.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
The human insulin-like growth factor 2 (IGF2) mRNA binding protein family (IMPs/IGF2BPs) is involved in a spectrum of biological processes, including development, tumorigenesis, and stemness. IMPs play a major role in post-transcriptional regulation of RNAs through the ribonucleoprotein complex (RNP). They have emerged as direct mammalian target of rapamycin (mTOR) substrates that coordinate nutrient stimulation and RNA life cycle control. IMP2 is a human type 2 diabetes (T2D) gene associated with impaired insulin secretion. Recently, using murine models, the substantial progress in understanding disease mechanisms has highlighted the significance of IMP2 in metabolism. This new knowledge may have the potential for therapeutic benefit.
Collapse
Affiliation(s)
- Ning Dai
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Li J, Li Y, Atakan MM, Kuang J, Hu Y, Bishop DJ, Yan X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants (Basel) 2020; 9:E656. [PMID: 32722013 PMCID: PMC7464156 DOI: 10.3390/antiox9080656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
High-intensity exercise/training, especially interval exercise/training, has gained popularity in recent years. Hypoxic training was introduced to elite athletes half a century ago and has recently been adopted by the general public. In the current review, we have summarised the molecular adaptive responses of skeletal muscle to high-intensity exercise/training, focusing on mitochondrial biogenesis, angiogenesis, and muscle fibre composition. The literature suggests that (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) PGC-1α, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor 1-alpha (HIF1-α) might be the main mediators of skeletal muscle adaptations to high-intensity exercises in hypoxia. Exercise is known to be anti-inflammatory, while the effects of hypoxia on inflammatory signalling are more complex. The anti-inflammatory effects of a single session of exercise might result from the release of anti-inflammatory myokines and other cytokines, as well as the downregulation of Toll-like receptor signalling, while training-induced anti-inflammatory effects may be due to reductions in abdominal and visceral fat (which are main sources of pro-inflammatory cytokines). Hypoxia can lead to inflammation, and inflammation can result in tissue hypoxia. However, the hypoxic factor HIF1-α is essential for preventing excessive inflammation. Disease-induced hypoxia is related to an upregulation of inflammatory signalling, but the effects of exercise-induced hypoxia on inflammation are less conclusive. The effects of high-intensity exercise under hypoxia on skeletal muscle molecular adaptations and inflammatory signalling have not been fully explored and are worth investigating in future studies. Understanding these effects will lead to a more comprehensive scientific basis for maximising the benefits of high-intensity exercise.
Collapse
Affiliation(s)
- Jia Li
- College of Physical Education, Southwest University, Chongqing 400715, China;
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - Muhammed M. Atakan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
6
|
The Short Tandem Repeat of the DMT1 Gene as a Molecular Marker of Elite Long-Distance Runners. Int J Genomics 2019; 2019:7064703. [PMID: 31871928 PMCID: PMC6906879 DOI: 10.1155/2019/7064703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
The DMT1 gene encodes divalent metal transporter 1, a membrane iron transport protein. Divalent metal transporter 1 influences cellular iron availability, which might further affect aerobic exercise capacity. Short tandem repeat (STR) polymorphisms have been used as genetic markers in the literature, yet the STR polymorphisms of the DMT1 gene have not been well studied. In this current study, we explored the polymorphisms of the DMT1 gene in a group of elite long-distance runners and controls, by using the PCR-RFLP (Restriction Fragment Length Polymorphism) and Gene scan technology. We found that the genotype frequency of the homozygous 258 bp STR polymorphism of the DMT1 gene (258 bp/258 bp) was significantly higher in the athlete group than in the controls (χ2 = 14.01, p = 0.006) so does the allele frequency of the 258 bp STR polymorphism (χ2 = 12.867, p = 0.008). These data suggested that the STR polymorphism of the DMT1 gene might be correlated with aerobic exercise capacity and the 258 bp homozygous (25 bp/258 bp) could be used as a molecular marker for the talent identification of elite long-distance runners.
Collapse
|
7
|
Papadimitriou ID, Eynon N, Yan X, Munson F, Jacques M, Kuang J, Voisin S, North KN, Bishop DJ. A "human knockout" model to investigate the influence of the α-actinin-3 protein on exercise-induced mitochondrial adaptations. Sci Rep 2019; 9:12688. [PMID: 31481717 PMCID: PMC6722100 DOI: 10.1038/s41598-019-49042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Research in α-actinin-3 knockout mice suggests a novel role for α-actinin-3 as a mediator of cell signalling. We took advantage of naturally-occurring human “knockouts” (lacking α-actinin-3 protein) to investigate the consequences of α-actinin-3 deficiency on exercise-induced changes in mitochondrial-related genes and proteins, as well as endurance training adaptations. At baseline, we observed a compensatory increase of α-actinin-2 protein in ACTN3 XX (α-actinin-3 deficient; n = 18) vs ACTN3 RR (expressing α-actinin-3; n = 19) participants but no differences between genotypes for markers of aerobic fitness or mitochondrial content and function. There was a main effect of genotype, without an interaction, for RCAN1-4 protein content (a marker of calcineurin activity). However, there was no effect of genotype on exercise-induced expression of genes associated with mitochondrial biogenesis, nor post-training physiological changes. In contrast to results in mice, loss of α-actinin-3 is not associated with higher baseline endurance-related phenotypes, or greater adaptations to endurance exercise training in humans.
Collapse
Affiliation(s)
- I D Papadimitriou
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Mahidol University, Bangkok, Thailand
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - X Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - F Munson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - M Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - J Kuang
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - K N North
- Murdoch Children's Research Institute, Melbourne, Australia
| | - D J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia. .,School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
8
|
IMP2 Increases Mouse Skeletal Muscle Mass and Voluntary Activity by Enhancing Autocrine Insulin-Like Growth Factor 2 Production and Optimizing Muscle Metabolism. Mol Cell Biol 2019; 39:MCB.00528-18. [PMID: 30692269 DOI: 10.1128/mcb.00528-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/19/2019] [Indexed: 12/27/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA binding protein 2 (IMP2) was selectively deleted from adult mouse muscle; two phenotypes were observed: decreased accrual of skeletal muscle mass after weaning and reduced wheel-running activity but normal forced treadmill performance. Reduced wheel running occurs when mice are fed a high-fat diet but is normalized when mice consume standard chow. The two phenotypes are due to altered output from different IMP2 client mRNAs. The reduced fiber size of IMP2-deficient muscle is attributable, in part, to diminished autocrine Igf2 production; basal tyrosine phosphorylation of the insulin and IGF1 receptors is diminished, and Akt1 activation is selectively reduced. Gsk3α is disinhibited, and S536-phosphorylated ε subunit of eukaryotic initiation factor 2B [eIF2Bε(S536)] is hyperphosphorylated. Protein synthesis is reduced despite unaltered mTOR complex 1 activity. The diet-dependent reduction in voluntary exercise is likely due to altered muscle metabolism, as contractile function is normal. IMP2-deficient muscle exhibits reduced fatty acid oxidation, due to a reduced abundance of mRNA of peroxisome proliferator-activated receptor α (PPARα), an IMP2 client, and PPARα protein. IMP2-deficient muscle fibers treated with a mitochondrial uncoupler to increase electron flux, as occurs with exercise, exhibit reduced oxygen consumption from fatty acids, with higher oxygen consumption from glucose. The greater dependence on muscle glucose metabolism during increased oxygen demand may promote central fatigue and thereby diminish voluntary activity.
Collapse
|
9
|
Yan X, Eynon N, Papadimitriou ID, Kuang J, Munson F, Tirosh O, O'Keefe L, Griffiths LR, Ashton KJ, Byrne N, Pitsiladis YP, Bishop DJ. The gene SMART study: method, study design, and preliminary findings. BMC Genomics 2017; 18:821. [PMID: 29143594 PMCID: PMC5688409 DOI: 10.1186/s12864-017-4186-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The gene SMART (genes and the Skeletal Muscle Adaptive Response to Training) Study aims to identify genetic variants that predict the response to both a single session of High-Intensity Interval Exercise (HIIE) and to four weeks of High-Intensity Interval Training (HIIT). While the training and testing centre is located at Victoria University, Melbourne, three other centres have been launched at Bond University, Queensland University of Technology, Australia, and the University of Brighton, UK. Currently 39 participants have already completed the study and the overall aim is to recruit 200 moderately-trained, healthy Caucasians participants (all males 18-45 y, BMI < 30). Participants will undergo exercise testing and exercise training by an identical exercise program. Dietary habits will be assessed by questionnaire and dietitian consultation. Activity history is assessed by questionnaire and current activity level is assessed by an activity monitor. Skeletal muscle biopsies and blood samples will be collected before, immediately after and 3 h post HIIE, with the fourth resting biopsy and blood sample taken after four weeks of supervised HIIT (3 training sessions per week). Each session consists of eight to fourteen 2-min intervals performed at the pre-training lactate threshold (LT) power plus 40 to 70% of the difference between pre-training lactate threshold (LT) and peak aerobic power (Wpeak). A number of muscle and blood analyses will be performed, including (but not limited to) genotyping, mitochondrial respiration, transcriptomics, protein expression analyses, and enzyme activity. The participants serve as their own controls. Even though the gene SMART study is tightly controlled, our preliminary findings still indicate considerable individual variability in both performance (in-vivo) and muscle (in-situ) adaptations to similar training. More participants are required to allow us to better investigate potential underlying genetic and molecular mechanisms responsible for this individual variability.
Collapse
Affiliation(s)
- Xu Yan
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.,College of Health and Biomedicine, Victoria University, Melbourne, Australia.,Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Nir Eynon
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.,Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Ioannis D Papadimitriou
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Jujiao Kuang
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Fiona Munson
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Oren Tirosh
- School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Lannie O'Keefe
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - Lyn R Griffiths
- Institute of Health and Biomedical Innovation (IHBI), Genomics Research Centre, Queensland University of Technology, Brisbane, Australia
| | - Kevin J Ashton
- Bond Institute of Health and Sport (BIHS), Bond University, Gold Coast, Australia
| | - Nuala Byrne
- Bond Institute of Health and Sport (BIHS), Bond University, Gold Coast, Australia
| | - Yannis P Pitsiladis
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Eastbourne, UK
| | - David J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
10
|
Sarzynski MA, Loos RJF, Lucia A, Pérusse L, Roth SM, Wolfarth B, Rankinen T, Bouchard C. Advances in Exercise, Fitness, and Performance Genomics in 2015. Med Sci Sports Exerc 2017; 48:1906-16. [PMID: 27183119 DOI: 10.1249/mss.0000000000000982] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review of the exercise genomics literature encompasses the highest-quality articles published in 2015 across seven broad topics: physical activity behavior, muscular strength and power, cardiorespiratory fitness and endurance performance, body weight and adiposity, insulin and glucose metabolism, lipid and lipoprotein metabolism, and hemodynamic traits. One study used a quantitative trait locus for wheel running in mice to identify single nucleotide polymorphisms (SNPs) in humans associated with physical activity levels. Two studies examined the association of candidate gene ACTN3 R577X genotype on muscular performance. Several studies examined gene-physical activity interactions on cardiometabolic traits. One study showed that physical inactivity exacerbated the body mass index (BMI)-increasing effect of an FTO SNP but only in individuals of European ancestry, whereas another showed that high-density lipoprotein cholesterol (HDL-C) SNPs from genome-wide association studies exerted a smaller effect in active individuals. Increased levels of moderate-to-vigorous-intensity physical activity were associated with higher Matsuda insulin sensitivity index in PPARG Ala12 carriers but not Pro12 homozygotes. One study combined genome-wide and transcriptome-wide profiling to identify genes and SNPs associated with the response of triglycerides (TG) to exercise training. The genome-wide association study results showed that four SNPs accounted for all of the heritability of △TG, whereas the baseline expression of 11 genes predicted 27% of △TG. A composite SNP score based on the top eight SNPs derived from the genomic and transcriptomic analyses was the strongest predictor of ΔTG, explaining 14% of the variance. The review concludes with a discussion of a conceptual framework defining some of the critical conditions for exercise genomics studies and highlights the importance of the recently launched National Institutes of Health Common Fund program titled "Molecular Transducers of Physical Activity in Humans."
Collapse
Affiliation(s)
- Mark A Sarzynski
- 1Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC; 2The Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY; 3Universidad Europea and Research Institute, Hospital 12 de Octubre (i+12), Madrid, SPAIN; 4Faculty of Medicine, Department of Kinesiology, Laval University, Ste-Foy, Québec, CANADA; 5Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD; 6Department of Sport Medicine, Humboldt University and Charité University School of Medicine, Berlin, GERMANY; and 7Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
An X, Song Y, Hou J, Wang S, Gao K, Cao B. Identification of a functional SNP in the 3′-UTR of caprineMTHFRgene that is associated with milk protein levels. Anim Genet 2016; 47:499-503. [PMID: 27062401 DOI: 10.1111/age.12425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaopeng An
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 P.R. China
| | - Jinxing Hou
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 P.R. China
| | - Shan Wang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 P.R. China
| | - Kexin Gao
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 P.R. China
| | - Binyun Cao
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 P.R. China
| |
Collapse
|
12
|
|