1
|
Lv Y, Yun L, Jia X, Mu Y, Li Z. Transcriptome Analysis of the Seed Shattering Mechanism in Psathyrostachys juncea Using Full-Length Transcriptome Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:3474. [PMID: 39771172 PMCID: PMC11728615 DOI: 10.3390/plants13243474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. Psathyrostachys juncea, a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application. To investigate the mechanisms underlying SS, second-generation Illumina sequencing and third-generation PacBio sequencing were conducted on abscission zone tissues of P. juncea at 7, 14, 21, and 28 days after heading. GO enrichment analysis identified several significant biological processes, including the "cell wall macromolecule catabolic process", "cell wall polysaccharide catabolic process", "hemicellulose catabolic process", and "xylan catabolic process", all involved in cell wall degradation. KEGG enrichment analysis showed that differentially expressed genes were predominantly enriched in pathways related to "starch and sucrose metabolism", "fructose and mannose metabolism", "phenylpropanoid biosynthesis", "pentose and glucuronate interconversions", and "galactose metabolism", each linked to both the synthesis and degradation of the cell wall. Further analysis of the "starch and sucrose metabolism" pathway revealed genes encoding fructokinase, hexokinase, β-glucosidase, sucrose phosphate synthase, sucrose synthase, and endoglucanase, all of which affected cellulose content. Reduced cellulose content can alter cell wall structure, leading to SS. These findings provide new insights into the regulation of SS in P. juncea and offer valuable references for other species within the Poaceae family.
Collapse
Affiliation(s)
| | - Lan Yun
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.J.); (Y.M.); (Z.L.)
| | | | | | | |
Collapse
|
2
|
Pham MP, Vu DD, Bei C, Bui TTX, Vu DG, Shah SNM. Characterisation of the Cinnamomumparthenoxylon (Jack) Meisn (Lauraceae) transcriptome using Illumina paired-end sequencing and EST-SSR markers development for population genetics. Biodivers Data J 2024; 12:e123405. [PMID: 38919771 PMCID: PMC11196892 DOI: 10.3897/bdj.12.e123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Cinnamomumparthenoxylon is an endemic and endangered species with significant economic and ecological value in Vietnam. A better understanding of the genetic architecture of the species will be useful when planning management and conservation. We aimed to characterize the transcriptome of C.parthenoxylon, develop novel molecular markers, and assess the genetic variability of the species. First, transcriptome sequencing of five trees (C.parthenoxylon) based on root, leaf, and stem tissues was performed for functional annotation analysis and development of novel molecular markers. The transcriptomes of C.parthenoxylon were analyzed via an Illumina HiSeqTM 4000 sequencing system. A total of 27,363,199 bases were generated for C.parthenoxylon. De novo assembly indicated that a total of 160,435 unigenes were generated (average length = 548.954 bp). The 51,691 unigenes were compared against different databases, i.e. COG, GO, KEGG, KOG, Pfam, Swiss-Prot, and NR for functional annotation. Furthermore, a total of 12,849 EST-SSRs were identified. Of the 134 primer pairs, 54 were randomly selected for testing, with 15 successfully amplified across nine populations of C.parthenoxylon. We uncovered medium levels of genetic diversity (PIC = 0.52, Na = 3.29, Ne = 2.18, P = 94.07%, Ho = 0.56 and He = 0.47) within the studied populations. The molecular variance was 10% among populations and low genetic differentiation (Fst = 0.06) indicated low gene flow (Nm = 2.16). A reduction in the population size of C.parthenoxylon was detected using BOTTLENECK (VP population). The structure analysis suggested two optimal genetic clusters related to gene flow among the populations. Analysis of molecular variance (AMOVA) revealed higher genetic variation within populations (90%) than among populations (10%). The UPGMA approach and DAPC divided the nine populations into three main clusters. Our findings revealed a significant fraction of the transcriptome sequences and these newlydeveloped novel EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity and molecular marker-assisted selection in C.parthenoxylon. This study provides comprehensive genetic resources for the breeding and conservation of different varieties of C.parthenoxylon.
Collapse
Affiliation(s)
- Mai-Phuong Pham
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology, Hanoi, VietnamGraduate University of Science and Technology (GUST), Vietnam Academy of Science and TechnologyHanoiVietnam
- Join Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, VietnamJoin Vietnam–Russia Tropical Science and Technology Research CenterHanoiVietnam
| | - Dinh Duy Vu
- Join Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, VietnamJoin Vietnam–Russia Tropical Science and Technology Research CenterHanoiVietnam
| | - Cui Bei
- Jiangsu Vocational Institute of Architectural Technology, School of Architectural Decoration, Xuzhou 221100, Jiangsu, ChinaJiangsu Vocational Institute of Architectural Technology, School of Architectural Decoration, Xuzhou 221100JiangsuChina
| | - Thi Tuyet Xuan Bui
- Institute of Ecology and Biological Resource, Vietnam Academy of Science and Technology, Hanoi, VietnamInstitute of Ecology and Biological Resource, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Dinh Giap Vu
- Institute of Technology, Hanoi University of Industry (HaUI), Hanoi, VietnamInstitute of Technology, Hanoi University of Industry (HaUI)HanoiVietnam
| | - Syed Noor Muhammad Shah
- Department of Horticulture, Faculty of Agriculture, Gomal University, Dera Ismail Khan, PakistanDepartment of Horticulture, Faculty of Agriculture, Gomal UniversityDera Ismail KhanPakistan
| |
Collapse
|
3
|
Li X, Sheng W, Dong Q, Huang R, Dong R, Liu G, Ding X, Zhang J. Analysis of seed production and seed shattering in a new artificial grassland forage: pigeon pea. FRONTIERS IN PLANT SCIENCE 2023; 14:1146398. [PMID: 37251779 PMCID: PMC10213504 DOI: 10.3389/fpls.2023.1146398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Pigeon pea is a perennial leguminous plant that is widely cultivated as a forage and pharmaceutical plant in subtropical and tropical areas, especially in artificial grasslands. Higher seed shattering is one of the most important factors in potentially increasing the seed yield of pigeon pea. Advance technology is necessary to increase the seed yield of pigeon pea. Through 2 consecutive years of field observations, we found that fertile tiller number was the key component of the seed yield of pigeon pea due to the direct effect of fertile tiller number per plant (0.364) on pigeon pea seed yield was the highest. Multiplex morphology, histology, and cytological and hydrolytic enzyme activity analysis showed that shatter-susceptible and shatter-resistant pigeon peas possessed an abscission layer at the same time (10 DAF); however, abscission layer cells dissolved earlier in shattering-susceptible pigeon pea (15 DAF), which led to the tearing of the abscission layer. The number of vascular bundle cells and vascular bundle area were the most significant negative factors (p< 0.01) affecting seed shattering. Cellulase and polygalacturonase were involved in the dehiscence process. In addition, we inferred that larger vascular bundle tissues and cells in the ventral suture of seed pods could effectively resist the dehiscence pressure of the abscission layer. This study provides foundation for further molecular studies to increase the seed yield of pigeon pea.
Collapse
Affiliation(s)
- Xinyong Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Wei Sheng
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Qianzhen Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rui Huang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Rongshu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Xipeng Ding
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China
| |
Collapse
|
4
|
Wang Y, Liu K, Zhou Y, Chen Y, Jin C, Hu Y. Integrated Analysis of microRNA and RNA-Seq Reveals Phenolic Acid Secretion Metabolism in Continuous Cropping of Polygonatum odoratum. PLANTS (BASEL, SWITZERLAND) 2023; 12:943. [PMID: 36840290 PMCID: PMC9962977 DOI: 10.3390/plants12040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Polygonatum odoratum (Mill.) Druce is an essential Chinese herb, but continuous cropping (CC) often results in a serious root rot disease, reducing the yield and quality. Phenolic acids, released through plant root exudation, are typical autotoxic substances that easily cause root rot in CC. To better understand the phenolic acid biosynthesis of P. odoratum roots in response to CC, this study performed a combined microRNA (miRNA)-seq and RNA-seq analysis. The phenolic acid contents of the first cropping (FC) soil and CC soil were determined by HPLC analysis. The results showed that CC soils contained significantly higher levels of p-coumaric acid, phenylacetate, and caffeic acid than FC soil, except for cinnamic acid and sinapic acid. Transcriptome identification and miRNA sequencing revealed 15,788 differentially expressed genes (DEGs) and 142 differentially expressed miRNAs (DEMs) in roots from FC and CC plants. Among them, 28 DEGs and eight DEMs were involved in phenolic acid biosynthesis. Meanwhile, comparative transcriptome and microRNA-seq analysis demonstrated that eight miRNAs corresponding to five target DEGs related to phenolic acid synthesis were screened. Among them, ath-miR172a, ath-miR172c, novel_130, sbi-miR172f, and tcc-miR172d contributed to phenylalanine synthesis. Osa-miR528-5p and mtr-miR2673a were key miRNAs that regulate syringyl lignin biosynthesis. Nta-miR156f was closely related to the shikimate pathway. These results indicated that the key DEGs and DEMs involved in phenolic acid anabolism might play vital roles in phenolic acid secretion from roots of P. odoratum under the CC system. As a result of the study, we may have a better understanding of phenolic acid biosynthesis during CC of roots of P. odoratum.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Kaitai Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yunyun Zhou
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yong Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Chenzhong Jin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yihong Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| |
Collapse
|
5
|
Li X, Zhang J, Zhang J, Sheng W, Huang R, Dong R, Ding X, Liu P, Liu G. Histological characteristics, cell wall hydrolytic enzyme activity, and transcriptome analysis with seed shattering of Stylosanthes accessions. FRONTIERS IN PLANT SCIENCE 2022; 13:1018404. [PMID: 36325564 PMCID: PMC9619054 DOI: 10.3389/fpls.2022.1018404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Stylosanthes spp. (stylo) are annual or perennial legume forages that are widely grown as forage and cover crops in tropical and subtropical regions. However, the seed yield of stylo is very low due to serious seed shattering. In the present study, we found that, although seed shattering was common among the stylo accessions, the shattering rates were genetically different. Therefore, we first synthesized the morphological, histological characteristic, physiochemical, and transcriptome analyses to determine the seed shattering mechanism in stylo. In general, the stylo germplasm with shorter lobules and thicker stems had a lower seed shattering rate and a higher seed weight. The seed and seed stalk joint is the abscission zone in stylo. Multiplex histology and hydrolytic enzyme activity analysis showed that the tearing of the abscission zone occurs due to the intense enzymatic degradation of polygalacturonase and cellulase in the seed shattering-susceptible accession TF0275. cDNA libraries from the abscission zone tissues of TF0041 and TF0275 at 14, 21, and 28 days after flowering were constructed and sequenced. A total of 47,606 unigenes were annotated and 18,606 differentially expressed genes (DEGs) were detected, including 9,140 upregulated and 9,446 downregulated unigenes. Furthermore, the 26 candidate DEGs involved in lignin biosynthesis, cellulase synthesis, and plant hormone signal transduction were found at all three developmental stages. This study provides valuable insights for future mechanistic studies of seed shattering in stylo.
Collapse
Affiliation(s)
- Xinyong Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China
| | - Jingxue Zhang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Wei Sheng
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Rui Huang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Rongshu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Xipeng Ding
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Pandao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| |
Collapse
|
6
|
RNA Sequencing-based Transcriptomic profiles of HeLa, MCF-7 and A549 cancer cell lines treated with Calotropis gigantea leaf extracts. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Islam MR, Li ZZ, Gichira AW, Alam MN, Fu PC, Hu GW, Wang QF, Chen LY. Population Genetics of Calotropis gigantea, a Medicinal and Fiber Resource Plant, as Inferred from Microsatellite Marker Variation in two Native Countries. Biochem Genet 2019; 57:522-539. [PMID: 30734131 DOI: 10.1007/s10528-019-09904-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/04/2019] [Indexed: 11/26/2022]
Abstract
Calotropis gigantea is well known for its aesthetic, medicinal, pharmacological, fodder, fuel, and fiber production potential. Unfortunately, this plant species is still undomesticated, and the genetic information available for crop improvement is limited. For this study, we sampled 21 natural populations of C. gigantea from two key areas of its natural distribution range (Bangladesh and China) and genotyped 379 individuals using nine nuclear microsatellite markers. Population genetic diversity was higher in Bangladesh than that observed in Chinese populations. Overall, a moderate level of genetic diversity was found (Na = 3.73, HE = 0.466), with most of the genetic variation detected within populations (65.49%) and substantial genetic differentiation (FST = 0.345) between the study regions. We observed a significant correlation between genetic and geographic distances (r = 0.287, P = 0.001). The Bayesian clustering, UPGMA tree, and PCoA analyses yielded three distinct genetic pools, but the number of migrants per generation was high (NM = 0.52-2.78) among them. Our analyses also revealed that some populations may have experienced recent demographic bottlenecks. Our study provides a baseline for exploitation of the genetic resources of C. gigantea in domestication and breeding programs as well as some insights into the germplasm conservation of this valuable plant.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Crop Physiology and Ecology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mohammad Nur Alam
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng-Cheng Fu
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Guang-Wan Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qing-Feng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Ling-Yun Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
8
|
Ma C, Ma H, Xu G, Feng C, Ma L, Wang L. De novo sequencing of the Antarctic krill (Euphausia superba) transcriptome to identify functional genes and molecular markers. J Genet 2018. [DOI: 10.1007/s12041-018-0967-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Ma C, Ma H, Xu G, Feng C, Ma L, Wang L. De novo sequencing of the Antarctic krill ( Euphausia superba) transcriptome to identify functional genes and molecular markers. J Genet 2018; 97:995-999. [PMID: 30262712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To provide massive genetic resources for the Antarctic krill (Euphausia superba), we sequenced and analysed the transcriptome by using high-throughput Illumina paired-end sequencing technology. A total of 77.1 million clean reads representing ~11.0Gb data were generated. The average length of these reads was 142 bp. De novo assembly yielded 125,211 transcripts with a N50 of 690 bp. Further analysis produced 106,250 unigenes, of which 31,683 were annotated based on protein homology searches against protein databases. Gene ontology analysis showed that ion binding, organic substance, metabolic process, and cell part were the most abundantly used terms in molecular function, biological process and cellular component categories, respectively. In addition, 3067 unigenes were mapped onto 311 signal pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, 15,224 simple sequence repeats were identified from 13,535 transcripts, and 103,593 single-nucleotide polymorphisms were found from 21.6% of total transcripts. These genetic resources obtained in this study forms a good foundation for investigating gene function, and evaluating population genetic diversity for this important Southern Ocean fisheries resource, E. superba.
Collapse
Affiliation(s)
- Chunyan Ma
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, People's Republic of China. ;
| | | | | | | | | | | |
Collapse
|
10
|
Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M. RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. PeerJ 2018; 6:e5427. [PMID: 30155351 PMCID: PMC6108316 DOI: 10.7717/peerj.5427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Betula luminifera H. Winkler, which is widely distributed in southern China, is an economically important broadleaf tree species. However, little genomic information of B. luminifera is available, and little is known about the molecular mechanisms of wood formation in this species. Meanwhile, few efforts have focused on investigating the early transcriptional changes during tension wood formation in woody plants. Results A reference transcriptome dataset was first generated containing 45,700 Unigenes, and 35,135 (76.9%) Unigenes were annotated by a BLAST similarity search against four public databases. Then, based on an anatomical investigation, the global gene expression changes during the early stages of tension wood formation were analyzed. Gene expression profiling showed that a total of 13,273 Unigenes were differentially regulated during the early stages of tension wood formation. Most genes involved in cellulose and lignin biosynthesis were highlighted to reveal their biological importance in tension wood formation. In addition, the transcription levels of many genes involved in the auxin response pathway were significantly changed during the early stages of tension wood formation. Furthermore, 18 TFs co-expressed with key enzymes of cellulose synthesis were identified. Conclusions Our results revealed the transcriptional changes associated with TW formation and identified potential key genes in the regulation of this process. These results will help to dissect the molecular mechanism of wood formation and provide key candidate genes for marker-assisted selection in B. luminifera.
Collapse
Affiliation(s)
- Miaomiao Cai
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Fei Ni
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci Rep 2018; 8:7832. [PMID: 29777161 PMCID: PMC5959898 DOI: 10.1038/s41598-018-26275-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
The genus Calotropis (Asclepiadaceae) is comprised of two species, C. gigantea and C. procera, which both show significant economic potential for use of their seed fibers in the textile industry, and of their bioactive compounds as new medicinal resources. The available wild-sourced germplasm contains limited genetic information that restricts further germplasm exploration for the purposes of domestication. We here developed twenty novel EST-SSR markers and applied them to assess genetic diversity, population structure and differentiation within Calotropis. The polymorphic information index of these markers ranged from 0.102 to 0.800; indicating that they are highly informative. Moderate genetic diversity was revealed in both species, with no difference between species in the amount of genetic diversity. Population structure analysis suggested five main genetic groups (K = 5) and relatively high genetic differentiation (FST = 0.528) between the two species. Mantel test analysis showed strong correlation between geographical and genetic distance in C. procera (r = 0.875, p = 0.020) while C. gigantea showed no such correlation (r = 0.390, p = 0.210). This study provides novel insights into the genetic diversity and population structure of Calotropis, which will promote further resource utilization and the development of genetic improvement strategies for Calotropis.
Collapse
|
12
|
Fishbein M, Livshultz T, Straub SCK, Simões AO, Boutte J, McDonnell A, Foote A. Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits. AMERICAN JOURNAL OF BOTANY 2018; 105:495-513. [PMID: 29733432 DOI: 10.1002/ajb2.1067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY We provide the largest phylogenetic analyses to date of Apocynaceae in terms of taxa and molecular data as a framework for analyzing the evolution of vegetative and reproductive traits. METHODS We produced maximum-likelihood phylogenies of Apocynaceae using 21 plastid loci sampled from 1045 species (nearly 25% of the family) and complete plastomes from 73 species. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Apocynaceae. KEY RESULTS We obtained a well-supported phylogeny of Apocynaceae, resolving poorly understood tribal and subtribal relationships (e.g., among Amsonieae and Hunterieae, within Asclepiadeae), rejecting monophyly of Melodineae and Odontadenieae, and placing previously unsampled and enigmatic taxa (e.g., Pycnobotrya). We provide new insights into the evolution of Apocynaceae, including frequent shifts between herbaceousness and woodiness, reversibility of twining, integrated evolution of the corolla and gynostegium, and ancestral baccate fruits. CONCLUSIONS Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are sensitive to choice of phylogenetic frameworks and models.
Collapse
Affiliation(s)
- Mark Fishbein
- Department of Plant Biology, Ecology& Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tatyana Livshultz
- Department of Biodiversity, Earth & Environmental Sciences & Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA
| | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - André O Simões
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, CP. 6109, 13083-970, Campinas São Paulo, Brazil
| | - Julien Boutte
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Angela McDonnell
- Department of Plant Biology, Ecology& Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Abbey Foote
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| |
Collapse
|
13
|
Dong R, Dong D, Luo D, Zhou Q, Chai X, Zhang J, Xie W, Liu W, Dong Y, Wang Y, Liu Z. Transcriptome Analyses Reveal Candidate Pod Shattering-Associated Genes Involved in the Pod Ventral Sutures of Common Vetch ( Vicia sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:649. [PMID: 28496452 PMCID: PMC5406471 DOI: 10.3389/fpls.2017.00649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/10/2017] [Indexed: 05/19/2023]
Abstract
The seed dispersion caused by pod shattering is a form of propagation used by many wild species. Loss of seeds from pod shattering is frequent in the common vetch (Vicia sativa L.), an important self-pollinating annual forage legume. However, pod shattering is one of the most important defects that limits the reproduction of the vetch in the field and the usage as a leguminous forage crop. To better understand the vetch pod shattering mechanism, we used high-throughput RNA sequencing to assess the global changes in the transcriptomes of the pod ventral sutures of shattering-susceptible and shattering-resistant vetch accessions screened from 541 vetch germplasms. A total of 1,285 significantly differentially expressed unigenes (DEGs) were detected, including 575 up-regulated unigenes and 710 down-regulated unigenes. Analyses of Gene Ontology and KEGG metabolic enrichment pathways of 1,285 DEGs indicated that 22 DEGs encoding cell wall modifications and hydrolases associated with pod shattering were highly expressed in shattering-susceptible accessions. These genes were mainly enriched in "hydrolase activity," "cytoplasm," and "carbohydrate metabolic process" systems. These cell wall modifications and hydrolases genes included β-glucosidase and endo-polygalacturonase, which work together to break down the glycosidic bonds of pectin and cellulose, and to promote the dissolution and disappearance of the cell wall in the ventral suture of the pod and make the pod more susceptible to shattering. We demonstrated the differences in gene transcription levels between the shattering-susceptible and shattering-resistant vetch accessions for the first time and our results provided valuable information for the identifying and characterizing of pod shattering regulation networks in vetch. This information may facilitate the future identification of pod shattering-related genes and their underlying molecular mechanisms in the common vetch.
Collapse
Affiliation(s)
- Rui Dong
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Deke Dong
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xutian Chai
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- *Correspondence: Yanrong Wang
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- Zhipeng Liu
| |
Collapse
|
14
|
Li J, Zhen W, Long D, Ding L, Gong A, Xiao C, Jiang W, Liu X, Zhou T, Huang L. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome. PLoS One 2016; 11:e0164235. [PMID: 27764127 PMCID: PMC5072632 DOI: 10.1371/journal.pone.0164235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/21/2016] [Indexed: 01/09/2023] Open
Abstract
Pseudostellaria heterophylla (Miq.) Pax is a mild tonic herb widely cultivated in the Southern part of China. The tuberous roots of P. heterophylla accumulate high levels of secondary metabolism products of medicinal value such as saponins, flavonoids, and isoquinoline alkaloids. Despite numerous studies on the pharmacological importance and purification of these compounds in P. heterophylla, their biosynthesis is not well understood. In the present study, we used Illumina HiSeq 4000 sequencing platform to sequence the RNA from flowers, leaves, stem, root cortex and xylem tissues of P. heterophylla. We obtained 616,413,316 clean reads that we assembled into 127, 334 unique sequences with an N50 length of 951 bp. Among these unigenes, 53,184 unigenes (41.76%) were annotated in a public database and 39, 795 unigenes were assigned to 356 KEGG pathways; 23,714 unigenes (8.82%) had high homology with the genes from Beta vulgaris. We discovered 32, 095 DEGs in different tissues and performed GO and KEGG enrichment analysis. The most enriched KEGG pathway of secondary metabolism showed up-regulated expression in tuberous roots as compared with the ground parts of P. heterophylla. Moreover, we identified 72 candidate genes involved in triterpenoids saponins biosynthesis in P. heterophylla. The expression profiles of 11 candidate unigenes were analyzed by quantitative real-time PCR (RT-qPCR). Our study established a global transcriptome database of P. heterophylla for gene identification and regulation. We also identified the candidate unigenes involved in triterpenoids saponins biosynthesis. Our results provide an invaluable resource for the secondary metabolites and physiological processes in different tissues of P. heterophylla.
Collapse
Affiliation(s)
- Jun Li
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Wei Zhen
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Dengkai Long
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Ling Ding
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Anhui Gong
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Chenghong Xiao
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Weike Jiang
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Xiaoqing Liu
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Tao Zhou
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Li J, Wang L, Zhan Q, Liu Y, Yang X. Transcriptome Characterization and Functional Marker Development in Sorghum Sudanense. PLoS One 2016; 11:e0154947. [PMID: 27152648 PMCID: PMC4859472 DOI: 10.1371/journal.pone.0154947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/21/2016] [Indexed: 11/26/2022] Open
Abstract
Sudangrass, Sorghum sudanense, is an important forage in warm regions. But little is known about its genome. In this study, the transcriptomes of sudangrass S722 and sorghum Tx623B were sequenced by Illumina sequencing. More than 4Gb bases were sequenced for each library. For Tx623B and S722, 88.79% and 83.88% reads, respectively were matched to the Sorghum bicolor genome. A total of 2,397 differentially expressed genes (DEGs) were detected by RNA-Seq between the two libraries, including 849 up-regulated genes and 1,548 down-regulated genes. These DEGs could be divided into three groups by annotation analysis. A total of 44,495 single nucleotide polymorphisms (SNPs) were discovered by aligning S722 reads to the sorghum reference genome. Of these SNPs, 61.37% were transition, and this value did not differ much between different chromosomes. In addition, 16,928 insertion and deletion (indel) loci were identified between the two genomes. A total of 5,344 indel markers were designed, 15 of which were selected to construct the genetic map derived from the cross of Tx623A and Sa. It was indicated that the indel markers were useful and versatile between sorghum and sudangrass. Comparison of synonymous base substitutions (Ks) and non-synonymous base substitutions (Ka) between the two libraries showed that 95% orthologous pairs exhibited Ka/Ks<1.0, indicating that these genes were influenced by purifying selection. The results from this study provide important information for molecular genetic research and a rich resource for marker development in sudangrass and other Sorghum species.
Collapse
Affiliation(s)
- Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Qiuwen Zhan
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
- * E-mail:
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xiaocui Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
16
|
Liu GH, Xu MJ, Chang QC, Gao JF, Wang CR, Zhu XQ. De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Parasit Vectors 2016; 9:143. [PMID: 26968659 PMCID: PMC4788885 DOI: 10.1186/s13071-016-1436-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/05/2016] [Indexed: 12/19/2022] Open
Abstract
Background Schistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China. The S. turkestanicum cercariae can also infect humans, causing cercarial dermatitis in many countries and regions of the world. In spite of its significance as a pathogen of animals and humans, there is little transcriptomic and genomic data in the public databases. Methods Herein, we performed the transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females of S. turkestanicum and de novo transcriptome assembly. Results Approximately 81.1 (female) and 80.5 (male) million high-quality clean reads were obtained and then 29,526 (female) and 41,346 (male) unigenes were assembled. A total of 34,624 unigenes were produced from S. turkestanicum females and males, with an average length of 878 nucleotides (nt) and N50 of 1480 nt. Of these unigenes, 25,158 (72.7 %) were annotated by blast searches against the NCBI non-redundant protein database. Among these, 21,995 (63.5 %), 22,189 (64.1 %) and 13,754 (39.7 %) of the unigenes had significant similarity in the NCBI non-redundant protein (NR), non-redundant nucleotide (NT) and Swiss-Prot databases, respectively. In addition, 3150 unigenes were identified to be expressed specifically in females and 1014 unigenes were identified to be expressed specifically in males. Interestingly, several pathways associated with gonadal development and sex maintenance were found, including the Wnt signaling pathway (103; 2 %) and progesterone-mediated oocyte maturation (77; 1.5 %). Conclusions The present study characterized and compared the transcriptomes of adult female and male blood fluke, S. turkestanicum. These results will not only serve as valuable resources for future functional genomics studies to understand the molecular aspects of S. turkestanicum, but also will provide essential information for ongoing whole genome sequencing efforts on this pathogenic blood fluke.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.,College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - Jun-Feng Gao
- Department of Parasitology, Heilongjiang Institute of Veterinary Science, Qiqihar, Heilongjiang Province, 161006, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|