1
|
Arikawa LM, Mota LFM, Schmidt PI, Frezarim GB, Fonseca LFS, Magalhães AFB, Silva DA, Carvalheiro R, Chardulo LAL, Albuquerque LGD. Genome-wide scans identify biological and metabolic pathways regulating carcass and meat quality traits in beef cattle. Meat Sci 2024; 209:109402. [PMID: 38056170 DOI: 10.1016/j.meatsci.2023.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Genome association studies (GWAS) provides knowledge about the genetic architecture of beef-related traits that allow linking the target phenotype to genomic information aiding breeding decision. Thus, the present study aims to uncover the genetic mechanism involved in carcass (REA: rib eye area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6910 young bulls with phenotypic information and 23,859 animals genotyped with 435 k markers were used to perform the weighted single-step GBLUP (WssGBLUP) approach, considering two iterations. The top 10 genomic regions explained 8.13, 11.81, and 9.58% of the additive genetic variance, harboring a total of 119, 143, and 95 positional candidate genes for REA, BF, and HCW, respectively. For meat quality traits, the top 10 windows explained a large proportion of the total genetic variance for SF (14.95%), MARB (17.56%), and IMF (21.41%) surrounding 92, 155, and 111 candidate genes, respectively. Relevant candidate genes (CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16) are related to physiological aspects affecting growth, carcass, meat quality, feed intake, and reproductive traits by signaling pathways controlling muscle control, key signal metabolic molecules INS / IGF-1 pathway, lipid metabolism, and adipose tissue development. The GWAS results provided insights into the genetic control of the traits studied and the genes found are potential candidates to be used in the improvement of carcass and meat quality traits.
Collapse
Affiliation(s)
- Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Ana Fabrícia Braga Magalhães
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Jequitinhonha and Mucuri Valleys, Department of Animal Science, Rod. MG 367, Diamantina, MG 39100-000, Brazil
| | - Delvan Alves Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Viçosa, Department of Animal Science, Av. PH Rolfs, Viçosa, MG 36570-900, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Luis Artur Loyola Chardulo
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
2
|
Moraes MMD, Gouveia GC, Ribeiro VMP, Araújo AEMD, Toral FLB, Cardoso EP. Genetic and phenotypic parameters for sexual precocity and parasite resistance traits in Nellore cattle. J Appl Genet 2023; 64:797-807. [PMID: 37682511 DOI: 10.1007/s13353-023-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Indicator traits of sexual precocity are widely used as selection criteria for the genetic improvement of beef cattle; however, the impact of selection for these traits on resistance to endoparasites and ectoparasites is unknown. Therefore, this study aimed to estimate the genetic and phenotypic parameters for indicator traits of sexual precocity and parasite resistance in Nellore cattle. The sexual precocity traits evaluated were probability of first calving (PFC) and scrotal circumference at 12 and 18 months of age (SC12 and SC18). The resistance-related traits included tick (TC), gastrointestinal nematode egg (NEC), and Eimeria spp. oocyst (EOC) counts. (Co)variance components were estimated by Bayesian inference using multitrait animal models. The mean heritabilities for PFC, SC12, SC18, TC, NEC, and EOC were 0.23, 0.38, 0.42, 0.14, 0.16, and 0.06, respectively, and suggest that selection will change the mean values of these traits over time. The genetic and phenotypic correlations for most pairs formed by a precocity and a resistance trait were not different from zero, suggesting that selection for sexual precocity traits will not result in changes in resistance traits. Thus, selection for indicator traits of sexual precocity does not elicit unfavorable correlated responses in resistance to endoparasites and ectoparasites, and joint selection aimed at improving these traits can be performed using multitrait selection methods, when necessary.
Collapse
Affiliation(s)
- Mariana Mamedes de Moraes
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Gabriela Canabrava Gouveia
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Andresa Eva Melo de Araújo
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabio Luiz Buranelo Toral
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
3
|
Carvalho FE, Ferraz JBS, Pedrosa VB, Matos EC, Eler JP, Silva MR, Guimarães JD, Bussiman FO, Silva BCA, Cançado FA, Mulim HA, Espigolan R, Brito LF. Genetic parameters for various semen production and quality traits and indicators of male and female reproductive performance in Nellore cattle. BMC Genomics 2023; 24:150. [PMID: 36973650 PMCID: PMC10044441 DOI: 10.1186/s12864-023-09216-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Given the economic relevance of fertility and reproductive traits for the beef cattle industry, investigating their genetic background and developing effective breeding strategies are paramount. Considering their late and sex-dependent phenotypic expression, genomic information can contribute to speed up the rates of genetic progress per year. In this context, the main objectives of this study were to estimate variance components and genetic parameters, including heritability and genetic correlations, for fertility, female precocity, and semen production and quality (andrological attributes) traits in Nellore cattle incorporating genomic information. RESULTS The heritability estimates of semen quality traits were low-to-moderate, while moderate-to-high estimates were observed for semen morphological traits. The heritability of semen defects ranged from low (0.04 for minor semen defects) to moderate (0.30 for total semen defects). For seminal aspect (SMN_ASPC) and bull reproductive fitness (BULL_FIT), low (0.19) and high (0.69) heritabilities were observed, respectively. The heritability estimates for female reproductive traits ranged from 0.16 to 0.39 for rebreeding of precocious females (REBA) and probability of pregnancy at 14 months (PP14), respectively. Semen quality traits were highly genetically correlated among themselves. Moderate-to-high genetic correlations were observed between the ability to remain productive in the herd until four years of age (stayability; STAY) and the other reproductive traits, indicating that selection for female reproductive performance will indirectly contribute to increasing fertility rates. High genetic correlations between BULL_FIT and female reproductive traits related to precocity (REBA and PP14) and STAY were observed. The genetic correlations between semen quality and spermatic morphology with female reproductive traits ranged from -0.22 (REBA and scrotal circumference) to 0.48 (REBA and sperm vigor). In addition, the genetic correlations between REBA with semen quality traits ranged from -0.23 to 0.48, and with the spermatic morphology traits it ranged from -0.22 to 0.19. CONCLUSIONS All male and female fertility and reproduction traits evaluated are heritable and can be improved through direct genetic or genomic selection. Selection for better sperm quality will positively influence the fertility and precocity of Nellore females. The findings of this study will serve as background information for designing breeding programs for genetically improving semen production and quality and reproductive performance in Nellore cattle.
Collapse
Affiliation(s)
- Felipe E Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - José Bento S Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Elisangela C Matos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Joanir P Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Marcio R Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Federal University of Vicosa, Vicosa, MG, Brazil
| | - Fernando O Bussiman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Barbara C A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Fernando A Cançado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Rafael Espigolan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Luo J, Abid M, Zhang Y, Cai X, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of Kiwifruit SGR Family Members and Functional Characterization of SGR2 Protein for Chlorophyll Degradation. Int J Mol Sci 2023; 24:ijms24031993. [PMID: 36768313 PMCID: PMC9917040 DOI: 10.3390/ijms24031993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The STAY-GREEN (SGR) proteins play an important role in chlorophyll (Chl) degradation and are closely related to plant photosynthesis. However, the availability of inadequate studies on SGR motivated us to conduct a comprehensive study on the identification and functional dissection of SGR superfamily members in kiwifruit. Here, we identified five SGR genes for each of the kiwifruit species [Actinidia chinensis (Ac) and Actinidia eriantha (Ae)]. The phylogenetic analysis showed that the kiwifruit SGR superfamily members were divided into two subfamilies the SGR subfamily and the SGRL subfamily. The results of transcriptome data and RT-qPCR showed that the expression of the kiwifruit SGRs was closely related to light and plant developmental stages (regulated by plant growth regulators), which were further supported by the presence of light and the plant hormone-responsive cis-regulatory element in the promoter region. The subcellular localization analysis of the AcSGR2 protein confirmed its localization in the chloroplast. The Fv/Fm, SPAD value, and Chl contents were decreased in overexpressed AcSGR2, but varied in different cultivars of A. chinensis. The sequence analysis showed significant differences within AcSGR2 proteins. Our findings provide valuable insights into the characteristics and evolutionary patterns of SGR genes in kiwifruit, and shall assist kiwifruit breeders to enhance cultivar development.
Collapse
Affiliation(s)
- Juan Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yi Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xinxia Cai
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Jing Tu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|
5
|
Id-Lahoucine S, Casellas J, Fonseca PAS, Suárez-Vega A, Schenkel FS, Cánovas A. Deviations from Mendelian Inheritance on Bovine X-Chromosome Revealing Recombination, Sex-of-Offspring Effects and Fertility-Related Candidate Genes. Genes (Basel) 2022; 13:genes13122322. [PMID: 36553588 PMCID: PMC9778079 DOI: 10.3390/genes13122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Transmission ratio distortion (TRD), or significant deviations from Mendelian inheritance, is a well-studied phenomenon on autosomal chromosomes, but has not yet received attention on sex chromosomes. TRD was analyzed on 3832 heterosomal single nucleotide polymorphisms (SNPs) and 400 pseudoautosomal SNPs spanning the length of the X-chromosome using 436,651 genotyped Holstein cattle. On the pseudoautosomal region, an opposite sire-TRD pattern between male and female offspring was identified for 149 SNPs. This finding revealed unique SNPs linked to a specific-sex (Y- or X-) chromosome and describes the accumulation of recombination events across the pseudoautosomal region. On the heterosomal region, 13 SNPs and 69 haplotype windows were identified with dam-TRD. Functional analyses for TRD regions highlighted relevant biological functions responsible to regulate spermatogenesis, development of Sertoli cells, homeostasis of endometrium tissue and embryonic development. This study uncovered the prevalence of different TRD patterns across both heterosomal and pseudoautosomal regions of the X-chromosome and revealed functional candidate genes for bovine reproduction.
Collapse
Affiliation(s)
- Samir Id-Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joaquim Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Pablo A. S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Aroa Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
6
|
Magnier J, Druet T, Naves M, Ouvrard M, Raoul S, Janelle J, Moazami-Goudarzi K, Lesnoff M, Tillard E, Gautier M, Flori L. The genetic history of Mayotte and Madagascar cattle breeds mirrors the complex pattern of human exchanges in Western Indian Ocean. G3 GENES|GENOMES|GENETICS 2022; 12:6523972. [PMID: 35137043 PMCID: PMC8982424 DOI: 10.1093/g3journal/jkac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Despite their central economic and cultural role, the origin of cattle populations living in Indian Ocean islands still remains poorly documented. Here, we unravel the demographic and adaptive histories of the extant Zebus from the Mayotte and Madagascar islands using high-density SNP genotyping data. We found that these populations are very closely related and both display a predominant indicine ancestry. They diverged in the 16th century at the arrival of European people who transformed the trade network in the area. Their common ancestral cattle population originates from an admixture between an admixed African zebu population and an Indian zebu that occurred around the 12th century at the time of the earliest contacts between human African populations of the Swahili corridor and Austronesian people from Southeast Asia in Comoros and Madagascar. A steep increase in the estimated population sizes from the beginning of the 16th to the 17th century coincides with the expansion of the cattle trade. By carrying out genome scans for recent selection in the two cattle populations from Mayotte and Madagascar, we identified sets of candidate genes involved in biological functions (cancer, skin structure, and UV-protection, nervous system and behavior, organ development, metabolism, and immune response) broadly representative of the physiological adaptation to tropical conditions. Overall, the origin of the cattle populations from Western Indian Ocean islands mirrors the complex history of human migrations and trade in this area.
Collapse
Affiliation(s)
- Jessica Magnier
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Montpellier 34398, France
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | | | | | | | - Jérôme Janelle
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Saint-Pierre 97410, France
| | | | - Matthieu Lesnoff
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Montpellier 34398, France
| | - Emmanuel Tillard
- SELMET, University of Montpellier, CIRAD, INRAE, L’Institut Agro, Montpellier 34398, France
- CIRAD, UMR SELMET, Saint-Pierre 97410, France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, L’Institut Agro, University of Montpellier, Montferrier sur Lez 34988, France
| | - Laurence Flori
- SELMET, INRAE, CIRAD, L’Institut Agro, University of Montpellier, Montpellier 34398, France
| |
Collapse
|
7
|
TOGLA OSHIN, DEB SM, KADYAN SAGAR, KUMAR SUSHIL, NANDHINI PB, MUKHERJEE ANUPAMA. Association of milk production and udder type traits with polymorphism of phosphorylase kinase regulatory subunit alpha-2 gene in Sahiwal cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i8.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study was conducted in Sahiwal cattle in tropical region in the Indian sub-continent where the production of dairy animals is yet to be optimised. The present investigation was executed to identify SNPs in PHKA2 gene and to explore its effect on udder type and milk production traits. The study was based on the hypothesis that the PHKA2 gene has highly variable exons that could be related with udder traits and eventually milk production. PHKA2 gene regulates glycogen phosphorylase a, a catalyst in breakdown of glycogen. Milk production traits were recorded; 9 udder type, 5 teat type and 8 visual traits were measured for 100 animals. Five highly variable targeted regions of PHKA2 gene were amplified using PCR and sequenced. The association analysis was carried out using general linear model (SAS) to study the fixed effect of genotype on studied traits. The synonymous type SNP g.124556852C>T was found for the first time in Sahiwal cattle and possibly associated with udder type traits. The genotypic frequencies with respect to targeted loci g.124556852C>T indicated that homozygote CC (0.58) were highest in our resource population. The chi-square 2 test showed an agreement to Hardy–Weinberg equilibrium. The association analysis revealed significant association of genotypes with udder width, udder balance and 305 days milk yield. The attempt to find significant association with the visual udder traits was also done, however no significant alliance was observed. Homozygote CC animal were desirable as they favoured the selection of animal with superior udder width, udder balance and 305 day’s Milk Yield values.
Collapse
|
8
|
Effect of genomic X-chromosome regions on Nelore bull fertility. J Appl Genet 2021; 62:655-659. [PMID: 34145524 DOI: 10.1007/s13353-021-00645-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Scrotal circumference (SC) is a commonly used trait related to sexual precocity in bulls. Genome-wide association studies have uncovered a lot of genes related to this trait, however, only those present on autosomes. The inclusion of the second biggest chromosome (BTAX) can improve the knowledge of the genetic architecture of this trait. In this study, we performed a weighted, single-step, genome-wide association study using a 777 k BovineHD BeadChip (IllumHD) to analyze the association between SNPs and SC in Brazilian Nelore cattle. Phenotypes from 79,300 males and 3263 genotypes (2017 from females and 1246 from males)-(39,367 SNPs markers located at ChrX) were used. We identified eight regions on chromosome X that displayed important associations with SC. The results showed that together the genomic windows explained 28.52% of the genetic variance for the examined trait. Genes with potential functions in reproduction and fertility regulation were highlighted as candidates for sexual precocity rates in Nelore cattle (AFF2 and PJA1). Moreover, we found 10 genes that had not previously been identified as being associated with sexual precocity traits in cattle. These findings will further advance our understanding of the genetic architecture, considering mainly the presence of the chromosome X, for indicine cattle reproductive traits, being useful in the context of genomic prediction in beef cattle.
Collapse
|
9
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|
10
|
Alves JS, Diaz IDPS, da Cruz VAR, Bastos MS, de Oliveira LSM, de Albuquerque LG, de Camargo GMF, Costa RB. The effect of mitochondrial DNA polymorphisms on cattle reproduction. Mol Biol Rep 2021; 48:1005-1008. [PMID: 33393009 DOI: 10.1007/s11033-020-06068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to identify SNPs located in mitochondrial DNA that are associated with reproductive traits in beef cows. A total of 1999 Nelore females genotyped with the high-density Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA, USA) were used to study the association of mitochondrial DNA variants with reproductive traits using a single-step procedure. In a preliminary analysis, the present results indicate a small participation of the mitogenome in the expression of reproductive traits in beef cattle. However, possible difficulties related to the biological characteristics of mitochondrial DNA and its inheritance, genotyping, and annotation of the phenotypes studied may also explain the results.
Collapse
Affiliation(s)
- Jackeline Santos Alves
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Iara Del Pilar Solar Diaz
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Marisa Silva Bastos
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
| |
Collapse
|
11
|
Del Pilar Solar Diaz I, de Camargo GMF, Rocha da Cruz VA, da Costa Hermisdorff I, Carvalho CVD, de Albuquerque LG, Costa RB. Effect of the X chromosome in genomic evaluations of reproductive traits in beef cattle. Anim Reprod Sci 2020; 225:106682. [PMID: 33360620 DOI: 10.1016/j.anireprosci.2020.106682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate whether there are predictive advantages for breeding values with inclusion of X chromosome genomic markers for reproductive (occurrence of early pregnancy - P16 and age at first calving - AFC) and andrological (scrotal circumference -SC) variables in beef cattle. There were 3263 genotypes of females and males evaluated. There were breeding value estimates for SC, AFC and P16 considering two scenarios: 1) only autosomal markers or 2) autosomal and X chromosome markers. To evaluate effects of inclusion of X chromosome markers on selection, responses to selection were compared including or not including genomic marker information from the X chromosome. There were greater heritability estimates for SC (0.40 and 0.31), AFC (0.11 and 0.09) and P16 (0.43 and 0.38) when analyses included, compared with not including, genomic marker information from the X chromosome. When selection is based on results from analyses that did not include information for the X chromosome, there was about a 7 % lesser mean genomic breeding value for the SC traits for selected animals. For P16, there was an approximate 4% lesser breeding value without inclusion of genomic marker information from the X chromosome, while this inclusion did not have as great an effect on the breeding value for AFC. There was an average predictive correlation of 0.79, 0.98 and 0.84 for SC, AFC and P16, respectively. These estimates indicate inclusion of the X chromosome genomic marker information in the analysis can improve prediction of genomic breeding values, especially for SC.
Collapse
Affiliation(s)
- Iara Del Pilar Solar Diaz
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), 40170-110, Salvador, BA, Brazil
| | | | | | - Isis da Costa Hermisdorff
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), 40170-110, Salvador, BA, Brazil
| | | | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, SP, Brazil
| | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), 40170-110, Salvador, BA, Brazil.
| |
Collapse
|
12
|
Sweett H, Fonseca PAS, Suárez-Vega A, Livernois A, Miglior F, Cánovas A. Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle. Sci Rep 2020; 10:20102. [PMID: 33208801 PMCID: PMC7676258 DOI: 10.1038/s41598-020-75758-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Fertility plays a key role in the success of calf production, but there is evidence that reproductive efficiency in beef cattle has decreased during the past half-century worldwide. Therefore, identifying animals with superior fertility could significantly impact cow-calf production efficiency. The objective of this research was to identify candidate regions affecting bull fertility in beef cattle and positional candidate genes annotated within these regions. A GWAS using a weighted single-step genomic BLUP approach was performed on 265 crossbred beef bulls to identify markers associated with scrotal circumference (SC) and sperm motility (SM). Eight windows containing 32 positional candidate genes and five windows containing 28 positional candidate genes explained more than 1% of the genetic variance for SC and SM, respectively. These windows were selected to perform gene annotation, QTL enrichment, and functional analyses. Functional candidate gene prioritization analysis revealed 14 prioritized candidate genes for SC of which MAP3K1 and VIP were previously found to play roles in male fertility. A different set of 14 prioritized genes were identified for SM and five were previously identified as regulators of male fertility (SOD2, TCP1, PACRG, SPEF2, PRLR). Significant enrichment results were identified for fertility and body conformation QTLs within the candidate windows. Gene ontology enrichment analysis including biological processes, molecular functions, and cellular components revealed significant GO terms associated with male fertility. The identification of these regions contributes to a better understanding of fertility associated traits and facilitates the discovery of positional candidate genes for future investigation of causal mutations and their implications.
Collapse
Affiliation(s)
- H Sweett
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - P A S Fonseca
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Suárez-Vega
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Livernois
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F Miglior
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
13
|
Diaz IDPS, de Camargo GMF, Cruz VARD, Hermisdorff IDC, Carvalho CVD, de Albuquerque LG, Costa RB. Mapping genomic regions for reproductive traits in beef cattle: Inclusion of the X chromosome. Reprod Domest Anim 2020; 55:1650-1654. [PMID: 32853424 DOI: 10.1111/rda.13810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Although the second largest chromosome of the genome, the X chromosome is usually excluded from genome-wide association studies (GWAS). Considering the presence and importance of genes on this chromosome that are involved in reproduction, the aim of this study was to evaluate the effect of its inclusion in GWAS on reproductive traits (scrotal circumference [SC], early pregnancy [P16] and age at first calving [AFC]) in a Nelore herd. Genotype data from 3,263 animals with the above-mentioned phenotypes were used. The results showed an increase in the variances explained by the autosomal markers for all traits when the X chromosome was not included. For SC, there was an increase of more than 10% for the windows on chromosomes 2 and 6. For P16, the effect was increased by almost 20% for windows on chromosome 5. The same pattern was found for AFC, with an increase of more than 10% for the most important windows. The results indicate that the noninclusion of the X chromosome can overestimate the effects of autosomes on SC, P16 and AFC not only because of the additive effect of the X chromosome itself but also because of its epistatic effect on autosomal genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, Brazil
| | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
14
|
Fortes MRS, Porto-Neto LR, Satake N, Nguyen LT, Freitas AC, Melo TP, Scalez DCB, Hayes B, Raidan FSS, Reverter A, Boe-Hansen GB. X chromosome variants are associated with male fertility traits in two bovine populations. Genet Sel Evol 2020; 52:46. [PMID: 32787790 PMCID: PMC7425018 DOI: 10.1186/s12711-020-00563-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Twenty-five phenotypes were measured as indicators of bull fertility (1099 Brahman and 1719 Tropical Composite bulls). Measurements included sperm morphology, scrotal circumference, and sperm chromatin phenotypes such as DNA fragmentation and protamine deficiency. We estimated the heritability of these phenotypes and carried out genome-wide association studies (GWAS) within breed, using the bovine high-density chip, to detect quantitative trait loci (QTL). RESULTS Our analyses suggested that both sperm DNA fragmentation and sperm protamine deficiency are heritable (h2 from 0.10 to 0.22). To confirm these first estimates of heritability, further studies on sperm chromatin traits, with larger datasets are necessary. Our GWAS identified 12 QTL for bull fertility traits, based on at least five polymorphisms (P < 10-8) for each QTL. Five QTL were identified in Brahman and another seven in Tropical Composite bulls. Most of the significant polymorphisms detected in both breeds and nine of the 12 QTL were on chromosome X. The QTL were breed-specific, but for some traits, a closer inspection of the GWAS results revealed suggestive single nucleotide polymorphism (SNP) associations (P < 10-7) in both breeds. For example, the QTL for inhibin level in Braham could be relevant to Tropical Composites too (many polymorphisms reached P < 10-7 in the same region). The QTL for sperm midpiece morphological abnormalities on chromosome X (QTL peak at 4.92 Mb, P < 10-17) is an example of a breed-specific QTL, supported by 143 significant SNPs (P < 10-8) in Brahman, but absent in Tropical Composites. Our GWAS results add evidence to the mammalian specialization of the X chromosome, which during evolution has accumulated genes linked to spermatogenesis. Some of the polymorphisms on chromosome X were associated to more than one genetically correlated trait (correlations ranged from 0.33 to 0.51). Correlations and shared polymorphism associations support the hypothesis that these phenotypes share the same underlying cause, i.e. defective spermatogenesis. CONCLUSIONS Genetic improvement for bull fertility is possible through genomic selection, which is likely more accurate if the QTL on chromosome X are considered in the predictions. Polymorphisms associated with male fertility accumulate on this chromosome in cattle, as in humans and mice, suggesting its specialization.
Collapse
Affiliation(s)
- Marina R. S. Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
| | | | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343 Australia
| | - Loan T. Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ana Claudia Freitas
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Thaise P. Melo
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Daiane Cristina Becker Scalez
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Ben Hayes
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
| | | | | | - Gry B. Boe-Hansen
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343 Australia
| |
Collapse
|
15
|
Yang X, Ning Y, Mei C, Zhang W, Sun J, Wang S, Zan L. The role of BAMBI in regulating adipogenesis and myogenesis and the association between its polymorphisms and growth traits in cattle. Mol Biol Rep 2020; 47:5963-5974. [PMID: 32740798 DOI: 10.1007/s11033-020-05670-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein that affects the growth, development and muscle regeneration of the body by regulating the TGF-β, BMP and Wnt signaling pathways. Studies have found that BAMBI has important regulatory functions in skeletal muscle and preadipocytes in vivo and in vitro. However, research on this protein in cattle is lacking. In this study, to determine the role of BAMBI in the growth and development of cattle, we first found that the expression of BAMBI in adipose tissue and longissimus muscle of newborn and adult Qinchuan beef cattle was significantly different. Then we showed that BAMBI knockdown promoted the differentiation of bovine preadipocytes and suppressed myoblast myogenesis, as indicated by the increased lipid droplets and the decreased myotubes, as well as the corresponding significant changes in the expression of PPARγ, C/EBPα, C/EBPβ, FABP4, MyoD, MyoG and Myf6. Finally, to further verify the effect of BAMBI on the growth performance of cattle, we identified seven novel SNPs in the BAMBI genomic region, which were significantly correlated with one or more growth traits (p < 0.05). Furthermore, individuals with haplotype H1H4 (TC-GA-CT-CA-AT-AT-AG) had a higher body and carcass quality than those with other haplotypes (p < 0.05). In brief, BAMBI may be a functional gene for the differentiation of bovine preadipocytes and myoblasts, and variations in the BAMBI genomic region, especially the combined haplotype H1H4, may benefit marker-assisted selection in cattle.
Collapse
Affiliation(s)
- Xinran Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yue Ning
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China.,National Beef Cattle Improvement Center, Yangling, 712100, Shaanxi, China
| | - Weiyi Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jingchun Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China. .,National Beef Cattle Improvement Center, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Zhang TT, Liu H, Gao QY, Yang T, Liu JN, Ma XF, Li ZH. Gene transfer and nucleotide sequence evolution by Gossypium cytoplasmic genomes indicates novel evolutionary characteristics. PLANT CELL REPORTS 2020; 39:765-777. [PMID: 32215683 DOI: 10.1007/s00299-020-02529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The DNA fragments transferred among cotton cytoplasmic genomes are highly differentiated. The wild D group cotton species have undergone much greater evolution compared with cultivated AD group. Cotton (Gossypium spp.) is one of the most economically important fiber crops worldwide. Gene transfer, nucleotide evolution, and the codon usage preferences in cytoplasmic genomes are important evolutionary characteristics of high plants. In this study, we analyzed the nucleotide sequence evolution, codon usage, and transfer of cytoplasmic DNA fragments in Gossypium chloroplast (cp) and mitochondrial (mt) genomes, including the A genome group, wild D group, and cultivated AD group of cotton species. Our analyses indicated that the differences in the length of transferred cytoplasmic DNA fragments were not significant in mitochondrial and chloroplast sequences. Analysis of the transfer of tRNAs found that trnQ and nine other tRNA genes were commonly transferred between two different cytoplasmic genomes. The Codon Adaptation Index values showed that Gossypium cp genomes prefer A/T-ending codons. Codon preference selection was higher in the D group than the other two groups. Nucleotide sequence evolution analysis showed that intergenic spacer sequences were more variable than coding regions and nonsynonymous mutations were clearly more common in cp genomes than mt genomes. Evolutionary analysis showed that the substitution rate was much higher in cp genomes than mt genomes. Interestingly, the D group cotton species have undergone much faster evolution compared with cultivated AD groups, possibly due to the selection and domestication of diverse cotton species. Our results demonstrate that gene transfer and differential nucleotide sequence evolution have occurred frequently in cotton cytoplasmic genomes.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Heng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qi-Yuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ting Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jian-Ni Liu
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
17
|
Fonseca PAS, Suárez-Vega A, Cánovas A. Weighted Gene Correlation Network Meta-Analysis Reveals Functional Candidate Genes Associated with High- and Sub-Fertile Reproductive Performance in Beef Cattle. Genes (Basel) 2020; 11:E543. [PMID: 32408659 PMCID: PMC7290847 DOI: 10.3390/genes11050543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Improved reproductive efficiency could lead to economic benefits for the beef industry, once the intensive selection pressure has led to a decreased fertility. However, several factors limit our understanding of fertility traits, including genetic differences between populations and statistical limitations. In the present study, the RNA-sequencing data from uterine samples of high-fertile (HF) and sub-fertile (SF) animals was integrated using co-expression network meta-analysis, weighted gene correlation network analysis, identification of upstream regulators, variant calling, and network topology approaches. Using this pipeline, top hub-genes harboring fixed variants (HF × SF) were identified in differentially co-expressed gene modules (DcoExp). The functional prioritization analysis identified the genes with highest potential to be key-regulators of the DcoExp modules between HF and SF animals. Consequently, 32 functional candidate genes (10 upstream regulators and 22 top hub-genes of DcoExp modules) were identified. These genes were associated with the regulation of relevant biological processes for fertility, such as embryonic development, germ cell proliferation, and ovarian hormone regulation. Additionally, 100 candidate variants (single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)) were identified within those genes. In the long-term, the results obtained here may help to reduce the frequency of subfertility in beef herds, reducing the associated economic losses caused by this condition.
Collapse
Affiliation(s)
- Pablo A. S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | | | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
18
|
Posbergh CJ, Thonney ML, Huson HJ. Genomic Approaches Identify Novel Gene Associations with Out of Season Lambing in Sheep. J Hered 2019; 110:577-586. [DOI: 10.1093/jhered/esz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Sheep are seasonally polyestrous, traditionally breeding when the day length shortens in the autumn. The changing photoperiod stimulates reproductive hormones through a series of chemical pathways, ultimately leading to cyclicity. Some breeds of sheep, such as the Polypay and Dorset, have been selected for reduced seasonality and can lamb year-round. Despite this selection, there is still variation within these breeds in the ability to lamb out of season. The identification of out of season lambing quantitative trait loci has the potential to improve genetic progress using genomic selection schemes. Association studies, fixation index (FST), and runs of homozygosity (ROH) were evaluated to identify regions of the genome that influence the ability of ewes to lamb out of season. All analyses used genotypic data from the Illumina Ovine HD beadchip. Genome-wide associations were tested both across breeds in 257 ewes and within the Dorset and Polypay breeds. FST was measured across breeds and between UK and US Dorsets to assess population differences. ROH were estimated in ewes to identify homozygous regions contributing to out of season lambing. Significant associations after multiple testing correction were found through these approaches, leading to the identification of several candidate genes for further study. Genes involved with eye development, reproductive hormones, and neuronal changes were identified as the most promising for influencing the ewe’s ability to lamb year-round. These candidate genes could be advantageous for selection for improved year-round lamb production and provide better insight into the complex regulation of seasonal reproduction.
Collapse
Affiliation(s)
| | | | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY
| |
Collapse
|
19
|
Carvalho CVD, Hermisdorff IDC, Souza IS, Junqueira GSB, Magalhães AFB, Fonseca LFS, de Albuquerque LG, Tonhati H, Carvalheiro R, de Camargo GMF, Costa RB. Influence of X-chromosome markers on reproductive traits of beef cattle. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Fonseca PADS, dos Santos FC, Lam S, Suárez-Vega A, Miglior F, Schenkel FS, Diniz LDAF, Id-Lahoucine S, Carvalho MRS, Cánovas A. Genetic mechanisms underlying spermatic and testicular traits within and among cattle breeds: systematic review and prioritization of GWAS results. J Anim Sci 2018; 96:4978-4999. [PMID: 30304443 PMCID: PMC6276581 DOI: 10.1093/jas/sky382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Reduced bull fertility imposes economic losses in bovine herds. Specifically, testicular and spermatic traits are important indicators of reproductive efficiency. Several genome-wide association studies (GWAS) have identified genomic regions associated with these fertility traits. The aims of this study were as follows: 1) to perform a systematic review of GWAS results for spermatic and testicular traits in cattle and 2) to identify key functional candidate genes for these traits. The identification of functional candidate genes was performed using a systems biology approach, where genes shared between traits and studies were evaluated by a guilt by association gene prioritization (GUILDify and ToppGene software) in order to identify the best functional candidates. These candidate genes were integrated and analyzed in order to identify overlapping patterns among traits and breeds. Results showed that GWAS for testicular-related traits have been developed for beef breeds only, whereas the majority of GWAS for spermatic-related traits were conducted using dairy breeds. When comparing traits measured within the same study, the highest number of genes shared between different traits was observed, indicating a high impact of the population genetic structure and environmental effects. Several chromosomal regions were enriched for functional candidate genes associated with fertility traits. Moreover, multiple functional candidate genes were enriched for markers in a species-specific basis, taurine (Bos taurus) or indicine (Bos indicus). For the different candidate regions identified in the GWAS in the literature, functional candidate genes were detected as follows: B. Taurus chromosome X (BTX) (TEX11, IRAK, CDK16, ATP7A, ATRX, HDAC6, FMR1, L1CAM, MECP2, etc.), BTA17 (TRPV4 and DYNLL1), and BTA14 (MOS, FABP5, ZFPM2). These genes are responsible for regulating important metabolic pathways or biological processes associated with fertility, such as progression of spermatogenesis, control of ciliary activity, development of Sertoli cells, DNA integrity in spermatozoa, and homeostasis of testicular cells. This study represents the first systematic review on male fertility traits in cattle using a system biology approach to identify key candidate genes for these traits.
Collapse
Affiliation(s)
- Pablo Augusto de Souza Fonseca
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | | | - Stephanie Lam
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Aroa Suárez-Vega
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Filippo Miglior
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | | | - Samir Id-Lahoucine
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | | | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Fonseca PADS, Id-Lahoucine S, Reverter A, Medrano JF, Fortes MS, Casellas J, Miglior F, Brito L, Carvalho MRS, Schenkel FS, Nguyen LT, Porto-Neto LR, Thomas MG, Cánovas A. Combining multi-OMICs information to identify key-regulator genes for pleiotropic effect on fertility and production traits in beef cattle. PLoS One 2018; 13:e0205295. [PMID: 30335783 PMCID: PMC6193631 DOI: 10.1371/journal.pone.0205295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
The identification of biological processes related to the regulation of complex traits is a difficult task. Commonly, complex traits are regulated through a multitude of genes contributing each to a small part of the total genetic variance. Additionally, some loci can simultaneously regulate several complex traits, a phenomenon defined as pleiotropy. The lack of understanding on the biological processes responsible for the regulation of these traits results in the decrease of selection efficiency and the selection of undesirable hitchhiking effects. The identification of pleiotropic key-regulator genes can assist in developing important tools for investigating biological processes underlying complex traits. A multi-breed and multi-OMICs approach was applied to study the pleiotropic effects of key-regulator genes using three independent beef cattle populations evaluated for fertility traits. A pleiotropic map for 32 traits related to growth, feed efficiency, carcass and meat quality, and reproduction was used to identify genes shared among the different populations and breeds in pleiotropic regions. Furthermore, data-mining analyses were performed using the Cattle QTL database (CattleQTLdb) to identify the QTL category annotated in the regions around the genes shared among breeds. This approach allowed the identification of a main gene network (composed of 38 genes) shared among breeds. This gene network was significantly associated with thyroid activity, among other biological processes, and displayed a high regulatory potential. In addition, it was possible to identify genes with pleiotropic effects related to crucial biological processes that regulate economically relevant traits associated with fertility, production and health, such as MYC, PPARG, GSK3B, TG and IYD genes. These genes will be further investigated to better understand the biological processes involved in the expression of complex traits and assist in the identification of functional variants associated with undesirable phenotypes, such as decreased fertility, poor feed efficiency and negative energetic balance.
Collapse
Affiliation(s)
- Pablo Augusto de Souza Fonseca
- University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
- Universidade Federal de Minas Gerais, Departamento de Biologia Geral, Belo Horizonte, Minas Gerais, Brazil
| | - Samir Id-Lahoucine
- University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Juan F. Medrano
- University of California-Davis, Department of Animal Science, Davis, California, United States of America
| | - Marina S. Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland, Australia
| | - Joaquim Casellas
- Universitat Autònoma de Barcelona, Departament de Ciència Animal i dels Aliments, Barcelona, Bellaterra, Barcelona, Spain
| | - Filippo Miglior
- University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
- Canadian Dairy Network, Guelph, Ontario, Canada
| | - Luiz Brito
- University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
| | - Maria Raquel S. Carvalho
- Universidade Federal de Minas Gerais, Departamento de Biologia Geral, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio S. Schenkel
- University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
| | - Loan T. Nguyen
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland, Australia
| | - Laercio R. Porto-Neto
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Milton G. Thomas
- Colorado State University, Department of Animal Science, Fort-Colins, Colorado, United States of America
| | - Angela Cánovas
- University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Sha Y, Zheng L, Ji Z, Mei L, Ding L, Lin S, Wang X, Yang X, Li P. A novel TEX11 mutation induces azoospermia: a case report of infertile brothers and literature review. BMC MEDICAL GENETICS 2018; 19:63. [PMID: 29661171 PMCID: PMC5902858 DOI: 10.1186/s12881-018-0570-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Background Testis-expressed gene 11 (TEX11) is an X-linked gene and essential for meiotic recombination and chromosomal synapsis. TEX11 deficiency causes meiotic arrest and male infertility, and many TEX11 mutations have been found in azoospermic and infertile men. Case presentation This study reported one novel TEX11 mutation (2653G → T, in exon 29, GenBank accession number, NM_031276) in two brothers with azoospermia. This mutation was firstly screened out by whole-exome sequencing (WES) and further verified by amplifying and sequencing the specific exon 29. Surprisingly, the same exonic missense mutation (W856C) was observed in two brothers but not in their mother. Histological analysis of testicular biopsy from both brothers revealed meiotic arrest and no post-meiotic round spermatids and mature spermatozoa were observed in the seminiferous tubules. TEX11 expression was observed strongly in spermatogonia and weakly in spermatocytes, but not in Sertoli cells and interstitial cells. Conclusions We identified one novel TEX11 mutation in two brothers and summarized the literature regarding TEX11 mutations and male infertility. This study and previous literature indicate that TEX11 mutations are closely associated with male infertility, especially azoospermia, although auxiliary clinical analyses are needed to figure out the causes of male infertility.
Collapse
Affiliation(s)
- Yanwei Sha
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China
| | - Liangkai Zheng
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China
| | - Zhiyong Ji
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China
| | - Libin Mei
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China
| | - Lu Ding
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China
| | - Shaobin Lin
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China
| | - Xu Wang
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China
| | - Xiaoyu Yang
- Department of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Ping Li
- Reproductive Medicine Center, Xiamen Women's and Children's Health Hospital, Xiamen, 361003, Fujian Province, China.
| |
Collapse
|
23
|
Abstract
Fertility is one of the most economically important traits in both beef and dairy cattle production; however, only female fertility is typically subjected to selection. Male and female fertility have only a small positive genetic correlation which is likely due to the existence of a relatively small number of genetic variants within each breed that cause embryonic and developmental losses. Genomic tools have been developed that allow the identification of lethal recessive loci based upon marker haplotypes. Selection against haplotypes harbouring lethal alleles in conjunction with selection to improve female fertility will result in an improvement in male fertility. Genomic selection has resulted in a two to fourfold increase in the rate of genetic improvement of most dairy traits in US Holstein cattle, including female fertility. Considering the rapidly increasing rate of adoption of high-throughput single nucleotide polymorphism genotyping in both the US dairy and beef industries, genomic selection should be the most effective of all currently available approaches to improve male fertility. However, male fertility phenotypes are not routinely recorded in natural service mating systems and when artificial insemination is used, semen doses may be titrated to lower post-thaw progressively motile sperm numbers for high-merit and high-demand bulls. Standardization of sperm dosages across bull studs for semen distributed from young bulls would allow the capture of sire conception rate phenotypes for young bulls that could be used to generate predictions of genetic merit for male fertility in both males and females. These data would allow genomic selection to be implemented for male fertility in addition to female fertility within the US dairy industry. While the rate of use of artificial insemination is much lower within the US beef industry, the adoption of sexed semen in the dairy industry has allowed dairy herds to select cows from which heifer replacements are produced and cows that are used to produce terminal crossbred bull calves sired by beef breed bulls. Capture of sire conception rate phenotypes in dairy herds utilizing sexed semen will contribute data enabling genomic selection for male fertility in beef cattle breeds. As the commercial sector of the beef industry increasingly adopts fixed-time artificial insemination, sire conception rate phenotypes can be captured to facilitate the development of estimates of genetic merit for male fertility within US beef breeds.
Collapse
|
24
|
Review: Sperm-oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin-proteasome system. Animal 2018; 12:s121-s132. [PMID: 29477154 DOI: 10.1017/s1751731118000253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fertilization is an intricate cascade of events that irreversibly alter the participating male and female gamete and ultimately lead to the union of paternal and maternal genomes in the zygote. Fertilization starts with sperm capacitation within the oviductal sperm reservoir, followed by gamete recognition, sperm-zona pellucida interactions and sperm-oolemma adhesion and fusion, followed by sperm incorporation, oocyte activation, pronuclear development and embryo cleavage. At fertilization, bull spermatozoon loses its acrosome and plasma membrane components and contributes chromosomes, centriole, perinuclear theca proteins and regulatory RNAs to the zygote. While also incorporated in oocyte cytoplasm, structures of the sperm tail, including mitochondrial sheath, axoneme, fibrous sheath and outer dense fibers are degraded and recycled. The ability of some of these sperm contributed components to give rise to functional zygotic structures and properly induce embryonic development may vary between bulls, bearing on their reproductive performance, and on the fitness, health, fertility and production traits of their offspring. Proper functioning, recycling and remodeling of gamete structures at fertilization is aided by the ubiquitin-proteasome system (UPS), the universal substrate-specific protein recycling pathway present in bovine and other mammalian oocytes and spermatozoa. This review is focused on the aspects of UPS relevant to bovine fertilization and bull fertility.
Collapse
|
25
|
Júnior GAF, Costa RB, de Camargo GMF, Carvalheiro R, Rosa GJM, Baldi F, Garcia DA, Gordo DGM, Espigolan R, Takada L, Magalhães AFB, Bresolin T, Feitosa FLB, Chardulo LAL, de Oliveira HN, de Albuquerque LG. Genome scan for postmortem carcass traits in Nellore cattle1. J Anim Sci 2016; 94:4087-4095. [DOI: 10.2527/jas.2016-0632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - R. B. Costa
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - G. M. F. de Camargo
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - R. Carvalheiro
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
- CNPq, Brasília, DF, Brazil
| | | | - F. Baldi
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
- CNPq, Brasília, DF, Brazil
| | - D. A. Garcia
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - D. G. M. Gordo
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - R. Espigolan
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - L. Takada
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - A. F. B. Magalhães
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - T. Bresolin
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - F. L. B. Feitosa
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
| | - L. A. L. Chardulo
- Faculdade de Medicina Veterinária e Zootecnia, UNESP, Botucatu, SP 18618-970, Brazil
- CNPq, Brasília, DF, Brazil
| | - H. N. de Oliveira
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
- CNPq, Brasília, DF, Brazil
| | - L. G. de Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP 14884-000, Brazil
- CNPq, Brasília, DF, Brazil
| |
Collapse
|
26
|
Mao X, Johansson AM, Sahana G, Guldbrandtsen B, De Koning DJ. Short communication: Imputation of markers on the bovine X chromosome. J Dairy Sci 2016; 99:7313-7318. [DOI: 10.3168/jds.2016-11160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/03/2016] [Indexed: 11/19/2022]
|
27
|
Irano N, de Camargo GMF, Costa RB, Terakado APN, Magalhães AFB, Silva RMDO, Dias MM, Bignardi AB, Baldi F, Carvalheiro R, de Oliveira HN, de Albuquerque LG. Genome-Wide Association Study for Indicator Traits of Sexual Precocity in Nellore Cattle. PLoS One 2016; 11:e0159502. [PMID: 27494397 PMCID: PMC4975395 DOI: 10.1371/journal.pone.0159502] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to perform a genome-wide association study (GWAS) to detect chromosome regions associated with indicator traits of sexual precocity in Nellore cattle. Data from Nellore animals belonging to farms which participate in the DeltaGen® and Paint® animal breeding programs, were used. The traits used in this study were the occurrence of early pregnancy (EP) and scrotal circumference (SC). Data from 72,675 females and 83,911 males with phenotypes were used; of these, 1,770 females and 1,680 males were genotyped. The SNP effects were estimated with a single-step procedure (WssGBLUP) and the observed phenotypes were used as dependent variables. All animals with available genotypes and phenotypes, in addition to those with only phenotypic information, were used. A single-trait animal model was applied to predict breeding values and the solutions of SNP effects were obtained from these breeding values. The results of GWAS are reported as the proportion of variance explained by windows with 150 adjacent SNPs. The 10 windows that explained the highest proportion of variance were identified. The results of this study indicate the polygenic nature of EP and SC, demonstrating that the indicator traits of sexual precocity studied here are probably controlled by many genes, including some of moderate effect. The 10 windows with large effects obtained for EP are located on chromosomes 5, 6, 7, 14, 18, 21 and 27, and together explained 7.91% of the total genetic variance. For SC, these windows are located on chromosomes 4, 8, 11, 13, 14, 19, 22 and 23, explaining 6.78% of total variance. GWAS permitted to identify chromosome regions associated with EP and SC. The identification of these regions contributes to a better understanding and evaluation of these traits, and permits to indicate candidate genes for future investigation of causal mutations.
Collapse
Affiliation(s)
- Natalia Irano
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | | | - Raphael Bermal Costa
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Ana Paula Nascimento Terakado
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Ana Fabrícia Braga Magalhães
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Rafael Medeiros de Oliveira Silva
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Marina Mortati Dias
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Annaiza Braga Bignardi
- Grupo de Melhoramento Animal de Mato Grosso, Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Mato Grosso, Rondonópolis, Mato Grosso, Brasil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Henrique Nunes de Oliveira
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
| | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
28
|
Magalhães AFB, de Camargo GMF, Fernandes GA, Gordo DGM, Tonussi RL, Costa RB, Espigolan R, Silva RMDO, Bresolin T, de Andrade WBF, Takada L, Feitosa FLB, Baldi F, Carvalheiro R, Chardulo LAL, de Albuquerque LG. Genome-Wide Association Study of Meat Quality Traits in Nellore Cattle. PLoS One 2016; 11:e0157845. [PMID: 27359122 PMCID: PMC4928802 DOI: 10.1371/journal.pone.0157845] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/06/2016] [Indexed: 01/19/2023] Open
Abstract
The objective of this study was to identify genomic regions that are associated with meat quality traits in the Nellore breed. Nellore steers were finished in feedlots and slaughtered at a commercial slaughterhouse. This analysis included 1,822 phenotypic records of tenderness and 1,873 marbling records. After quality control, 1,630 animals genotyped for tenderness, 1,633 animals genotyped for marbling, and 369,722 SNPs remained. The results are reported as the proportion of variance explained by windows of 150 adjacent SNPs. Only windows with largest effects were considered. The genomic regions were located on chromosomes 5, 15, 16 and 25 for marbling and on chromosomes 5, 7, 10, 14 and 21 for tenderness. These windows explained 3,89% and 3,80% of the additive genetic variance for marbling and tenderness, respectively. The genes associated with the traits are related to growth, muscle development and lipid metabolism. The study of these genes in Nellore cattle is the first step in the identification of causal mutations that will contribute to the genetic evaluation of the breed.
Collapse
Affiliation(s)
- Ana F. B. Magalhães
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Gregório M. F. de Camargo
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Gerardo A. Fernandes
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Daniel G. M. Gordo
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Rafael L. Tonussi
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Raphael B. Costa
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Rafael Espigolan
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Rafael M. de O. Silva
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Tiago Bresolin
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Willian B. F. de Andrade
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Luciana Takada
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Fabieli L. B. Feitosa
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
| | - Luis A. L. Chardulo
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia, Botucatu, São Paulo, Brazil
| | - Lucia G. de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
29
|
de Camargo GMF, Aspilcueta-Borquis RR, Fortes MRS, Porto-Neto R, Cardoso DF, Santos DJA, Lehnert SA, Reverter A, Moore SS, Tonhati H. Prospecting major genes in dairy buffaloes. BMC Genomics 2015; 16:872. [PMID: 26510479 PMCID: PMC4625573 DOI: 10.1186/s12864-015-1986-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asian buffaloes (Bubalus bubalis) have an important socio-economic role. The majority of the population is situated in developing countries. Due to the scarce resources in these countries, very few species-specific biotechnology tools exist and a lot of cattle-derived technologies are applied to buffaloes. However, the application of cattle genomic tools to buffaloes is not straightforward and, as results suggested, despite genome sequences similarity the genetic polymorphisms are different. RESULTS The first SNP chip genotyping platform designed specifically for buffaloes has recently become available. Herein, a genome-wide association study (GWAS) and gene network analysis carried out in buffaloes is presented. Target phenotypes were six milk production and four reproductive traits. GWAS identified SNP with significant associations and suggested candidate genes that were specific to each trait and also genes with pleiotropic effect, associated to multiple traits. CONCLUSIONS Network predictions of interactions between these candidate genes may guide further molecular analyses in search of disruptive mutations, help select genes for functional experiments and evidence metabolism differences in comparison to cattle. The cattle SNP chip does not offer an optimal coverage of buffalo genome, thereafter the development of new buffalo-specific genetic technologies is warranted. An annotated reference genome would greatly facilitate genetic research, with potential impact to buffalo-based dairy production.
Collapse
Affiliation(s)
- G M F de Camargo
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - R R Aspilcueta-Borquis
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - M R S Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - R Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Agriculture Flagship, St Lucia, Brisbane, QLD, 4072, Australia.
| | - D F Cardoso
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - D J A Santos
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - S A Lehnert
- Commonwealth Scientific and Industrial Research Organization, Agriculture Flagship, St Lucia, Brisbane, QLD, 4072, Australia.
| | - A Reverter
- Commonwealth Scientific and Industrial Research Organization, Agriculture Flagship, St Lucia, Brisbane, QLD, 4072, Australia.
| | - S S Moore
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4067, Australia.
| | - H Tonhati
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|