1
|
Zou B, Zhang Q, Gan H, Qin Y, Zhou Y, Zhai X, Liang P. Long Noncoding RNA GAS5-Involved Progression of Neonatal Hydrocephalus and Inflammatory Responses. Mol Biotechnol 2025; 67:661-672. [PMID: 38429624 DOI: 10.1007/s12033-024-01077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Intraventricular hemorrhage results in posthemorrhagic hydrocephalus (PHH). Neonatal hydrocephalus remains a challenging disease due to the high failure rate of all management strategies. We evaluated long noncoding RNA growth arrest-specific 5 (GAS5)-mediated network in neonatal hydrocephalus, providing a new direction for the treatment of hydrocephalus. The PHH model was constructed in neonatal rats after intracerebroventricular injection with GAS5, miR-325-3p, and chaperonin containing T-complex protein 1, subunit 8 (CCT8) plasmids, or oligonucleotides. Next, behavioral tests, measurement of serum inflammation, observation of brain tissue pathology, and calculation of hemoglobin and brain water contents were implemented. GAS5, miR-325-3p, and CCT8 expression, in combination with their interactions, was checked. As the results reported, collagenase infusion induced hydrocephalus, impairing neurological function, enhancing inflammation and neuronal apoptosis, and increasing hemoglobin and brain water contents. GAS5 and CCT8 were up-regulated, while miR-325-3p was down-regulated in hydrocephalic rats. Downregulating GAS5/CCT8 or upregulating miR-325-3p could inhibit inflammatory response and improve neurological function in young hydrocephalic rats. GAS5 promotes CCT8 expression through sponge adsorption of miR-325-3p. GAS5 silencing-mediated protections against hydrocephalus were counteracted by CCT8 overexpression. In summary, GAS5 aggravates neonatal hydrocephalus and inflammatory responses in a way of leasing miR-325-3p-involved regulation of CCT8.
Collapse
Affiliation(s)
- Bin Zou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Qin Zhang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing City, 401122, China
| | - Hui Gan
- Chongqing Medical University, Chongqing City, 400016, China
| | - Yue Qin
- Chongqing Medical University, Chongqing City, 400016, China
| | - Yudong Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China.
| |
Collapse
|
2
|
Wang WX, Springer JE, Hatton KW. MicroRNAs as Biomarkers for Predicting Complications following Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22179492. [PMID: 34502401 PMCID: PMC8431281 DOI: 10.3390/ijms22179492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a high mortality hemorrhagic stroke that affects nearly 30,000 patients annually in the United States. Approximately 30% of aSAH patients die during initial hospitalization and those who survive often carry poor prognosis with one in five having permanent physical and/or cognitive disabilities. The poor outcome of aSAH can be the result of the initial catastrophic event or due to the many acute or delayed neurological complications, such as cerebral ischemia, hydrocephalus, and re-bleeding. Unfortunately, no effective biomarker exists to predict or diagnose these complications at a clinically relevant time point when neurologic injury can be effectively treated and managed. Recently, a number of studies have demonstrated that microRNAs (miRNAs) in extracellular biofluids are highly associated with aSAH and complications. Here we provide an overview of the current research on relevant human studies examining the correlation between miRNAs and aSAH complications and discuss the potential application of using miRNAs as biomarkers in aSAH management.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Sanders-Brown Center on Aging, Spinal Cord and Brain Injury Research Center, and the Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-218-3886
| | - Joe E. Springer
- Spinal Cord and Brain Injury Research Center, and the Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA;
| | - Kevin W. Hatton
- Department of Anesthesiology Critical Care Medicine, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
3
|
Wang WX, Springer JE, Xie K, Fardo DW, Hatton KW. A Highly Predictive MicroRNA Panel for Determining Delayed Cerebral Vasospasm Risk Following Aneurysmal Subarachnoid Hemorrhage. Front Mol Biosci 2021; 8:657258. [PMID: 34055880 PMCID: PMC8163224 DOI: 10.3389/fmolb.2021.657258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Approximately one-third of aneurysmal subarachnoid hemorrhage (aSAH) patients develop delayed cerebral vasospasm (DCV) 3-10 days after aneurysm rupture resulting in additional, permanent neurologic disability. Currently, no validated biomarker is available to determine the risk of DCV in aSAH patients. MicroRNAs (miRNAs) have been implicated in virtually all human diseases, including aSAH, and are found in extracellular biofluids including plasma and cerebrospinal fluid (CSF). We used a custom designed TaqMan Low Density Array miRNA panel to examine the levels of 47 selected brain and vasculature injury related miRNAs in CSF and plasma specimens collected from 31 patients with or without DCV at 3 and 7 days after aSAH, as well as from eight healthy controls. The analysis of the first 18-patient cohort revealed a striking differential expression pattern of the selected miRNAs in CSF and plasma of aSAH patients with DCV from those without DCV. Importantly, this differential expression was observed at the early time point (3 days after aSAH), before DCV event occurs. Seven miRNAs were identified as reliable DCV risk predictors along with a prediction model constructed based on an array of additional 19 miRNAs on the panel. These chosen miRNAs were then used to predict the risk of DCV in a separate, testing cohort of 15 patients. The accuracy of DCV risk prediction in the testing cohort reached 87%. The study demonstrates that our novel designed miRNA panel is an effective predictor of DCV risk and has strong applications in clinical management of aSAH patients.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States.,Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, United States
| | - Joe E Springer
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States.,Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kevin Xie
- Biostatistics, University of Kentucky, Lexington, KY, United States
| | - David W Fardo
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Kevin W Hatton
- Anesthesiology Critical Care Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Li W, Qi L, Guo Y, Zhang Z, He G, Li Y, Wang Z. Application Value of CTA in the Computer-Aided Diagnosis of Subarachnoid Hemorrhage of Different Origins. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6638610. [PMID: 33510889 PMCID: PMC7822679 DOI: 10.1155/2021/6638610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
Subarachnoid hemorrhage (SAH) is difficult to detect because of its circulation through subarachnoid space, which leads to a high rate of missed diagnosis. Based on the above background, the purpose of this study is to study the application value of brain CT angiography (CTA) in computer-aided diagnosis of subarachnoid hemorrhage with a wide range of brain digital subtraction angiography as a gold standard. This paper collected images and related medical records of 111 patients with spontaneous subarachnoid hemorrhage receiving brain CTA and DSA examinations from February 2015 to November 2019 in the neurology department of our hospital. In contrast to the number, position, length, width, and neck width of the causative aneurysm detected by DSA, we evaluated the diagnostic results of CTA and evaluated whether there was statistical difference between the two detectives of intracranial aneurysms. The results showed that the area under ROC curve of subtraction CTA and conventional CTA was 1.000 and 0.818, respectively, which indicated that the former had better display effect on internal carotid aneurysm (AUC > 0.9), while the latter had medium value (0.7 < AUC ≤ 0.9), and the difference was statistically significant (z = 2.390, p=0.017).
Collapse
Affiliation(s)
- Wei Li
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lin Qi
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Railway Police College, Zhengzhou, Henan 450053, China
| | - Yulong Guo
- Railway Police College, Zhengzhou, Henan 450053, China
| | - Zhen Zhang
- Railway Police College, Zhengzhou, Henan 450053, China
| | - Guanglong He
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Yang Li
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
5
|
Ghai V, Fallen S, Baxter D, Scherler K, Kim TK, Zhou Y, Meabon JS, Logsdon AF, Banks WA, Schindler AG, Cook DG, Peskind ER, Lee I, Wang K. Alterations in Plasma microRNA and Protein Levels in War Veterans with Chronic Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1418-1430. [PMID: 32024417 PMCID: PMC7249467 DOI: 10.1089/neu.2019.6826] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Blast-related mild traumatic brain injury (mTBI) is considered the "signature" injury of the wars in Iraq and Afghanistan. Identifying biomarkers that could aid in diagnosis and assessment of chronic mTBI are urgently needed, as little progress has been made toward identifying blood-based biomarkers of repetitive mTBI in the chronic state. Addressing this knowledge gap is especially important in the population of military veterans who are receiving assessment and care often years after their last exposure. Circulating microRNAs (miRNAs), especially those encapsulated in extracellular vesicles (EVs), have gained interest as a source of biomarkers for neurological conditions. To identify biomarkers for chronic mTBI, we used next generation sequencing (NGS) to analyze miRNAs in plasma and plasma-derived EVs from 27 Iraq and Afghanistan war veterans with blast-related chronic mTBI, 11 deployed veteran non-TBI controls, and 31 civilian controls. We identified 32 miRNAs in plasma and 45 miRNAs in EVs that significantly changed in the chronic mTBI cohort compared with control groups. These miRNAs were predominantly associated with pathways involved in neuronal function, vascular remodeling, blood-brain barrier integrity, and neuroinflammation. In addition, the plasma proteome was analyzed and showed that the concentrations of C-reactive protein (CRP) and membrane metalloendopeptidase (MME) were elevated in chronic mTBI samples. These plasma miRNAs and proteins could potentially be used as biomarkers and provide insights into the molecular processes associated with the long-term health outcomes associated with blast-related chronic mTBI.
Collapse
Affiliation(s)
- Vikas Ghai
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - David Baxter
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | - James S. Meabon
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, and Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aric F. Logsdon
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, and University of Washington School of Medicine, Seattle, Washington, USA
| | - William A. Banks
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, and University of Washington School of Medicine, Seattle, Washington, USA
| | - Abigail G. Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA
| | - David G. Cook
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, and University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elaine R. Peskind
- Veterans Affairs Northwest Network Mental Illness, Research, Education, and Clinical Center, and Education, and Clinical Center, VA Puget Sound Health Care System (VAPSHCS), Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, Washington, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA.,Address correspondence to: Kai Wang, PhD, Hood-Price Lab, Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109-5263, USA
| |
Collapse
|
6
|
Li JW, Ren SH, Ren JR, Zhen ZG, Li LR, Hao XD, Ji HM. Nimodipine Improves Cognitive Impairment After Subarachnoid Hemorrhage in Rats Through IncRNA NEAT1/miR-27a/MAPT Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2295-2306. [PMID: 32606599 PMCID: PMC7293909 DOI: 10.2147/dddt.s248115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Background Subarachnoid hemorrhage (SAH) is a cerebral hemorrhage disease that severely damages the brain and causes cognitive impairment (CI). Therefore, accurate and appropriate treatment strategies are urgently needed. The application of nimodipine can not only improve blood circulation in patients with SAH but also repair ischemic neuron injury. Purpose To investigate the effects of nimodipine and lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1)/miR-27a/microtubule-associated protein tau (MAPT) axis on CI after SAH. Methods One hundred and twenty healthy male rats were selected and equally divided into control group, sham operation group, model group, PBS group, nimodipine group (drug group), NC siRNA group, NC mimics group, NEAT1 siRNA, miR-27a mimics, MAPT siRNA, drug + NEAT1-ad, and drug + NC-ad groups by random number table. Rats in the model group were constructed by double-hemorrhage model, and expression vectors were injected into the tail to regulate the expression of lncRNA NEAT1, miR-27a and MAPT. In addition, Western blot was employed to detect brain tissue protein, flow cytometry was applied to measure brain tissue apoptosis, and MTT was utilized to determine cell activity, so as to evaluate brain damage and cognitive function in each group. Results Nimodipine, down-regulated lncRNA NEAT1, up-regulated miR-27a and down-regulated MAPT all improved brain damage and CI, inhibited brain tissue cell apoptosis, and enhanced brain cell activity. The common binding sites of lncRNA NEAT1 and MAPT were found on the miR-27a sequence fragment, and miR-27a could be paired with the former two. Nimodipine was found to cause the down-regulation of lncRNA NEAT1 and MAPT, as well as the up-regulation of miR-27a. Conclusion Nimodipine can improve CI after SAH in rats through the lncRNA NEAT1/miR-27a/MAPT axis.
Collapse
Affiliation(s)
- Jun-Wei Li
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Shao-Hua Ren
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Jin-Rui Ren
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Zi-Gang Zhen
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Li-Rong Li
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Xu-Dong Hao
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| | - Hong-Ming Ji
- Department of Neurosurgery, The People's Hospital of Shanxi Province, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
7
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
8
|
Christensen ST, Johansson SE, Warfvinge K, Braun T, Boettger T, Edvinsson L, Haanes KA. Exploration of Physiological and Pathophysiological Implications of miRNA-143 and miRNA-145 in Cerebral Arteries. J Cardiovasc Pharmacol 2019; 74:409-419. [PMID: 31425342 DOI: 10.1097/fjc.0000000000000735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with a high short-term mortality rate which leads to cognitive impairments that reduce the quality of life of the majority of patients. The miRNA-143/145 cluster is highly expressed in vascular smooth muscle cells (VSMC) and has been shown to be necessary for differentiation and function, as well as an important determinant for phenotypic modulation/switching of VSMCs in response to vascular injury. We aimed to determine whether miRNA-143 and miRNA-145 are important regulators of phenotypical changes of VSMCs in relation to SAH, as well as establishing their physiological role in the cerebral vasculature. We applied quantitative PCR to study ischemia-induced alterations in the expression of miRNA-143 and miRNA-145, for rat cerebral vasculature, in an ex vivo organ culture model and an in vivo SAH model. To determine the physiological importance, we did myograph studies on basilar and femoral arteries from miRNA-143/145 knockout mice. miRNA-143 and miRNA-145 are not upregulated in the vasculature following our SAH model, despite the upregulation of miR-145 in the organ culture model. Regarding physiological function, miRNA-143 and miRNA-145 are very important for general contractility in cerebral vessels in response to depolarization, angiotensin II, and endothelin-1. Applying an anti-miRNA targeting approach in SAH does not seem to be a feasible approach because miRNA-143 and miRNA-145 are not upregulated following SAH. The knockout mouse data suggest that targeting miRNA-143 and miRNA-145 would lead to a general reduced contractility of the cerebral vasculature and unwanted dedifferentiation of VSMCs.
Collapse
Affiliation(s)
- Simon Topp Christensen
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Braun
- Department Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Boettger
- Department Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
9
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
10
|
Murinello S, Usui Y, Sakimoto S, Kitano M, Aguilar E, Friedlander HM, Schricker A, Wittgrove C, Wakabayashi Y, Dorrell MI, Westenskow PD, Friedlander M. miR-30a-5p inhibition promotes interaction of Fas + endothelial cells and FasL + microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia 2018; 67:332-344. [PMID: 30484883 DOI: 10.1002/glia.23543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
Ischemia-induced angiogenesis contributes to various neuronal and retinal diseases, and often results in neurodegeneration and visual impairment. Current treatments involve the use of anti-VEGF agents but are not successful in all cases. In this study we determined that miR-30a-5p is another important mediator of retinal angiogenesis. Using a rodent model of ischemic retinopathy, we show that inhibiting miR-30a-5p reduces neovascularization and promotes tissue repair, through modulation of microglial and endothelial cell cross-talk. miR-30a-5p inhibition results in increased expression of the death receptor Fas and CCL2, to decrease endothelial cell survival and promote microglial migration and phagocytic function in focal regions of ischemic injury. Our data suggest that miR-30a-5p inhibition accelerates tissue repair by enhancing FasL-Fas crosstalk between microglia and endothelial cells, to promote endothelial cell apoptosis and removal of dead endothelial cells. Finally, we found that miR-30a levels were increased in the vitreous of patients with proliferative diabetic retinopathy. Our study identifies a role for miR-30a in the pathogenesis of neovascular retinal disease by modulating microglial and endothelial cell function, and suggests it may be a therapeutic target to treat ischemia-mediated conditions.
Collapse
Affiliation(s)
- Salome Murinello
- Department of Molecular Medicine, The Scripps Research Institute, California
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Susumu Sakimoto
- Department of Molecular Medicine, The Scripps Research Institute, California
| | - Maki Kitano
- Department of Molecular Medicine, The Scripps Research Institute, California
| | - Edith Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, California
| | - H Maura Friedlander
- Department of Molecular Medicine, The Scripps Research Institute, California
| | - Amelia Schricker
- Department of Molecular Medicine, The Scripps Research Institute, California
| | - Carli Wittgrove
- Department of Molecular Medicine, The Scripps Research Institute, California
| | | | - Michael I Dorrell
- Department of Molecular Medicine, The Scripps Research Institute, California.,The Lowy Medical Research Institute, California.,Department of Biology, Point Loma Nazarene University, San Diego, California
| | - Peter D Westenskow
- Department of Molecular Medicine, The Scripps Research Institute, California
| | - Martin Friedlander
- Department of Molecular Medicine, The Scripps Research Institute, California.,The Lowy Medical Research Institute, California
| |
Collapse
|
11
|
Chan MTH, Wong JYY, Leung AKT, Lu G, Poon WS, Lau AYL, Chan WY, Wong GKC. Plasma and CSF miRNA dysregulations in subarachnoid hemorrhage reveal clinical courses and underlying pathways. J Clin Neurosci 2018; 62:155-161. [PMID: 30482403 DOI: 10.1016/j.jocn.2018.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is fatal and detrimental to quality of life. Clinically, options for monitoring are often limited, potentially missing subtle neurological changes especially in low-grade patients. This article reviewed miRNA dysregulation in SAH and analyzed their functional and clinical relevance. METHODS With adherence to PRISMA guideline, PubMed, EMBASE, GEO and ArrayExpress were searched comprehensively for relevant clinical and animal models. Datasets were analyzed and enriched by experimentally validated targets and multiple databases using R v3.4.2, Ingenuity Pathway Analysis, and miRPath v3.0. RESULTS Among 1926 search results, 18 studies were screened for full-text assessment. The 8 included studies revealed a marked miRNA dysregulation after SAH. 2 datasets were retrieved. In both serum and CSF, different miRNA profiles were associated with Early Brain Injury, Delayed Cerebral Infarction, vasospasm and prognosis. In CSF, a dramatic restructure of inter-miRNA correlation matrix was observed. Enrichment analysis revealed strong association (1) BBB instability, with adherens, extra-cellular matrix, actin cytoskeleton, integrin, TGF-β, Wnt/β-catenin etc; (2) autophagy, with MTORC1, HIF-1, ULK2, and FoxO etc; (3) apoptosis, with PI3K-Akt, p53, and AMPK. We analyzed common miRNAs across SAH and cerebral ischemia. They were related to neuronal differentiation, oxidation stress, apoptosis, angiogenesis, Alzheimer's disease, NMDA-induced calcium influx, excitotoxicity and NO production. CONCLUSIONS Clinical progression of SAH is associated with different miRNA fingerprints. They carry neuro-pathological relevance and can be a potential biomarker which compliments SAH management.
Collapse
Affiliation(s)
- Matthew Tai Hei Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Jennie Yuet Yi Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Anthony Ka Tsun Leung
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Gang Lu
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, 7/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Alexander Yuk-Lun Lau
- Division of Neurology, Department of Medicine and Therapeutics, Chinese University of Hong Kong, 9/F Department, Department of Medicine and Therapeutics, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, 7/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China.
| |
Collapse
|
12
|
Yu S, Zeng Y, Sun X. Neuroprotective effects of p53/microRNA‑22 regulate inflammation and apoptosis in subarachnoid hemorrhage. Int J Mol Med 2018; 41:2406-2412. [PMID: 29336471 DOI: 10.3892/ijmm.2018.3392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/22/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shui Yu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi‑Jun Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao‑Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
13
|
Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci 2018; 38:32-50. [PMID: 29114076 PMCID: PMC6705810 DOI: 10.1523/jneurosci.1348-17.2017] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the CNS and regulate physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, we show that the circRNA DLGAP4 (circDLGAP4) functions as an endogenous microRNA-143 (miR-143) sponge to inhibit miR-143 activity, resulting in the inhibition of homologous to the E6-AP C-terminal domain E3 ubiquitin protein ligase 1 expression. circDLGAP4 levels were significantly decreased in the plasma of acute ischemic stroke patients (13 females and 13 males) and in a mouse stroke model. Upregulation of circDLGAP4 expression significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. Endothelial-mesenchymal transition contributes to blood-brain barrier disruption and circDLGAP4 overexpression significantly inhibited endothelial-mesenchymal transition by regulating tight junction protein and mesenchymal cell marker expression. Together, the results of our study are illustrative of the involvement of circDLGAP4 and its coupling mechanism in cerebral ischemia, providing translational evidence that circDLGAP4 serves as a novel therapeutic target for acute cerebrovascular protection.SIGNIFICANCE STATEMENT Circular RNAs (circRNAs) are involved in the regulation of physiological and pathophysiological processes. However, whether circRNAs are involved in ischemic injury, particularly cerebrovascular disorders, remains largely unknown. Here, we demonstrate a critical role for circular RNA DLGAP4 (circDLGAP4), a novel circular RNA originally identified as a sponge for microRNA-143 (miR-143), in ischemic stroke outcomes. Overexpression of circDLGAP4 significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. To our knowledge, this is the first report describing the efficacy of circRNA injection in an ischemic stroke model. Our investigation suggests that circDLGAP4 may serve as a novel therapeutic target for acute ischemic injury.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xufeng Chen
- Emergency Department, Jiangsu Province Hospital, Nanjing 210029, China
| | - Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Pei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - John H Zhang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California 92354, and
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China,
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Overexpression of microRNA-30a contributes to the development of aortic dissection by targeting lysyl oxidase. J Thorac Cardiovasc Surg 2017; 154:1862-1869. [DOI: 10.1016/j.jtcvs.2017.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/10/2023]
|
15
|
Kikkawa Y, Ogura T, Nakajima H, Ikeda T, Takeda R, Neki H, Kohyama S, Yamane F, Kurogi R, Amano T, Nakamizo A, Mizoguchi M, Kurita H. Altered Expression of MicroRNA-15a and Kruppel-Like Factor 4 in Cerebrospinal Fluid and Plasma After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2017; 108:909-916.e3. [PMID: 28893694 DOI: 10.1016/j.wneu.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cerebral vasospasm (CVS) is a major determinant of prognosis in patients with subarachnoid hemorrhage (SAH). Alteration in the vascular phenotype contributes to development of CVS. However, little is known about the role of microRNAs (miRNAs) in the phenotypic alteration after SAH. We investigated the expression profile of miRNAs and the chronologic changes in the expression of microRNA-15a (miR-15a) and Kruppel-like factor 4 (KLF4), a potent regulator of vascular phenotype modulation that modulates the expression of miR-15a, in the plasma and cerebrospinal fluid (CSF) of patients with SAH. METHODS Peripheral blood and CSF samples were collected from 8 patients with aneurysmal SAH treated with endovascular obliteration. Samples obtained from 3 patients without SAH were used as controls in the analysis. Exosomal miRNAs were isolated and subjected to microarray analysis with the three-dimensional-gene miRNA microarray kit. The time course of the expression of miR-15a and KLF4 was analyzed using quantitative real-time polymerase chain reaction. RESULTS Microarray analysis showed that 12 miRNAs including miR-15a were upregulated or downregulated both in the CSF and in plasma after SAH within 3 days. Quantitative real-time polymerase chain reaction showed that miR-15a expression was significantly increased in both the CSF and plasma, with a peak around 3-5 days after SAH, whereas the expression of KLF4 was significantly decreased around 1-3 days after SAH and remained lower than in controls. CONCLUSIONS Our results suggest that an early and persistent decrease in KLF4 followed by an increase in miR-15a may contribute to the altered vascular phenotype, resulting in development of CVS.
Collapse
Affiliation(s)
- Yuichiro Kikkawa
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan.
| | - Takeshi Ogura
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Hiroyuki Nakajima
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Toshiki Ikeda
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Ririko Takeda
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Hiroaki Neki
- Department of Endovascular Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Shinya Kohyama
- Department of Endovascular Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Fumitaka Yamane
- Department of Endovascular Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Ryota Kurogi
- Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Toshiyuki Amano
- Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Hiroki Kurita
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Hidaka, Japan
| |
Collapse
|
16
|
Lu G, Wong MS, Xiong MZQ, Leung CK, Su XW, Zhou JY, Poon WS, Zheng VZY, Chan WY, Wong GKC. Circulating MicroRNAs in Delayed Cerebral Infarction After Aneurysmal Subarachnoid Hemorrhage. J Am Heart Assoc 2017; 6:JAHA.116.005363. [PMID: 28442458 PMCID: PMC5533026 DOI: 10.1161/jaha.116.005363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Delayed cerebral infarction (DCI) is a major cause of morbidities after aneurysmal subarachnoid hemorrhage (SAH) and typically starts at day 4 to 7 after initial hemorrhage. MicroRNAs (miRNAs) play an important role in posttranscriptional gene expression control, and distinctive patterns of circulating miRNA changes have been identified for some diseases. We aimed to investigate miRNAs that characterize SAH patients with DCI compared with those without DCI. Methods and Results Circulating miRNAs were collected on day 7 after SAH in healthy, SAH‐free controls (n=20), SAH patients with DCI (n=20), and SAH patients without DCI (n=20). We used the LASSO (least absolute shrinkage and selection operator) method of regression analysis to characterize miRNAs associated with SAH patients with DCI compared with those without DCI. In the 28 dysregulated miRNAs associated with DCI and SAH, we found that a combination of 4 miRNAs (miR‐4532, miR‐4463, miR‐1290, and miR‐4793) could differentiate SAH patients with DCI from those without DCI with an area under the curve of 100% (95% CI 1.000–1.000, P<0.001). This 4‐miRNA combination could also distinguish SAH patients with or without DCI from healthy controls with areas under the curve of 99.3% (95% CI 0.977–1.000, P<0.001) and 82.0% (95% CI 0.685–0.955, P<0.001), respectively. Conclusions We found a 4‐miRNA combination that characterized SAH patients with DCI. The findings could guide future mechanistic study to develop therapeutic targets.
Collapse
Affiliation(s)
- Gang Lu
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, China
| | - Man Sze Wong
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, China
| | - Mark Zhi Qiang Xiong
- Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Chi Kwan Leung
- Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Xian Wei Su
- Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong, China
| | - Jing Ye Zhou
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Vera Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| |
Collapse
|
17
|
Yuen CM, Yeh KH, Wallace CG, Chen KH, Lin HS, Sung PH, Chai HT, Chen YL, Sun CK, Chen CH, Kao GS, Ko SF, Yip HK. EPO-cyclosporine combination therapy reduced brain infarct area in rat after acute ischemic stroke: role of innate immune-inflammatory response, micro-RNAs and MAPK family signaling pathway. Am J Transl Res 2017; 9:1651-1666. [PMID: 28469772 PMCID: PMC5411915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Abstract
This study tested the hypothesis that erythropoietin (EPO) and cyclosporine (CsA) could effectively reduce brain infarct area (BIA) in rat after acute ischemic stroke (AIS) through regulating inflammation, oxidative stress, MAPK family signaling and microRNA (miR-223/miR-30a/miR-383). Adult male Sprague-Dawley rats (n = 48) were equally divided into group 1 (sham control), group 2 (AIS), group 3 [AIS+EPO (5,000 IU/kg at 0.5/24/48 h, subcutaneous)] and group 4 [AIS+CsA (20.0 mg/kg at 0.5/24/48 h, intra-peritoneal)]. By 72 h, histopathology showed that BIA was largest in group 2 and smallest in group 1, and significantly larger in group 4 than group 3 (all P<0.0001). The three microRNAs expressed were higher in group 2 than in the other three groups (all P<0.04); between these three latter groups there were no significant differences. The protein expressions of MAPK family [phosphorylated (p)-ERK1/2, p-p38/p-JNK], inflammatory (iNOS/MMP-9/TNF-α/NF-κB/IL-12/MIP-1α/CD14/CD68/Ly6g), apoptotic (caspase-3/PARP/mitochondrial-Bax), oxidative-stress (NOX-1/NOX-2/oxidized protein) and mitochondrial-damaged (cytosolic cytochrome-C) biomarkers exhibited an identical pattern to BIA findings (all P<0.0001). The cellular expressions of brain edema (AQP4+), inflammation (CD11+/glial-fibrillary-acid protein+), and cellular damage (TUNEL assay/positive Periodic acid-Schiff stain) biomarkers exhibited an identical pattern, whereas the cellular-integrity markers (neuN+/MAP2+/doublecorin+) exhibited an opposite pattern to BIA (all P value <0.001). EPO-CsA therapy markedly reduced BIA mainly by suppressing the innate immune response to inflammation, oxidative stress, microRNAs (miR-223/miR-30a/miR-383) and MAPK family signaling.
Collapse
Affiliation(s)
- Chun-Man Yuen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Kuo-Ho Yeh
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | | | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Hung-Sheng Lin
- Division of Neurology, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International StudentsKaohsiung 82445, Taiwan
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Gour-Shenq Kao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
| |
Collapse
|
18
|
Serum microRNAs are non-invasive biomarkers for the presence and progression of subarachnoid haemorrhage. Biosci Rep 2017; 37:BSR20160480. [PMID: 28115593 PMCID: PMC5322746 DOI: 10.1042/bsr20160480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/18/2016] [Accepted: 01/23/2017] [Indexed: 01/06/2023] Open
Abstract
miRNAs are important regulators of translation and have been associated with the pathogenesis of a number of cardiovascular diseases including stroke and may be possible prognostic biomarkers. The purpose of the present study was to determine the expression levels of miRNAs in the sera of subarachnoid haemorrhage (SAH) patients and to evaluate their relationships with the severity and clinical outcome of SAH. Serum samples on day 3 after the onset of SAH were subjected to microarray analysis with Exqion miRCURYTM LNA array and quantitative PCR analysis. Serum samples from SAH patients (n=60) and healthy controls (n=10) were subjected to quantitative PCR analysis. The severities and clinical outcomes of the SAH patients were evaluated with the WFNS grade and the Modified Rankin Scale (mRS). Three miRNAs, miR-502-5p, miR-1297 and miR-4320 were significantly up-regulated in the sera of SAH patients when compared with the healthy controls. The serum miR-502-5p and miR-1297 levels were significantly higher in the patients with severe SAH and a poor outcome than in those with mild SAH and a good outcome (P<0.05). The areas under the receiver operating characteristic (ROC) curves (AUCs) of miR-502-5p, miR-1297 and miR-4320 to distinguish the SAH patients from the healthy controls were 0.958 (P<0.001), 0.950 (P<0.001) and 0.843 (P<0.001) respectively. Taken together, these results indicate that miR-502-5p and miR-1297 are potentially valuable indicators of the diagnosis, severity and prognosis of SAH, and miR-4320 was a potentially valuable indicator of the diagnosis of SAH.
Collapse
|
19
|
Chandran R, Mehta SL, Vemuganti R. Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 2017; 111:12-22. [PMID: 28131900 DOI: 10.1016/j.neuint.2017.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that various classes of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and long non-coding RNAs (lncRNAs) play important roles in normal state as well as the diseases of the CNS. Interestingly, ncRNAs have been shown to interact with messenger RNA, DNA and proteins, and these interactions could induce epigenetic modifications and control transcription and translation, thereby adding a new layer of genomic regulation. The ncRNA expression profiles are known to be altered after acute CNS injuries including stroke, traumatic brain injury and spinal cord injury that are major contributors of morbidity and mortality worldwide. Hence, a better understanding of the functional significance of ncRNAs following CNS injuries could help in developing potential therapeutic strategies to minimize the neuronal damage in those conditions. The potential of ncRNAs in blood and CSF as biomarkers for diagnosis and/or prognosis of acute CNS injuries has also gained importance in the recent years. This review highlighted the current progress in the understanding of the role of ncRNAs in initiation and progression of secondary neuronal damage and their application as biomarkers after acute CNS injuries.
Collapse
Affiliation(s)
- Raghavendar Chandran
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison and William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
20
|
Abstract
Proper medical treatment of a stroke victim relies on accurate and rapid differentiation between ischemic and hemorrhagic stroke, which in current practice is performed by computerized tomography (CT) or magnetic resonance imaging (MRI) scans. A panel of microRNAs could be an extremely useful clinical tool for distinguishing between hemorrhagic and ischemic stroke. This review has shown that blood miRNA profile can distinguish hemorrhagic from ischemic stroke in patients and in experimental animal models. It also seems likely they can differentiate between intracerebral and subarachnoid hemorrhage stroke. The miRNA profile in cerebrospinal fluid could be a useful diagnostic tool for subarachnoid hemorrhagic stroke. Decreased or increased miRNA levels may be needed either as prevention or treatment of stroke. Administration in vivo of miR-130a inhibitor or miRNA mimic (miR-367, miR-223) in an intracerebral hemorrhage animal model improved neurological outcomes.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular and Cellular Biology, University of California, Merced, CA, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Sun J, Cheng W, Liu L, Tao S, Xia Z, Qi L, Huang M. Identification of serum miRNAs differentially expressed in human epilepsy at seizure onset and post-seizure. Mol Med Rep 2016; 14:5318-5324. [PMID: 27840934 DOI: 10.3892/mmr.2016.5906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) function as potential novel biomarkers for disease detection due to their marked stability in the blood and the characteristics of their expression profile in several diseases. In the present study, microarray‑based serum miRNA profiling was performed on serum obtained from three patients with epilepsy at diagnosis and from three healthy individuals as controls. This was followed by reverse transcription‑quantitative polymerase chain reaction analysis in a separate cohort of 35 health volunteers and 90 patients with epilepsy. The correlations between miRNAs and clinical parameters were analyzed. The array results showed that 15 miRNAs were overexpressed and 10 miRNAs were underexpressed (>2‑fold) in the patients with epilepsy. In addition, four miRNAs, including miR‑30a, miR‑378, miR‑106b and miR‑15a were found to be overexpressed in the serum of patients at seizure onset, compared with post‑seizure. When the patients were at seizure onset, the expression of miR‑30a was positively associated with seizure frequency. No significant differences were found between miR‑30a and gender, age or number of years following diagnosis. The expression levels of miR‑378, miR‑106b and mir‑15a were not associated with the clinical parameters in the patients with seizures. Calcium/calmodulin‑dependent protein kinase type IV was a target of miR‑30a, and its expression was increased following seizure and was negatively correlated with miR‑30a in the patients with epilepsy. The present study provided the first evidence, to the best of our knowledge, that the expression levels of miR‑378, miR‑30a, miR‑106b and miR‑15a were enhanced in epileptic patients with seizures. miR-30a may be useful for prognostic prediction in epilepsy.
Collapse
Affiliation(s)
- Jijun Sun
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Weidong Cheng
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lifeng Liu
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Shuxin Tao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lifeng Qi
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Min Huang
- Department of Neurology, Second Clinical College, Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
22
|
Isolation and characterization of vesicular and non-vesicular microRNAs circulating in sera of partially hepatectomized rats. Sci Rep 2016; 6:31869. [PMID: 27535708 PMCID: PMC4989158 DOI: 10.1038/srep31869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Circulating microRNAs are protected from degradation by their association with either vesicles or components of the RNAi machinery. Although increasing evidence indicates that cell-free microRNAs are transported in body fluids by different types of vesicles, current research mainly focuses on the characterization of exosome-associated microRNAs. However, as isolation and characterization of exosomes is challenging, it is yet unclear whether exosomes or other vesicular elements circulating in serum are the most reliable source for discovering disease-associated biomarkers. In this study, circulating microRNAs associated to the vesicular and non-vesicular fraction of sera isolated from partially hepatectomized rats were measured. Here we show that independently from their origin, levels of miR-122, miR-192, miR-194 and Let-7a are up-regulated two days after partial hepatectomy. The inflammation-associated miR-150 and miR-155 are up-regulated in the vesicular-fraction only, while the regeneration-associated miR-21 and miR-33 are up-regulated in the vesicular- and down-regulated in the non-vesicular fraction. Our study shows for the first time the modulation of non-vesicular microRNAs in animals recovering from partial hepatectomy, suggesting that, in the search for novel disease-associated biomarkers, the profiling of either vesicular or non-vesicular microRNAs may be more relevant than the analysis of microRNAs isolated from unfractionated serum.
Collapse
|