1
|
Qiu X, Tang X. Metabolic adaptations of Shewanella eurypsychrophilus YLB-09 for survival in the high-pressure environment of the deep sea. Front Microbiol 2024; 15:1467153. [PMID: 39483757 PMCID: PMC11527400 DOI: 10.3389/fmicb.2024.1467153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Elucidation of the adaptation mechanisms and survival strategies of deep-sea microorganisms to extreme environments could provide a theoretical basis for the industrial development of extreme enzymes. There is currently a lack of understanding of the metabolic adaptation mechanisms of deep-sea microorganisms to high-pressure environments. The objective of this study was to investigate the metabolic regulatory mechanisms enabling a strain of the deep-sea bacterium Shewanella eurypsychrophilus to thrive under high-pressure conditions. To achieve this, we used nuclear magnetic resonance-based metabolomic and RNA sequencing-based transcriptomic analyses of S. eurypsychrophilus strain YLB-09, which was previously isolated by our research group and shown to be capable of tolerating high pressure levels and low temperatures. We found that high-pressure conditions had pronounced impacts on the metabolic pattern of YLB-09, as evidenced by alterations in energy, amino acid, and glycerolipid metabolism, among other processes. YLB-09 adapted to the high-pressure conditions of the deep sea by switching from aerobic intracellular energy metabolism to trimethylamine N-oxide respiration, altering the amino acid profile, and regulating the composition and the fluidity of cell membrane. The findings of our study demonstrate the capacity of microorganisms to alter their metabolism in response to elevated pressure, thereby establishing a foundation for a more profound understanding of the survival mechanisms of life in high-pressure environments.
Collapse
Affiliation(s)
- Xu Qiu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xixiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
2
|
Dieser M, Smith HJ, Foreman CM. Seven genome sequences of airborne, bacterial isolates from Antarctica. Microbiol Resour Announc 2024; 13:e0112923. [PMID: 38747591 PMCID: PMC11237742 DOI: 10.1128/mra.01129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Ice-covered and remote landscapes in the McMurdo Dry Valleys, Antarctica, are likely seeded by aeolian transport of biological material from ice-free local or distant environments. Here, we report the genome sequences of seven bacteria isolated from aerosols collected on top of two dry valley glaciers.
Collapse
Affiliation(s)
- Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Christine M Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
3
|
Vargas-Reyes M, Bruna N, Ramos-Zúñiga J, Valenzuela-Ibaceta F, Rivas-Álvarez P, Navarro CA, Pérez-Donoso JM. Biosynthesis of photostable CdS quantum dots by UV-resistant psychrotolerant bacteria isolated from Union Glacier, Antarctica. Microb Cell Fact 2024; 23:140. [PMID: 38760827 PMCID: PMC11100238 DOI: 10.1186/s12934-024-02417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.
Collapse
Affiliation(s)
- Matías Vargas-Reyes
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Paula Rivas-Álvarez
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Claudio A Navarro
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
4
|
Song Q, Li X, Hou N, Pei C, Li D. Chemotaxis-mediated degradation of PAHs and heterocyclic PAHs under low-temperature stress by Pseudomonas fluorescens S01: Insights into the mechanisms of biodegradation and cold adaptation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133905. [PMID: 38422734 DOI: 10.1016/j.jhazmat.2024.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
As wellknown persistent contaminants, polycyclic aromatic hydrocarbons (PAHs) and heterocyclic polyaromatic hydrocarbons (Heterocyclic PAHs)'s fates in cryogenic environments are remains uncertain. Herein, strain S01 was identified as Pseudomonas fluorescens, a novel bacterium tolerant to low temperature and capable of degrading PAHs and heterocyclic PAHs. Strain S01 exhibited growth at 5-40 ℃ and degradation rate of mixed PAHs and heterocyclic PAHs reached 52% under low-temperature. Through comprehensive metabolomic, genomic, and transcriptomic analyses, we reconstructed the biodegradation pathway for PAHs and heterocyclic PAHs in S01 while investigating its response to low temperature. Further experiments involving deletion and replacement of methyl-accepting chemotaxis protein (MCP) confirmed its crucial role in enabling strain S01's adaptation to dual stress of low temperature and pollutants. Additionally, our analysis revealed that MCP was upregulated under cold stress which enhanced strain S01's motility capabilities leading to increased biofilm formation. The establishment of biofilm promoted preservation of distinct cellular membrane stability, thereby enhancing energy metabolism. Consequently, this led to heightened efficiency in pollutant degradation and improved cold resistance capabilities. Our findings provide a comprehensive understanding of the environmental fate of both PAHs and heterocyclic PAHs under low-temperature conditions while also shedding light on cold adaptation mechanism employed by strain S01.
Collapse
Affiliation(s)
- Qiuying Song
- Northeast Agricultural University, School of Resources and Environment, China
| | - Xianyue Li
- Northeast Agricultural University, School of Resources and Environment, China
| | - Ning Hou
- Northeast Agricultural University, School of Resources and Environment, China.
| | - Chenghao Pei
- Northeast Agricultural University, School of Resources and Environment, China
| | - Dapeng Li
- Northeast Agricultural University, School of Resources and Environment, China.
| |
Collapse
|
5
|
Huang K, He Y, Wang W, Jiang R, Zhang Y, Li J, Zhang XX, Wang D. Temporal differentiation in the adaptation of functional bacteria to low-temperature stress in partial denitrification and anammox system. ENVIRONMENTAL RESEARCH 2024; 244:117933. [PMID: 38097061 DOI: 10.1016/j.envres.2023.117933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023]
Abstract
Despite reliable nitrite supply through partial denitrification, the adaptation of denitrifying bacteria to low temperatures remains elusive in partial denitrification and anammox (PDA) systems. Here, temporal differentiations of the structure, activity, and relevant cold-adaptation mechanism of functional bacteria were investigated in a lab-scale PDA bioreactor at decreased temperature. Although distinct denitrifying bacteria dominated after low-temperature stress, both short- and long-term stresses exerted differential selectivity towards the species with close phylogenetic distance. Species Azonexus sp.149 showed high superiority over Azonexus sp.384 under short-term stress, and long-term stress improved the adaptation of Aquabacterium sp.93 instead of Aquabacterium sp.184. The elevated transcription of nitrite reductase genes suggested that several denitrifying bacteria (e.g., Azonexus sp.149) could compete with anammox bacteria for nitrite. Species Rivicola pingtungensis and Azonexus sp.149 could adapt through various adaptation pathways, such as the two-component system, cold shock protein (CSP), membrane alternation, and electron transport chain. By contrast, species Zoogloea sp.273 and Aquabacterium sp.93 mainly depended on the CSP and oxidative stress response. This study largely deepens our understanding of the performance deterioration in PDA systems during cold shock and provides several references for efficient adaptation to seasonal temperature fluctuation.
Collapse
Affiliation(s)
- Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Institute of Environmental Research at Greater Bay/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing, 210019, China
| | - Yang He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wuqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; LingChao Supply Chain Management Co., Ltd., Shenzhen, 518000, China
| | - Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yujie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jialei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Borges SR, Jones GG, Robinson TD. Detectability of Surface Biosignatures for Directly Imaged Rocky Exoplanets. ASTROBIOLOGY 2024; 24:283-299. [PMID: 38377582 DOI: 10.1089/ast.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Modeling the detection of life has never been more opportune. With next-generation space telescopes, such as the currently developing Habitable Worlds Observatory (HWO) concept, we will begin to characterize rocky exoplanets potentially similar to Earth. However, few realistic planetary spectra containing surface biosignatures have been paired with direct imaging telescope instrument models. Therefore, we use a HWO instrument noise model to assess the detection of surface biosignatures affiliated with oxygenic, anoxygenic, and nonphotosynthetic extremophiles. We pair the HWO telescope model to a one-dimensional radiative transfer model to estimate the required exposure times necessary for detecting each biosignature on planets with global microbial coverage and varying atmospheric water vapor concentrations. For modeled planets with 0-50% cloud coverage, we determine pigments and the red edge could be detected within 1000 hr (100 hr) at distances within 15 pc (11 pc). However, tighter telescope inner working angles (2.5 λ/D) would allow surface biosignature detection at further distances. Anoxygenic photosynthetic biosignatures could also be more easily detectable than nonphotosynthetic pigments and the photosynthetic red edge when compared against a false positive iron oxide slope. Future life detection missions should evaluate the influence of false positives on the detection of multiple surface biosignatures.
Collapse
Affiliation(s)
- Schuyler R Borges
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Gabrielle G Jones
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Tyler D Robinson
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
- NASA Nexus for Exoplanet System Science Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Wood C, Bruinink A, Trembath-Reichert E, Wilhelm MB, Vidal C, Balaban E, McKay CP, Swan R, Swan B, Goordial J. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME COMMUNICATIONS 2024; 4:ycad002. [PMID: 38304082 PMCID: PMC10833075 DOI: 10.1093/ismeco/ycad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 02/03/2024]
Abstract
Dry permafrost is a challenging environment for microbial life due to cold, dry, and often oligotrophic conditions. In 2016, Elephant Head, Antarctica, was confirmed as the second site on Earth to contain dry permafrost. It is geographically distinct from the McMurdo Dry Valleys where dry permafrost has been studied previously. Here, we present the first study of the microbial activity, diversity, and functional potential of Elephant Head dry permafrost. Microbial activity was measured using radiorespiration assays with radiolabeled acetate as a carbon source at 5, 0, and -5°C. Low, but detectable, rates of microbial activity were measured in some samples at 0 and -5°C. This is distinct from previous studies of McMurdo Dry Valley dry permafrost which concluded that dry permafrost represents a cold-arid limit to life on the planet. The isolation of cold-adapted organisms from these soils, including one capable of subzero growth, further supports that the Elephant Head dry active layer and dry permafrost harbor viable microbial life, which may be active in situ. Metagenomic, 16S rRNA gene, and internal transcribed spacer and amplicon sequencing identified similar microbial communities to other Antarctic and cold environments. The Elephant Head microbial community appears to be adapted for survival in cold, dry, and oligotrophic conditions based on the presence of cold adaptation and stress response genes in the metagenomes. Together, our results show that dry permafrost environments do not exclude active microbial life at subzero temperatures, suggesting that the cold, dry soils of Mars may also not be as inhospitable as previously thought.
Collapse
Affiliation(s)
- Claudia Wood
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Alyssa Bruinink
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Elizabeth Trembath-Reichert
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Chanel Vidal
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Edward Balaban
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Christopher P McKay
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Robert Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Barney Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Jackie Goordial
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Sajjad W, Ali B, Niu H, Ilahi N, Rafiq M, Bahadur A, Banerjee A, Kang S. High prevalence of antibiotic-resistant and metal-tolerant cultivable bacteria in remote glacier environment. ENVIRONMENTAL RESEARCH 2023; 239:117444. [PMID: 37858689 DOI: 10.1016/j.envres.2023.117444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by β-lactam genes blaCTX-M (21.1-71.1%), blaACC (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of blaACC,blaCTX-M,blaSHV,blaampC,qnrA, sulI, tetA and blaTEM revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Han M, Niu X, Xiong G, Ruan C, Chen G, Wu H, Liu Y, Zhu K, Wang G. Isolation, characterization and genomic analysis of the novel Arthrobacter sp. phage SWEP2. Arch Virol 2023; 168:276. [PMID: 37864004 DOI: 10.1007/s00705-023-05898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/01/2023] [Indexed: 10/22/2023]
Abstract
A new virulent phage, SWEP2, infecting the Arthrobacter sp. 5B strain, was isolated from black soil samples in northeastern China. SWEP2 has a latent period of 80 min and a burst size of 45 PFU (evaluated at an MOI of 0.1). Genomic analysis revealed that the 43,398-bp dsDNA genome of phage SWEP2 contains 64 open reading frames (ORFs) and one tRNA gene. Phylogenetic analysis indicated a close relationship between SWEP2 and Arthrobacter phage Liebe, with 82.98% identity and a query coverage of 48%. Based on its distinct phenotypic and genetic characteristics, SWEP2 is identified as a novel Arthrobacter phage.
Collapse
Affiliation(s)
- Miao Han
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinyao Niu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guangzhou Xiong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Environmental Microbiology, Eawag, 8600, Dübendorf, Switzerland
| | - Guowei Chen
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanqing Wu
- The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Ying Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Zhu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
- National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Acharya SM, Yee MO, Diamond S, Andeer PF, Baig NF, Aladesanmi OT, Northen TR, Banfield JF, Chakraborty R. Fine scale sampling reveals early differentiation of rhizosphere microbiome from bulk soil in young Brachypodium plant roots. ISME COMMUNICATIONS 2023; 3:54. [PMID: 37280433 PMCID: PMC10244434 DOI: 10.1038/s43705-023-00265-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
For a deeper and comprehensive understanding of the composition and function of rhizosphere microbiomes, we need to focus at the scale of individual roots in standardized growth containers. Root exudation patterns are known to vary along distinct parts of the root even in juvenile plants giving rise to spatially distinct microbial niches. To address this, we analyzed the microbial community from two spatially distinct zones of the developing primary root (tip and base) in young Brachypodium distachyon grown in natural soil using standardized fabricated ecosystems known as EcoFABs as well as in more conventional pot and tubes. 16S rRNA based community analysis showed a strong rhizosphere effect resulting in significant enrichment of several OTUs belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. However, microbial community composition did not differ between root tips and root base or across different growth containers. Functional analysis of bulk metagenomics revealed significant differences between root tips and bulk soil. The genes associated with different metabolic pathways and root colonization were enriched in root tips. On the other hand, genes associated with nutrient-limitation and environmental stress were prominent in the bulk soil compared to root tips, implying the absence of easily available, labile carbon and nutrients in bulk soil relative to roots. Such insights into the relationships between developing root and microbial communities are critical for judicious understanding of plant-microbe interactions in early developmental stages of plants.
Collapse
Affiliation(s)
- Shwetha M Acharya
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mon Oo Yee
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Peter F Andeer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nameera F Baig
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Omolara T Aladesanmi
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
11
|
Yuan S, Han X, Yin X, Su P, Zhang Y, Liu Y, Zhang J, Zhang D. Nitrogen transformation promotes the anaerobic degradation of PAHs in water level fluctuation zone of the Three Gorges Reservoir in Yangtze River, China: Evidences derived from in-situ experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161034. [PMID: 36549540 DOI: 10.1016/j.scitotenv.2022.161034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose a great threat to human health and ecological system safety. The interception of nitrogen is common found in the riparian zone. However, there is no evidence on how nitrogen addition affects the anaerobic degradation of PAHs in soil of the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in Yangtze River, China. Here, we investigated the PAHs degradation rate, the variation of key functional genes and microbial communities after nitrogen addition in soil that experienced a flooding period of water-level-fluctuation. The results revealed that the ∑16PAHs were decreased 16.19 %-36.65 % and more 3-5-rings PAHs were biodegraded with nitrogen addition in WLFZ. The most genes involved in PAHs-anaerobic degradation and denitrification were up-regulated by nitrate addition, and phyla Firmicutes, Actinobacteria and Proteobacteria were more advantages in nitrogen addition groups. The Tax4Fun based genome function analysis revealed that the microbial activity of PAHs-degradation increased with nitrate addition. The co-occurrence network analysis indicated that nitrogen addition accelerated the metabolism of nitrogen and PAHs. It is the first time to provide the direct experimental evidences that nitrogen transformation in the WLFZ soil promotes anaerobic PAHs degradation. This work is of importance to understand the effect of nitrogen intercepted in the WLFZ soil of TGR in Yangtze River, China.
Collapse
Affiliation(s)
- Shupei Yuan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xinkuan Han
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China; College of Life Sciences, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Xiangyang Yin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Peixing Su
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yiying Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yinfei Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Juntong Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
12
|
Sulbaran-Bracho Y, Orellana-Saez M, Castro-Severyn J, Galbán-Malagón C, Castro-Nallar E, Poblete-Castro I. Continuous bioreactors enable high-level bioremediation of diesel-contaminated seawater at low and mesophilic temperatures using Antarctic bacterial consortia: Pollutant analysis and microbial community composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121139. [PMID: 36702434 DOI: 10.1016/j.envpol.2023.121139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In 2020, more than 21,000 tons of diesel oil were released accidently into the environment with most of it contaminating water bodies. There is an urgent need for sustainable technologies to clean up rivers and oceans to protect wildlife and human health. One solution is harnessing the power of bacterial consortia; however isolated microbes from different environments have shown low diesel bioremediation rates in seawater thus far. An outstanding question is whether Antarctic microorganisms that thrive in environments polluted with hydrocarbons exhibit better diesel degrading activities when propagated at higher temperatures than those encountered in their natural ecosystems. Here, we isolated bacterial consortia, LR-30 (30 °C) and LR-10 (10 °C), from the Antarctic rhizosphere soil of Deschampsia antarctica (Livingston Island), that used diesel oil as the only carbon substrate. We found that LR-30 and LR-10 batch bioreactors metabolized nearly the entire diesel content when the initial concentration was 10 (g/L) in seawater. Increasing the initial diesel concentration to 50 gDiesel/L, LR-30 and LR-10 bioconverted 33.4 and 31.2 gDiesel/L in 7 days, respectively. The 16S rRNA gene sequencing profiles revealed that the dominant bacterial genera of the inoculated LR-30 community were Achromobacter (50.6%), Pseudomonas (25%) and Rhodanobacter (14.9%), whereas for LR-10 were Pseudomonas (58%), Candidimonas (10.3%) and Renibacterium (7.8%). We also established continuous bioreactors for diesel biodegradation where LR-30 bioremediated diesel at an unprecedent rate of (34.4 g/L per day), while LR-10 achieved (24.5 g/L per day) at 10 °C for one month. The abundance of each bacterial genera present significantly fluctuated at some point during the diesel bioremediation process, yet Achromobacter and Pseudomonas were the most abundant member at the end of the batch and continuous bioreactors for LR-30 and LR-10, respectively.
Collapse
Affiliation(s)
- Yoelvis Sulbaran-Bracho
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile
| | - Matias Orellana-Saez
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica Del Norte, Antofagasta, Chile
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile.
| |
Collapse
|
13
|
Teng W, Liao B, Chen M, Shu W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol Spectr 2023; 11:e0214522. [PMID: 36511682 PMCID: PMC9927291 DOI: 10.1128/spectrum.02145-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial evolution is characterized by strong purifying selection as well as rapid adaptive evolution in changing environments. In this context, the genomic GC content (genomic GC) varies greatly but presents some level of phylogenetic stability, making it challenging to explain based on current hypotheses. To illuminate the evolutionary mechanisms of the genomic GC, we analyzed the base composition and functional inventory of 11,083 representative genomes. A phylogenetically constrained bimodal distribution of the genomic GC, which mainly originated from parallel divergences in the early evolution, was demonstrated. Such variation of the genomic GC can be well explained by DNA replication and repair (DRR), in which multiple pathways correlate with the genomic GC. Furthermore, the biased conservation of various stress-related genes, especially the DRR-related ones, implies distinct adaptive processes in the ancestral lineages of high- or low-GC clades which are likely induced by major environmental changes. Our findings support that the mutational biases resulting from these legacies of ancient adaptation have changed the course of adaptive evolution and generated great variation in the genomic GC. This highlights the importance of indirect effects of natural selection, which indicates a new model for bacterial evolution. IMPORTANCE GC content has been shown to be an important factor in microbial ecology and evolution, and the genomic GC of bacteria can be characterized by great intergenomic heterogeneity, high intragenomic homogeneity, and strong phylogenetic inertia, as well as being associated with the environment. Current hypotheses concerning direct selection or mutational biases cannot well explain these features simultaneously. Our findings of the genomic GC showing that ancient adaptations have transformed the DRR system and that the resulting mutational biases further contributed to a bimodal distribution of it offer a more reasonable scenario for the mechanism. This would imply that, when thinking about the evolution of life, diverse processes of adaptation exist, and combined effects of natural selection should be considered.
Collapse
Affiliation(s)
- Wenkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Aguilera-Torres C, Riveros G, Morales LV, Sierra-Almeida A, Schoebitz M, Hasbún R. Relieving your stress: PGPB associated with Andean xerophytic plants are most abundant and active on the most extreme slopes. Front Microbiol 2023; 13:1062414. [PMID: 36741893 PMCID: PMC9889642 DOI: 10.3389/fmicb.2022.1062414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Plants interact with plant growth-promoting bacteria (PGPB), especially under stress condition in natural and agricultural systems. Although a potentially beneficial microbiome has been found associated to plants from alpine systems, this plant- PGPB interaction has been scarcely studied. Nevados de Chillán Complex hold one of the southernmost xerophytic formations in Chile. Plant species living there have to cope with drought and extreme temperatures during the growing season period, microclimatic conditions that become harsher on equatorial than polar slopes, and where the interaction with PGPB could be key for plant survival. Our goal was to study the abundance and activity of different PGPB associated to two abundant plant species of Andean xerophytic formations on contrasting slopes. Methods Twenty individuals of Berberis empetrifolia and Azorella prolifera shrubs were selected growing on a north and south slope nearby Las Fumarolas, at 2,050 m elevation. On each slope, microclimate based on temperature and moisture conditions were monitored throughout the growing period (oct. - apr.). Chemical properties of the soil under plant species canopies were also characterized. Bacterial abundance was measured as Log CFU g-1 from soil samples collected from each individual and slope. Then, the most abundant bacterial colonies were selected, and different hormonal (indoleacetic acid) and enzymatic (nitrogenase, phosphatase, ACC-deaminase) mechanisms that promote plant growth were assessed and measured. Results and Discussion Extreme temperatures were observed in the north facing slope, recording the hottest days (41 vs. 36°C) and coldest nights (-9.9 vs. 6.6°C). Moreover, air and soil moisture were lower on north than on south slope, especially late in the growing season. We found that bacterial abundance was higher in soils on north than on south slope but only under B. empetrifolia canopy. Moreover, the activity of plant growth-promoting mechanisms varied between slopes, being on average higher on north than on south slope, but with plant species-dependent trends. Our work showed how the environmental heterogeneity at microscale in alpine systems (slope and plant species identity) underlies variations in the abundance and plant growth promoting activity of the microorganisms present under the plant canopy of the Andean xerophytic formations and highlight the importance of PGPB from harsh systems as biotechnological tools for restoration.
Collapse
Affiliation(s)
- Carla Aguilera-Torres
- Grupo de Ecofisiología Térmica, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Universidad de Concepción, Concepción, Chile,Cape Horn International Center (CHIC), Puerto Williams, Chile,Rizoma, Centro de Estudios Agroecológicos y Botánicos, Valparaíso, Chile
| | - Gustavo Riveros
- Laboratorio de Microbiología de Suelos, Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Loreto V. Morales
- Grupo de Ecofisiología Térmica, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Universidad de Concepción, Concepción, Chile,Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Angela Sierra-Almeida
- Grupo de Ecofisiología Térmica, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Universidad de Concepción, Concepción, Chile,Cape Horn International Center (CHIC), Puerto Williams, Chile,*Correspondence: Angela Sierra-Almeida,
| | - Mauricio Schoebitz
- Laboratorio de Microbiología de Suelos, Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile,Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Hasbún
- Laboratorio de Epigenética Vegetal, Facultad de Ciencias Forestales, Departamento de Silvicultura, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
15
|
Wang X, Yu Z, Shen G, Cheng H, Tao S. Distribution of microbial communities in seasonally frozen soil layers on the Tibetan Plateau and the driving environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1919-1937. [PMID: 35925461 DOI: 10.1007/s11356-022-22283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Large stocks of carbon and nitrogen stored in permafrost regions can potentially feed back to global biogeochemical cycles under climate warming. To understand the response of microbial communities to environmental changes, this study investigated the spatial distribution of bacterial communities in the upper layers (0-10, 10-20, and 20-30 cm) of seasonally frozen soil on the Tibetan Plateau and their relationships with the environmental factors. A total of 135 soil samples were collected from the soils at depths of 0-10, 10-20, and 20-30 cm in the Lhasa River and Nyang River basins, and the diversity and composition of bacterial communities in them were identified by high-throughput 16S rRNA gene sequencing. Bacterial diversity changed significantly with soil depth in the Nyang River basin (p < 0.001), while no obvious change was found in the Lhasa River basin. The whole bacterial composition exhibited small variations across different soil layers (p > 0.05). The relative abundance of aerobic bacteria, Sphingomonas and Arthrobacter, decreased with soil depth, while that of the other aerobic, facultative anaerobic, and anaerobic bacteria did not exhibit this trend. Soil pH was the key driving edaphic factor of the whole bacterial composition in all three depth layers, while vegetation also had an important influence on bacterial composition. Arthrobacter, Bradyrhizobium, and Bacillus had obvious correlations with soil nutrients or vegetation, while the other species were not significantly correlated with any environmental factors. Structural equation modeling revealed that vegetation and mean annual temperature had a key direct impact on the bacterial diversity and composition, respectively. Climate also indirectly affected bacterial communities, mainly through shaping soil pH and vegetation. These results indicate that the soil depth has a different impact on the bacterial α-diversity, whole bacterial composition, and specific taxa in the 0-30-cm surface layers of seasonally frozen soil, which were mainly determined by various environmental factors.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Liu Y, Zhang Y, Huang Y, Niu J, Huang J, Peng X, Peng F. Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4-2, a strain obtained from Antarctica. Front Microbiol 2023; 14:1040201. [PMID: 36876078 PMCID: PMC9975570 DOI: 10.3389/fmicb.2023.1040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
According to average nucleotide identity (ANI) analysis of the complete genomes, strain 24S4-2 isolated from Antarctica is considered as a potential novel Arthrobacter species. Arthrobacter sp. 24S4-2 could grow and produce ammonium in nitrate or nitrite or even nitrogen free medium. Strain 24S4-2 was discovered to accumulate nitrate/nitrite and subsequently convert nitrate to nitrite intracellularly when incubated in a nitrate/nitrite medium. In nitrogen-free medium, strain 24S4-2 not only reduced the accumulated nitrite for growth, but also secreted ammonia to the extracellular under aerobic condition, which was thought to be linked to nitrite reductase genes nirB, nirD, and nasA by the transcriptome and RT-qPCR analysis. A membrane-like vesicle structure was detected in the cell of strain 24S4-2 by transmission electron microscopy, which was thought to be the site of intracellular nitrogen supply accumulation and conversion. This spatial and temporal conversion process of nitrogen source helps the strain maintain development in the absence of nitrogen supply or a harsh environment, which is part of its adaption strategy to the Antarctic environment. This process may also play an important ecological role, that other bacteria in the environment would benefit from its extracellular nitrogen source secretion and nitrite consumption characteristics.
Collapse
Affiliation(s)
- Yixuan Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yudi Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing Niu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoya Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp. Catalysts 2022. [DOI: 10.3390/catal12111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important pollutant widely discharged as a component of hydrocarbon fuels, but its degradation in cold regions is challenging due to the harsh environmental conditions. To date, there is little information available concerning the capability for phenol biodegradation by indigenous Antarctic bacteria. In this study, enzyme activities and genes encoding phenol degradative enzymes identified using whole genome sequencing (WGS) were investigated to determine the pathway(s) of phenol degradation of Arthrobacter sp. strains AQ5-05 and AQ5-06, originally isolated from Antarctica. Complete phenol degradative genes involved only in the ortho-cleavage were detected in both strains. This was validated using assays of the enzymes catechol 1,2-dioxygenase and catechol 2,3-dioxygenase, which indicated the activity of only catechol 1,2-dioxygenase in both strains, in agreement with the results from the WGS. Both strains were psychrotolerant with the optimum temperature for phenol degradation, being between 10 and 15 °C. This study suggests the potential use of cold-adapted bacteria in the bioremediation of phenol pollution in cold environments.
Collapse
|
18
|
Complete Genome Sequencing of Polar Arthrobacter sp. PAMC25284, Copper Tolerance Potential Unraveled with Genomic Analysis. Int J Microbiol 2022; 2022:1162938. [PMID: 36061879 PMCID: PMC9436591 DOI: 10.1155/2022/1162938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
The genus Arthrobacter is a known group of Gram-positive, opportunistic pathogenic bacteria from cold climates, with members that are believed to play a variety of roles at low temperatures. However, their survival mechanisms in frigid environments like the Antarctic are still unknown. We identified a species of Arthrobacter isolated from seawater in the polar region using 16S rRNA sequence analysis. The strain PAMC25284 genome consists of a circular chromosome with a GC content of 65.6% and is projected to contain 3,588 genes, of which 3,150 are protein coding, 366 are pseudogenes, 19 are rRNA coding, and 50 are tRNA coding genes. Using comparative genomics, we showed that PMAC25284 has copper-transporting ATPases, copper chaperone, copper-responsive transcriptional regulator, and multi-copper oxidase domains, which are found in both Gram-positive (like Mycobacterium tuberculosis and Enterococcus hirae) and Gram-negative bacteria (like E. coli and Pseudomonas aeruginosa). The existence of 4 multi-copper oxidase genes, which supplied an additional copper defense mechanism, could be intriguing information regarding Gram-positive bacteria such as Arthrobacter sp. PAMC25284. In addition, our strain PAMC25284 has the same MmcO gene as M. tuberculosis, with a locus tag KY499_RS04055 similarity of 40.61%, which is the highest among the Gram-positive and Gram-negative bacteria studied for this gene. Our cold-adapted Arthrobacter sp. strain PAMC25564 was published previously but did not contain a multi-copper oxidase domain-containing gene, but strain PAMC25284 was studied in this study.
Collapse
|
19
|
Yang G, Wang Y, Fang Y, An J, Hou X, Lu J, Zhu R, Liu S. A Novel Potent Crystalline Chitin Decomposer: Chitin Deacetylase from Acinetobacter schindleri MCDA01. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165345. [PMID: 36014581 PMCID: PMC9416191 DOI: 10.3390/molecules27165345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Chitosan is a functional ingredient that is widely used in food chemistry as an emulsifier, flocculant, antioxidant, or preservative. Chitin deacetylases (CDAs) can catalyze the hydrolysis of acetyl groups, making them useful in the clean production of chitosan. However, the high inactivity of crystalline chitin catalyzed by CDAs has been regarded as the technical bottleneck of crystalline chitin deacetylation. Here, we mined the AsCDA gene from the genome of Acinetobacter schindleri MCDA01 and identified a member of the uraD_N-term-dom superfamily, which was a novel chitin deacetylase with the highest deacetylation activity. The AsCDA gene was expressed in Escherichia coli BL21 by IPTG induction, whose activity to colloidal chitin, α-chitin, and β-chitin reached 478.96 U/mg, 397.07 U/mg, and 133.27 U/mg, respectively. In 12 h, the enzymatic hydrolysis of AsCDA removed 63.05% of the acetyl groups from α-chitin to prepare industrial chitosan with a degree of deacetylation higher than 85%. AsCDA, as a potent chitin decomposer in the production of chitosan, plays a positive role in the upgrading of the chitosan industry and the value-added utilization of chitin biological resources.
Collapse
Affiliation(s)
- Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuhan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jia An
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongjun Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: ; Tel./Fax: +86-05-15861246008
| |
Collapse
|
20
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Insights from cyanobacterial genomic and transcriptomic analyses into adaptation strategies in terrestrial environments. Genomics 2022; 114:110438. [PMID: 35902068 DOI: 10.1016/j.ygeno.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Phylogenomic analysis of Nostoc sp. MG11, a terrestrial cyanobacterium, and some terrestrial and freshwater Nostoc strains showed that the terrestrial strains grouped together in a distinctive clade, which reveals the effect of habitat on shaping Nostoc genomes. Terrestrial strains showed larger genomes and had higher predicted CDS contents than freshwater strains. Comparative genomic analysis demonstrated that genome expansion in the terrestrial Nostoc is supported by an increase in copy number of the core genes and acquisition of shared genes. Transcriptomic profiling analysis under desiccation stress revealed that Nostoc sp. MG11 protected its cell by induction of catalase, proteases, sucrose synthase, trehalose biosynthesis and maltodextrin utilization genes and maintained its normal metabolism during this condition by up-regulation of genes related to phycobilisomes and light reactions of photosynthesis, CO2 fixation and protein metabolism. These results provide insights into the strategies related to survival and adaptation of Nostoc strains to terrestrial environments.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
21
|
Yang X, Bao Y, Shao T, Wang W, Ma P, Wang W, Gallo A, Yuan X. Altitudinal Distribution Patterns of Phyllosphere Microbial Communities and Their Contribution to Silage Fermentation of Kobresia pygmaea Along the Elevation Gradient on the Tibetan Plateau. Front Microbiol 2022; 13:874582. [PMID: 35685941 PMCID: PMC9173736 DOI: 10.3389/fmicb.2022.874582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
The study aimed to reveal altitudinal distribution patterns of phyllosphere microbial communities and silage fermentation of Kobresia pygmaea along the elevation gradient on the Tibetan Plateau. The K. pygmaea was individually collected from 2,500, 3,000, 4,000, 4,500, and 5,000 m above sea level (a.s.l.) on the Tibetan Plateau and ensiled for 60 days, respectively. The phyllosphere bacterial diversity increased while fungal diversity decreased along the elevation gradient, and bacterial and fungal richness showed a unimodal distribution with peak abundance at 4,000 and 3,000 m a.s.l., respectively. After 60 days of ensiling, the bacterial and fungal community composition changed but did not exhibit clear altitudinal distribution patterns. All K. pygmaea underwent a weak fermentation indicated by pH above 5.0 and low ratio of lactic/acetic acid (LA/AA). The S5000 and S3000 showed the highest and lowest pH, respectively. Although Lactobacillus dominated S4000 after 60 days of ensiling, S4000 still exhibited poor fermentation quality as well as silages from the other four regions. The higher ammonia N concentrations in S3000 and S4000 than the other silages were consistent with the detectable butyric acid in S3000 and S4000. The silage fermentation of K. pygmaea collected from five regions exhibited poor fermentation quality, thereby inoculating lactic acid bacteria to K. pygmaea before ensiling is highly recommended to improve fermentation quality on the Tibetan Plateau.
Collapse
Affiliation(s)
- Xin Yang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yuhong Bao
- State Key Laboratory of Germplasm Resources and Genetic Improvement of Tibetan Barley and Yak, Lhasa, China
- Institute of Grass Science, TAR Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Wenkang Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Pengfei Ma
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Wenbo Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Highly specialized bacterial communities within three distinct rhizocompartments of Antarctic hairgrass (Deschampsia antarctica Desv.). Polar Biol 2022. [DOI: 10.1007/s00300-022-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Gushgari-Doyle S, Lui LM, Nielsen TN, Wu X, Malana RG, Hendrickson AJ, Carion H, Poole FL, Adams MWW, Arkin AP, Chakraborty R. Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions. ISME COMMUNICATIONS 2022; 2:32. [PMID: 37938300 PMCID: PMC9723602 DOI: 10.1038/s43705-022-00113-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 07/04/2023]
Abstract
Niche environmental conditions influence both the structure and function of microbial communities and the cellular function of individual strains. The terrestrial subsurface is a dynamic and diverse environment that exhibits specific biogeochemical conditions associated with depth, resulting in distinct environmental niches. Here, we present the characterization of seven distinct strains belonging to the genus Arthrobacter isolated from varying depths of a single sediment core and associated groundwater from an adjacent well. We characterized genotype and phenotype of each isolate to connect specific cellular functions and metabolisms to ecotype. Arthrobacter isolates from each ecotype demonstrated functional and genomic capacities specific to their biogeochemical conditions of origin, including laboratory-demonstrated characterization of salinity tolerance and optimal pH, and genes for utilization of carbohydrates and other carbon substrates. Analysis of the Arthrobacter pangenome revealed that it is notably open with a volatile accessory genome compared to previous pangenome studies on other genera, suggesting a high potential for adaptability to environmental niches.
Collapse
Affiliation(s)
| | - Lauren M Lui
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Xiaoqin Wu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ria G Malana
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Heloise Carion
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California, Berkeley, CA, USA
| | | |
Collapse
|
24
|
Jiang X, Van Horn DJ, Okie JG, Buelow HN, Schwartz E, Colman DR, Feeser KL, Takacs-Vesbach CD. Limits to the three domains of life: lessons from community assembly along an Antarctic salinity gradient. Extremophiles 2022; 26:15. [PMID: 35296937 DOI: 10.1007/s00792-022-01262-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Extremophiles exist among all three domains of life; however, physiological mechanisms for surviving harsh environmental conditions differ among Bacteria, Archaea and Eukarya. Consequently, we expect that domain-specific variation of diversity and community assembly patterns exist along environmental gradients in extreme environments. We investigated inter-domain community compositional differences along a high-elevation salinity gradient in the McMurdo Dry Valleys, Antarctica. Conductivity for 24 soil samples collected along the gradient ranged widely from 50 to 8355 µS cm-1. Taxonomic richness varied among domains, with a total of 359 bacterial, 2 archaeal, 56 fungal, and 69 non-fungal eukaryotic operational taxonomic units (OTUs). Richness for bacteria, archaea, fungi, and non-fungal eukaryotes declined with increasing conductivity (all P < 0.05). Principal coordinate ordination analysis (PCoA) revealed significant (ANOSIM R = 0.97) groupings of low/high salinity bacterial OTUs, while OTUs from other domains were not significantly clustered. Bacterial beta diversity was unimodally distributed along the gradient and had a nested structure driven by species losses, whereas in fungi and non-fungal eukaryotes beta diversity declined monotonically without strong evidence of nestedness. Thus, while increased salinity acts as a stressor in all domains, the mechanisms driving community assembly along the gradient differ substantially between the domains.
Collapse
Affiliation(s)
- Xiaoben Jiang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David J Van Horn
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Heather N Buelow
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Egbert Schwartz
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Daniel R Colman
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kelli L Feeser
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | |
Collapse
|
25
|
Comparative Genomic Analyses of the Genus Nesterenkonia Unravels the Genomic Adaptation to Polar Extreme Environments. Microorganisms 2022; 10:microorganisms10020233. [PMID: 35208688 PMCID: PMC8875376 DOI: 10.3390/microorganisms10020233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Nesterenkonia genus have been isolated from various habitats, like saline soil, salt lake, sponge-associated and the human gut, some of which are even located in polar areas. To identify their stress resistance mechanisms and draw a genomic profile across this genus, we isolated four Nesterenkonia strains from the lakes in the Tibetan Plateau, referred to as the third pole, and compared them with all other 30 high-quality Nesterenkonia genomes that are deposited in NCBI. The Heaps’ law model estimated that the pan-genome of this genus is open and the number of core, shell, cloud, and singleton genes were 993 (6.61%), 2782 (18.52%), 4117 (27.40%), and 7132 (47.47%), respectively. Phylogenomic and ANI/AAI analysis indicated that all genomes can be divided into three main clades, named NES-1, NES-2, and NES-3. The strains isolated from lakes in the Tibetan Plateau were clustered with four strains from different sources in the Antarctic and formed a subclade within NES-2, described as NES-AT. Genome features of this subclade, including GC (guanine + cytosine) content, tRNA number, carbon/nitrogen atoms per residue side chain (C/N-ARSC), and amino acid composition, in NES-AT individuals were significantly different from other strains, indicating genomic adaptation to cold, nutrient-limited, osmotic, and ultraviolet conditions in polar areas. Functional analysis revealed the enrichment of specific genes involved in bacteriorhodopsin synthesis, biofilm formation, and more diverse nutrient substance metabolism genes in the NES-AT clade, suggesting potential adaptation strategies for energy metabolism in polar environments. This study provides a comprehensive profile of the genomic features of the Nesterenkonia genus and reveals the possible mechanism for the survival of Nesterenkonia isolates in polar areas.
Collapse
|
26
|
Cold-adapted chitinases from Antarctic bacteria: Taxonomic assessment and enzyme production optimization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Shen L, Liu Y, Allen MA, Xu B, Wang N, Williams TJ, Wang F, Zhou Y, Liu Q, Cavicchioli R. Linking genomic and physiological characteristics of psychrophilic Arthrobacter to metagenomic data to explain global environmental distribution. MICROBIOME 2021; 9:136. [PMID: 34118971 PMCID: PMC8196931 DOI: 10.1186/s40168-021-01084-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microorganisms drive critical global biogeochemical cycles and dominate the biomass in Earth's expansive cold biosphere. Determining the genomic traits that enable psychrophiles to grow in cold environments informs about their physiology and adaptive responses. However, defining important genomic traits of psychrophiles has proven difficult, with the ability to extrapolate genomic knowledge to environmental relevance proving even more difficult. RESULTS Here we examined the bacterial genus Arthrobacter and, assisted by genome sequences of new Tibetan Plateau isolates, defined a new clade, Group C, that represents isolates from polar and alpine environments. Group C had a superior ability to grow at -1°C and possessed genome G+C content, amino acid composition, predicted protein stability, and functional capacities (e.g., sulfur metabolism and mycothiol biosynthesis) that distinguished it from non-polar or alpine Group A Arthrobacter. Interrogation of nearly 1000 metagenomes identified an over-representation of Group C in Canadian permafrost communities from a simulated spring-thaw experiment, indicative of niche adaptation, and an under-representation of Group A in all polar and alpine samples, indicative of a general response to environmental temperature. CONCLUSION The findings illustrate a capacity to define genomic markers of specific taxa that potentially have value for environmental monitoring of cold environments, including environmental change arising from anthropogenic impact. More broadly, the study illustrates the challenges involved in extrapolating from genomic and physiological data to an environmental setting. Video Abstract.
Collapse
Affiliation(s)
- Liang Shen
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Baiqing Xu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ninglian Wang
- College of Urban and Environmental Science, Northwest University, Xian, 710069, China
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
28
|
Moreno-Pino M, Ugalde JA, Valdés JH, Rodríguez-Marconi S, Parada-Pozo G, Trefault N. Bacteria Isolated From the Antarctic Sponge Iophon sp. Reveals Mechanisms of Symbiosis in Sporosarcina, Cellulophaga, and Nesterenkonia. Front Microbiol 2021; 12:660779. [PMID: 34177840 PMCID: PMC8222686 DOI: 10.3389/fmicb.2021.660779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Antarctic sponges harbor a diverse range of microorganisms that perform unique metabolic functions for nutrient cycles. Understanding how microorganisms establish functional sponge-microbe interactions in the Antarctic marine ecosystem provides clues about the success of these ancient animals in this realm. Here, we use a culture-dependent approach and genome sequencing to investigate the molecular determinants that promote a dual lifestyle in three bacterial genera Sporosarcina, Cellulophaga, and Nesterenkonia. Phylogenomic analyses showed that four sponge-associated isolates represent putative novel bacterial species within the Sporosarcina and Nesterenkonia genera and that the fifth bacterial isolate corresponds to Cellulophaga algicola. We inferred that isolated sponge-associated bacteria inhabit similarly marine sponges and also seawater. Comparative genomics revealed that these sponge-associated bacteria are enriched in symbiotic lifestyle-related genes. Specific adaptations related to the cold Antarctic environment are features of the bacterial strains isolated here. Furthermore, we showed evidence that the vitamin B5 synthesis-related gene, panE from Nesterenkonia E16_7 and E16_10, was laterally transferred within Actinobacteria members. Together, these findings indicate that the genomes of sponge-associated strains differ from other related genomes based on mechanisms that may contribute to the life in association with sponges and the extreme conditions of the Antarctic environment.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Juan A. Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Jorge H. Valdés
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Susana Rodríguez-Marconi
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| |
Collapse
|
29
|
Mukhia S, Khatri A, Acharya V, Kumar R. Comparative genomics and molecular adaptational analysis of Arthrobacter from Sikkim Himalaya provided insights into its survivability under multiple high-altitude stress. Genomics 2020; 113:151-158. [PMID: 33279649 DOI: 10.1016/j.ygeno.2020.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Arthrobacter is a dominant aerobic bacterium under the class Actinobacteria, known for its nutritionally versatile nature and wide prevalence in stressful environments. In the current study representative two strains of Arthrobacter, ERGS1:01 and ERGS4:06, with efficient survivability under high altitude stress conditions were selected for comparative genomic studies with their mesophilic counterparts. Physiological analysis and genome insights supported the survival of these strains under multiple high-altitude stress conditions. Molecular cold-adaptation and substitution analysis of the studied strains supported the incidence of more cold-adapted proteins for functionality at low temperatures. Studied strains preferred amino acids like serine, asparagine, lysine, tryptophan for favoring increased flexibility supporting their broad temperature survivability. To the best of our knowledge, this is the first molecular cold adaptation analysis performed for the genus Arthrobacter and has revealed that 'aromaticity', one of the cold-adaptor indicators, should be carefully considered while evaluating cold adaptation strategies in psychrotrophic/psychrophilic bacteria.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, India; Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Abhishek Khatri
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, India.
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, India.
| |
Collapse
|
30
|
Genome-scale reconstruction of Paenarthrobacter aurescens TC1 metabolic model towards the study of atrazine bioremediation. Sci Rep 2020; 10:13019. [PMID: 32747737 PMCID: PMC7398907 DOI: 10.1038/s41598-020-69509-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
Atrazine is an herbicide and a pollutant of great environmental concern that is naturally biodegraded by microbial communities. Paenarthrobacter aurescens TC1 is one of the most studied degraders of this herbicide. Here, we developed a genome scale metabolic model for P. aurescens TC1, iRZ1179, to study the atrazine degradation process at organism level. Constraint based flux balance analysis and time dependent simulations were used to explore the organism’s phenotypic landscape. Simulations aimed at designing media optimized for supporting growth and enhancing degradation, by passing the need in strain design via genetic modifications. Growth and degradation simulations were carried with more than 100 compounds consumed by P. aurescens TC1. In vitro validation confirmed the predicted classification of different compounds as efficient, moderate or poor stimulators of growth. Simulations successfully captured previous reports on the use of glucose and phosphate as bio-stimulators of atrazine degradation, supported by in vitro validation. Model predictions can go beyond supplementing the medium with a single compound and can predict the growth outcomes for higher complexity combinations. Hence, the analysis demonstrates that the exhaustive power of the genome scale metabolic reconstruction allows capturing complexities that are beyond common biochemical expertise and knowledge and further support the importance of computational platforms for the educated design of complex media. The model presented here can potentially serve as a predictive tool towards achieving optimal biodegradation efficiencies and for the development of ecologically friendly solutions for pollutant degradation.
Collapse
|
31
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
32
|
Abstract
Arthrobacter phage Scuttle was isolated by enrichment from a dry soil sample (collected in Upper Darby, Pennsylvania) on host Arthrobacter sp. ATCC 21022. The genome of this phage is 43,729 bp long, has a GC content of 61.1%, and has 61 annotated protein-coding genes. Arthrobacter phage Scuttle was isolated by enrichment from a dry soil sample (collected in Upper Darby, Pennsylvania) on host Arthrobacter sp. ATCC 21022. The genome of this phage is 43,729 bp long, has a GC content of 61.1%, and has 61 annotated protein-coding genes.
Collapse
|
33
|
Genome Sequences of Arthrobacter sp. Phages Inspire2, Ronnie, Hunnie, DeWayne, CGermain, Copper, Azathoth, and Arby. Microbiol Resour Announc 2019; 8:8/27/e00575-19. [PMID: 31270200 PMCID: PMC6606914 DOI: 10.1128/mra.00575-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Eight siphoviral phages isolated from various soil types and locations in southwestern Pennsylvania using Arthrobacter sp. strain ATCC 21022 were sequenced. The phages all have relatively small genomes, with each genome containing 15,556 bp. All 8 phages are closely related to previously described cluster AN Arthrobacter phages (K. K. Klyczek, J. A. Bonilla, D. Jacobs-Sera, T. L. Eight siphoviral phages isolated from various soil types and locations in southwestern Pennsylvania using Arthrobacter sp. strain ATCC 21022 were sequenced. The phages all have relatively small genomes, with each genome containing 15,556 bp. All 8 phages are closely related to previously described cluster AN Arthrobacter phages (K. K. Klyczek, J. A. Bonilla, D. Jacobs-Sera, T. L. Adair, et al., PLoS One 12:e0180517, 2017, https://doi.org/10.1371/journal.pone.0180517; J. Y. Lee-Soety, S. Bhatt, T. L. Adair, J. A. Bonilla, et al., Genome Announc 5:e01092-17, 2017, https://doi.org/10.1128/genomeA.01092-17).
Collapse
|
34
|
Heavy metal resistance genes and plasmid-mediated quinolone resistance genes in Arthrobacter sp. isolated from Brazilian soils. Antonie van Leeuwenhoek 2019; 112:1553-1558. [PMID: 31129890 DOI: 10.1007/s10482-019-01281-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Arthrobacter sp. are Gram-positive bacilli commonly obtained from soil and in the hospital environment. These species have been reported to cause several types of infection. Heavy metals are a threat to the ecological system due to their high-levels of toxicity and the fluoroquinolones are antimicrobials widely used for the treatment of different bacterial infections. The aim of this study was to investigate the resistance to fluoroquinolone and heavy metals, the presence of plasmid-mediated resistance (PMQR) genes and heavy metals resistance (HMR) genes and the presence of plasmids in Arthrobacter sp. obtained from Brazilian soils. Bacterial isolation was performed using soil samples from different Brazilian regions. The bacterial identification was performed by 16S rRNA gene sequencing. The resistance profile for fluoroquinolones and heavy metals was determined by MIC. Several PMQR and HMR genes and plasmid families were investigated by PCR. Eight isolates were obtained from soil samples from different cultivations and regions of Brazil. All isolates were resistant to all fluoroquinolones, cadmium, cobalt and zinc and the majority to copper. Among the PMQR genes, the qepA (4) was the most prevalent, followed by qnrS (3), qnrB (3), oqxB (2) and oqxA (1). Among the HMR genes, the copA was detected in all isolates and the czcA in two isolates. The replication origin of the ColE-like plasmid was detected in all isolates; however, no plasmid was detected by extraction. The association of resistance to heavy metals and antimicrobials is a threat to the environmental balance and to human health. There are no studies reporting the association of PMQR and HMR genes in bacteria belonging to the genus Arthrobacter. To the best of our knowledge, this is the first report of qnrB, qepA, oqxA and oqxB in Arthrobacter species.
Collapse
|
35
|
Liu Q, Liu HC, Zhou YG, Xin YH. Microevolution and Adaptive Strategy of Psychrophilic Species Flavobacterium bomense sp. nov. Isolated From Glaciers. Front Microbiol 2019; 10:1069. [PMID: 31178833 PMCID: PMC6538692 DOI: 10.3389/fmicb.2019.01069] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous mountain glaciers located on the Tibetan Plateau are inhabited by abundant microorganisms. The microorganisms on the glacier surface are exposed to the cold, barren, and high-ultraviolet radiation environments. Although the microbial community composition on glaciers has been revealed by high-throughput sequencing, little is known about the microevolution and adaptive strategy of certain bacterial populations. In this study, we used a polyphasic approach to determine the taxonomic status of 11 psychrophilic Flavobacterium strains isolated from glaciers on the Tibetan Plateau and performed a comparative genomic analysis. The phylogenetic tree based on the concatenated single-copy gene sequences showed the 11 strains clustered together, forming a distinct and novel clade in the genus Flavobacterium. The average nucleotide identity (ANI) values among these strains were higher than 96%. However, the values much lower than 90% between them and related species indicated that they represent a novel species and the name Flavobacterium bomense sp. nov. is proposed. The core and accessory genomes of strains in this new Flavobacterium species showed diverse distinct patterns of gene content and metabolism pathway. In order to infer the driving evolutionary forces of the core genomes, homologous recombination was found to contribute twice as much to nucleotide substitutions as mutations. A series of genes encoding proteins with known or predicted roles in cold adaptation were found in their genomes, for example, cold-shock protein, proteorhodopsin, osmoprotection, and membrane-related proteins. A comparative analysis of the group with optimal growth temperature (OGT) ≤ 20°C and the group with OGT > 20°C of the 32 Flavobacterium type strains and 11 new strains revealed multiple amino acid substitutions, including the decrease of the proline and glutamine content and the increase of the methionine and isoleucine content in the group with OGT ≤ 20°C, which may contribute to increased protein flexibility at low temperatures. Thus, this study discovered a novel Flavobacterium species in glaciers, which has high intraspecific diversity and multiple adaptation mechanisms that enable them to cope and thrive in extreme habitats.
Collapse
Affiliation(s)
- Qing Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Hua Xin
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 2019; 103:2537-2549. [PMID: 30719551 PMCID: PMC6443599 DOI: 10.1007/s00253-019-09631-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
37
|
Marizcurrena JJ, Cerdá MF, Alem D, Castro-Sowinski S. Living with Pigments: The Colour Palette of Antarctic Life. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Romaniuk K, Golec P, Dziewit L. Insight Into the Diversity and Possible Role of Plasmids in the Adaptation of Psychrotolerant and Metalotolerant Arthrobacter spp. to Extreme Antarctic Environments. Front Microbiol 2018; 9:3144. [PMID: 30619210 PMCID: PMC6305408 DOI: 10.3389/fmicb.2018.03144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Arthrobacter spp. are coryneform Gram-positive aerobic bacteria, belonging to the class Actinobacteria. Representatives of this genus have mainly been isolated from soil, mud, sludge or sewage, and are usually mesophiles. In recent years, the presence of Arthrobacter spp. was also confirmed in various extreme, including permanently cold, environments. In this study, 36 psychrotolerant and metalotolerant Arthrobacter strains isolated from petroleum-contaminated soil from the King George Island (Antarctica), were screened for the presence of plasmids. The identified replicons were thoroughly characterized in order to assess their diversity and role in the adaptation of Arthrobacter spp. to harsh Antarctic conditions. The screening process identified 11 different plasmids, ranging in size from 8.4 to 90.6 kb. A thorough genomic analysis of these replicons detected the presence of numerous genes encoding proteins that potentially perform roles in adaptive processes such as (i) protection against ultraviolet (UV) radiation, (ii) resistance to heavy metals, (iii) transport and metabolism of organic compounds, (iv) sulfur metabolism, and (v) protection against exogenous DNA. Moreover, 10 of the plasmids carry genetic modules enabling conjugal transfer, which may facilitate their spread among bacteria in Antarctic soil. In addition, transposable elements were identified within the analyzed plasmids. Some of these elements carry passenger genes, which suggests that these replicons may be actively changing, and novel genetic modules of adaptive value could be acquired by transposition events. A comparative genomic analysis of plasmids identified in this study and other available Arthrobacter plasmids was performed. This showed only limited similarities between plasmids of Antarctic Arthrobacter strains and replicons of other, mostly mesophilic, isolates. This indicates that the plasmids identified in this study are novel and unique replicons. In addition, a thorough meta-analysis of 247 plasmids of psychrotolerant bacteria was performed, revealing the important role of these replicons in the adaptation of their hosts to extreme environments.
Collapse
Affiliation(s)
- Krzysztof Romaniuk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
39
|
Bendia AG, Araujo GG, Pulschen AA, Contro B, Duarte RTD, Rodrigues F, Galante D, Pellizari VH. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles 2018; 22:917-929. [PMID: 30109444 DOI: 10.1007/s00792-018-1048-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Polar volcanoes harbor unique conditions of extreme temperature gradients capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located at Maritime Antarctica that is notable for its pronounced temperature gradients over very short distances, reaching values up to 100 °C in the fumaroles, and subzero temperatures next to the glaciers. Due to these characteristics, Deception can be considered an interesting analogue of extraterrestrial environments. Our main goal in this study was to isolate thermophilic and psychrophilic bacteria from sediments associated with fumaroles and glaciers from two geothermal sites in Deception Island, comprising temperatures between 0 and 98 °C, and to evaluate their survivability to desiccation and UV-C radiation. Our results revealed that culturable thermophiles and psychrophiles were recovered among the extreme temperature gradient in Deception volcano, which indicates that these extremophiles remain alive even when the conditions do not comprise their growth range. The viability of culturable psychrophiles in hyperthermophilic environments is still poorly understood and our work showed the importance of future studies about their survival strategies in high temperatures. Finally, the spore-forming thermophilic isolates which we found have displayed good survival to desiccation and UV-C irradiation, which suggests their potential to be further explored in astrobiological studies.
Collapse
Affiliation(s)
- Amanda G Bendia
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil.
| | - Gabriel G Araujo
- Interunities Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Contro
- Undergraduate Program in Biology, Universidade Estadual Paulista "Julio de Mesquisa Filho", São Paulo, Brazil
| | - Rubens T D Duarte
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| | - Fábio Rodrigues
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
40
|
Field EK, Blaskovich JP, Peyton BM, Gerlach R. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate. JOURNAL OF HAZARDOUS MATERIALS 2018; 355:162-169. [PMID: 29800910 DOI: 10.1016/j.jhazmat.2018.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Arthrobacter spp. are widespread in soil systems and well-known for their Cr(VI) reduction capabilities making them attractive candidates for in situ bioremediation efforts. Cellulose drives carbon flow in soil systems; yet, most laboratory studies evaluate Arthrobacter-Cr(VI) interactions solely with nutrient-rich media or glucose. This study aims to determine how various cellulose degradation products and biostimulation substrates influence Cr(VI) toxicity, reduction, and microbial growth of an environmental Arthrobacter sp. isolate. Laboratory culture-based studies suggest there is a carbon-dependent Cr(VI) toxicity mechanism that affects subsequent Cr(VI) reduction by strain LLW01. Strain LLW01 could only grow in the presence of, and reduce, 50 μM Cr(VI) when glucose or lactate were provided. Compared to lactate, Cr(VI) was at least 30-fold and 10-fold more toxic when ethanol or butyrate was the sole carbon source, respectively. The addition of sulfate mitigated toxicity somewhat, but had no effect on the extent of Cr(VI) reduction. Cell viability studies indicated that a small fraction of cells were viable after 8 days suggesting cell growth and subsequent Cr(VI) reduction may resume. These results suggest when designing bioremediation strategies with Arthrobacter spp. such as strain LLW01, carbon sources such as glucose and lactate should be considered over ethanol and butyrate.
Collapse
Affiliation(s)
- Erin K Field
- Department of Biology, East Carolina University, Greenville, NC, 27858, United States; Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States.
| | - John P Blaskovich
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States
| | - Brent M Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States.
| |
Collapse
|
41
|
Aanderud ZT, Saurey S, Ball BA, Wall DH, Barrett JE, Muscarella ME, Griffin NA, Virginia RA, Barberán A, Adams BJ. Stoichiometric Shifts in Soil C:N:P Promote Bacterial Taxa Dominance, Maintain Biodiversity, and Deconstruct Community Assemblages. Front Microbiol 2018; 9:1401. [PMID: 30018601 PMCID: PMC6037766 DOI: 10.3389/fmicb.2018.01401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
Imbalances in C:N:P supply ratios may cause bacterial resource limitations and constrain biogeochemical processes, but the importance of shifts in soil stoichiometry are complicated by the nearly limitless interactions between an immensely rich species pool and a multiple chemical resource forms. To more clearly identify the impact of soil C:N:P on bacteria, we evaluated the cumulative effects of single and coupled long-term nutrient additions (i.e., C as mannitol, N as equal concentrations NH4+ and NO3-, and P as Na3PO4) and water on communities in an Antarctic polar desert, Taylor Valley. Untreated soils possessed relatively low bacterial diversity, simplified organic C sources due to the absence of plants, limited inorganic N, and excess soil P potentially attenuating links between C:N:P. After 6 years of adding resources, an alleviation of C and N colimitation allowed one rare Micrococcaceae, an Arthrobacter species, to dominate, comprising 47% of the total community abundance and elevating soil respiration by 136% relative to untreated soils. The addition of N alone reduced C:N ratios, elevated bacterial richness and diversity, and allowed rare taxa relying on ammonium and nitrite for metabolism to become more abundant [e.g., nitrite oxidizing Nitrospira species (Nitrosomonadaceae), denitrifiers utilizing nitrite (Gemmatimonadaceae) and members of Rhodobacteraceae with a high affinity for ammonium]. Based on community co-occurrence networks, lower C:P ratios in soils following P and CP additions created more diffuse and less connected communities by disrupting 73% of species interactions and selecting for taxa potentially exploiting abundant P. Unlike amended nutrients, water additions alone elicited no lasting impact on communities. Our results suggest that as soils become nutrient rich a wide array of outcomes are possible from species dominance and the deconstruction of species interconnectedness to the maintenance of biodiversity.
Collapse
Affiliation(s)
- Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Sabrina Saurey
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Becky A. Ball
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States
| | - Diana H. Wall
- Department of Biology, School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, United States
| | - John E. Barrett
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, United States
| | - Mario E. Muscarella
- Department of Plant Biology, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Natasha A. Griffin
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Ross A. Virginia
- Environmental Studies Program, Dartmouth College, Hanover, NH, United States
| | - Albert Barberán
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Byron J. Adams
- Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Department of Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
42
|
Ciok A, Budzik K, Zdanowski MK, Gawor J, Grzesiak J, Decewicz P, Gromadka R, Bartosik D, Dziewit L. Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers - Diversity and Role in Adaptation to Polar Environments. Front Microbiol 2018; 9:1285. [PMID: 29967598 PMCID: PMC6015842 DOI: 10.3389/fmicb.2018.01285] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers.
Collapse
Affiliation(s)
- Anna Ciok
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Budzik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marek K. Zdanowski
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
43
|
Bakermans C. Adaptations to marine versus terrestrial low temperature environments as revealed by comparative genomic analyses of the genus Psychrobacter. FEMS Microbiol Ecol 2018; 94:5032373. [DOI: 10.1093/femsec/fiy102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/27/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Corien Bakermans
- Division of Mathematics and Natural Sciences, Penn State Altoona, United States
| |
Collapse
|
44
|
Kumar R, Acharya V, Singh D, Kumar S. Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01. Stand Genomic Sci 2018; 13:11. [PMID: 29721151 PMCID: PMC5909252 DOI: 10.1186/s40793-018-0313-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum. The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.
Collapse
Affiliation(s)
- Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
45
|
Chitin Deacetylases: Structures, Specificities, and Biotech Applications. Polymers (Basel) 2018; 10:polym10040352. [PMID: 30966387 PMCID: PMC6415152 DOI: 10.3390/polym10040352] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Depolymerization and de-N-acetylation of chitin by chitinases and deacetylases generates a series of derivatives including chitosans and chitooligosaccharides (COS), which are involved in molecular recognition events such as modulation of cell signaling and morphogenesis, immune responses, and host-pathogen interactions. Chitosans and COS are also attractive scaffolds for the development of bionanomaterials for drug/gene delivery and tissue engineering applications. Most of the biological activities associated with COS seem to be largely dependent not only on the degree of polymerization but also on the acetylation pattern, which defines the charge density and distribution of GlcNAc and GlcNH₂ moieties in chitosans and COS. Chitin de-N-acetylases (CDAs) catalyze the hydrolysis of the acetamido group in GlcNAc residues of chitin, chitosan, and COS. The deacetylation patterns are diverse, some CDAs being specific for single positions, others showing multiple attack, processivity or random actions. This review summarizes the current knowledge on substrate specificity of bacterial and fungal CDAs, focusing on the structural and molecular aspects of their modes of action. Understanding the structural determinants of specificity will not only contribute to unravelling structure-function relationships, but also to use and engineer CDAs as biocatalysts for the production of tailor-made chitosans and COS for a growing number of applications.
Collapse
|
46
|
Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol 2018. [DOI: 10.1007/s00300-018-2300-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics 2018. [PMID: 29530765 DOI: 10.1016/j.ygeno.2018.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824 bp circular chromosome and a plasmid of 371,027 bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The molecular cold adaptation analysis in comparison with the genome of 15 mesophilic Pseudomonas species revealed functional insight into the strategies of cold adaptation. The genomic data also revealed the presence of industrially important enzymes.
Collapse
|
48
|
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases. Int J Mol Sci 2018; 19:ijms19020412. [PMID: 29385775 PMCID: PMC5855634 DOI: 10.3390/ijms19020412] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides.
Collapse
|
49
|
|
50
|
Zeng B, Zhao J, Guo W, Zhang S, Hua Y, Tang J, Kong F, Yang X, Fu L, Liao K, Yu X, Chen G, Jin L, Shuai S, Yang J, Si X, Ning R, Mishra S, Li Y. High-Altitude Living Shapes the Skin Microbiome in Humans and Pigs. Front Microbiol 2017; 8:1929. [PMID: 29056930 PMCID: PMC5635199 DOI: 10.3389/fmicb.2017.01929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
While the skin microbiome has been shown to play important roles in health and disease in several species, the effects of altitude on the skin microbiome and how high-altitude skin microbiomes may be associated with health and disease states remains largely unknown. Using 16S rRNA marker gene sequencing, we characterized the skin microbiomes of people from two racial groups (the Tibetans and the Hans) and of three local pig breeds (Tibetan pig, Rongchang pig, and Qingyu pig) at high and low altitudes. The skin microbial communities of low-altitude pigs and humans were distinct from those of high-altitude pigs and humans, with five bacterial taxa (Arthrobacter, Paenibacillus, Carnobacterium, and two unclassified genera in families Cellulomonadaceae and Xanthomonadaceae) consistently enriched in both pigs and humans at high altitude. Alpha diversity was also significantly lower in skin samples collected from individuals living at high altitude compared to individuals at low altitude. Several of the taxa unique to high-altitude humans and pigs are known extremophiles adapted to harsh environments such as those found at high altitude. Altogether our data reveal that altitude has a significant effect on the skin microbiome of pigs and humans.
Collapse
Affiliation(s)
- Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Wei Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yutong Hua
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingsi Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewu Yang
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Kun Liao
- Pasturage Station of Tongjiang Agriculture Bureau, Bazhong, China
| | - Xianqiong Yu
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Guohong Chen
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Long Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiandong Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Si
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ruihong Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sudhanshu Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|