1
|
Chu WK, Huang SC, Chang CF, Wu JL, Gong HY. Migration of primordial germ cells and their relationship of PGCs with sex development in transgenic germline-specific fluorescent freshwater angelfish (Pterophyllum scalare). Sci Rep 2025; 15:1308. [PMID: 39779963 PMCID: PMC11711190 DOI: 10.1038/s41598-025-85480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare). Our findings reveal a complex, multistage PGCs migration process in angelfish, with a significantly extended localization period (168 hpf) compared to zebrafish (24 hpf). Notably, individual differences in PGCs abundance were observed during early somite development. Analysis of PGCs counts and subsequent sexual maturation demonstrate a potential correlation between PGCs abundance and sex determination: 90% of PGCs-reduced individuals developed as males, while 83% of PGCs-rich individuals developed as females. This study provides a foundation for understanding PGCs migration and sex development in freshwater angelfish, offering valuable insights into reproductive biology and ornamental fish species. Furthermore, this in vivo PGCs tracking system for Cichlids provides a versatile tool for advancing research and applications in germ cell biology.
Collapse
Affiliation(s)
- Wai-Kwan Chu
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Shih-Chin Huang
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Fisheries Research Institute, Kinmen County, 893, Taiwan
| | - Ching-Fong Chang
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- College of Life Sciences, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Hong-Yi Gong
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
2
|
Geffroy B, Goikoetxea A, Villain-Naud N, Martinez AS. Early fasting does not impact gonadal size nor vasa gene expression in the European seabass Dicentrarchus labrax. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2423-2435. [PMID: 39196454 DOI: 10.1007/s10695-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Primordial germ cells (PGCs) play a crucial role in sexual development in fish, with recent studies revealing their influence on sexual fate. Notably, PGC number at specific developmental stages can determine whether an individual develops as male or female. Temperature was shown to impact PGC proliferation and the subsequent phenotypic sex in some fish species. Here, we aimed at testing the role of food deprivation on gonad development in the European seabass Dicentrarchus labrax, a species displaying a polygenic sex determination system with an environmental influence. We subjected larvae to two periods of starvation to investigate whether restricting growth affects both gonadal size and vasa gene expression. We first confirmed by immunohistochemistry that Vasa was indeed a marker of PGCs in the European seabass, as in other fish species. We also showed that vasa correlated positively with fish size, confirming that it could be used as a marker of feminization. However, starvation did not show any significant effects on vasa expression nor on gonadal size. It is hypothesized that evolutionary mechanisms likely safeguard PGCs against environmental stressors to ensure reproductive success. Further research is needed to elucidate the intricate interplay between environmental cues, PGC biology, and sexual differentiation in fish.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | | | | | - Anne-Sophie Martinez
- Normandie Université, Unicaen, BOREA, 14000, Caen, France
- Normandie Université, Unicaen, ToxEMAC ABTE, 14000, Caen, France
| |
Collapse
|
3
|
Wang F, Feng YY, Wang XG, Ou M, Zhang XC, Zhao J, Chen KC, Li KB. Production of all-male non-transgenic zebrafish by conditional primordial germ cell ablation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1215-1227. [PMID: 37857788 DOI: 10.1007/s10695-023-01252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Many fish species exhibit remarkable sexual dimorphism, with males possessing numerous advantageous traits for commercial production by aquaculture such as faster growth rate, more efficient food energy utilization for muscle development, and better breeding performance. Several studies have shown that a decrease in the number of primordial germ cells (PGCs) during early development leads predominantly to male progeny. In this study, we developed a method to obtain all-male zebrafish (Danio rerio) by targeted PGC ablation using the nitroreductase/metronidazole (NTR/Mtz) system. Embryos generated by female heterozygous Tg(nanos3:nfsB-mCherry-nanos3 3'UTR) and male wild-types (WTs) were treated with vehicle or Mtz. Compared to vehicle-treated controls, 5.0 and 10.0 mM Mtz treatment for 24 h significantly reduced the number of PGCs and yielded an exclusively male phenotype in adulthood. The gonads of offspring treated with 5.0 mM Mtz exhibited relatively normal morphology and histological characteristics. Furthermore, these males were able to chase females, spawn, and produce viable offspring, while about 20.0% of males treated with 10.0 mM Mtz were unable to produce viable offspring. The 5.0 mM Mtz treatment protocol may thus be suitable for large-scale production of fertile male offspring. Moreover, about half of these males were WT as evidenced by the absence of nfsB gene expression. It may thus be possible to breed an all-male WT fish population by Mtz-mediated PGC ablation.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Yong-Yong Feng
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
| | - Xu-Guang Wang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Xin-Cheng Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Kun-Ci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China
| | - Kai-Bin Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Guangzhou, 510380, Guangdong, China.
| |
Collapse
|
4
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
5
|
Xu C, Li Y, Wen Z, Jawad M, Gui L, Li M. Spinyhead Croaker Germ Cells Gene dnd Visualizes Primordial Germ Cells in Medaka. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081226. [PMID: 36013405 PMCID: PMC9409898 DOI: 10.3390/life12081226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Spinyhead croaker (Collichthys lucidus) is an economically important fish suffering from population decline caused by overfishing and habitat destruction. Researches on the development of primordial germ cell (PGC) and reproduction biology were an emergency for the long-term conservation of the involved species. Dead end (dnd) gene plays an indispensable role in PGC specification, maintenance, and development. In the current study, we report the cloning and expression patterns of dnd in C. lucidus (Cldnd). RT-PCR analysis revealed that Cldnd was specifically expressed in both sexual gonads. In the ovary, Cldnd RNA was uniformly distributed in the oocytes and abundant in oogonia, and gradually decreased with oogenesis. A similar expression pattern was also detected in testis. Dual fluorescent in situ hybridization of Cldnd and Clvasa demonstrated that they almost had the same distribution except in oocytes at stage I, in which the vasa RNA aggregated into some particles. Furthermore, Cldnd 3' UTR was sufficient to guide the Green Fluorescent Protein (GFP) specifically and stably expressed in the PGCs of medaka. These findings offer insight into that Cldnd is an evolutionarily conserved germline-specific gene and even a potential candidate for PGC manipulation in C. lucidus.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Main Building, QiLu Innovalley Incubator, High-Tech Industry Development Zone, Jinan 250101, China
| | - Zhengshun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.G.); (M.L.)
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.G.); (M.L.)
| |
Collapse
|
6
|
Hosseini S, Trakooljul N, Hirschfeld M, Wimmers K, Simianer H, Tetens J, Sharifi AR, Brenig B. Epigenetic Regulation of Phenotypic Sexual Plasticity Inducing Skewed Sex Ratio in Zebrafish. Front Cell Dev Biol 2022; 10:880779. [PMID: 35912111 PMCID: PMC9334531 DOI: 10.3389/fcell.2022.880779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The plasticity of sexual phenotype in response to environmental conditions results in biased sex ratios, and their variation has an effect on population dynamics. Epigenetic modifications can modulate sex ratio variation in species, where sex is determined by genetic and environmental factors. However, the role of epigenetic mechanisms underlying skewed sex ratios is far from being clear and is still an object of debate in evolutionary developmental biology. In this study, we used zebrafish as a model animal to investigate the effect of DNA methylation on sex ratio variation in sex-biased families in response to environmental temperature. Two sex-biased families with a significant difference in sex ratio were selected for genome-wide DNA methylation analysis using reduced representation bisulfite sequencing (RRBS). The results showed significant genome-wide methylation differences between male-biased and female-biased families, with a greater number of methylated CpG sites in testes than ovaries. Likewise, pronounced differences between testes and ovaries were identified within both families, where the male-biased family exhibited a higher number of methylated sites than the female-biased family. The effect of temperature showed more methylated positions in the high incubation temperature than the control temperature. We found differential methylation of many reproduction-related genes (e.g., sox9a, nr5a2, lhx8a, gata4) and genes involved in epigenetic mechanisms (e.g., dnmt3bb.1, dimt1l, hdac11, h1m) in both families. We conclude that epigenetic modifications can influence the sex ratio variation in zebrafish families and may generate skewed sex ratios, which could have a negative consequence for population fitness in species with genotype-environment interaction sex-determining system under rapid environmental changes.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Functional Breeding Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- *Correspondence: Shahrbanou Hosseini, ; Nares Trakooljul,
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Unit, Dummerstorf, Germany
- *Correspondence: Shahrbanou Hosseini, ; Nares Trakooljul,
| | - Marc Hirschfeld
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Unit, Dummerstorf, Germany
| | - Henner Simianer
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
| | - Jens Tetens
- Functional Breeding Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
7
|
Hou M, Feng K, Luo H, Jiang Y, Xu W, Li Y, Song Y, Chen J, Tao B, Zhu Z, Hu W. Complete Depletion of Primordial Germ Cells Results in Masculinization of Monopterus albus, a Protogynous Hermaphroditic Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:320-334. [PMID: 35303208 DOI: 10.1007/s10126-022-10106-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Primordial germ cells (PGCs) play an important role in sexual fate determination and gonadal development in gonochoristic fish, such as zebrafish and medaka. However, little is known about the function of PGCs in hermaphroditic fish. Rice field eel (Monopterus albus), a protogynous hermaphroditic fish, is an economically valuable aquaculture species. We eliminated PGCs in rice field eels during embryogenesis via morpholino-mediated knockdown dead end (dnd). The PGCs-depleted gonads developed into testis-like structures with Sertoli cells and Leydig cells. The gene expression pattern of 15-month-old PGCs-depleted gonads showed that male-biased genes, dmrt1, sox9a, gsdf, and amh, were significantly higher than that of the WT, whereas female-biased genes, foxl2 and cyp19a1a, were significantly decreased. These results indicate that PGCs are essential for ovarian differentiation in rice field eel, and PGCs-depleted gonads develop into sterile males without undergoing the female and intersex stages. Our study is the first to identify the role of PGCs in sex differentiation in rice field eel, a protogynous hermaphrodite teleost. And it is of great significance in rice field eel for discovering the underlying mechanism of sex differentiation and establishing sex control technology.
Collapse
Affiliation(s)
- Mingxi Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yinjun Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Gan RH, Wang Y, Li Z, Yu ZX, Li XY, Tong JF, Wang ZW, Zhang XJ, Zhou L, Gui JF. Functional Divergence of Multiple Duplicated Foxl2 Homeologs and Alleles in a Recurrent Polyploid Fish. Mol Biol Evol 2021; 38:1995-2013. [PMID: 33432361 PMCID: PMC8097289 DOI: 10.1093/molbev/msab002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evolutionary fates of duplicated genes have been widely investigated in many polyploid plants and animals, but research is scarce in recurrent polyploids. In this study, we focused on foxl2, a central player in ovary, and elaborated the functional divergence in gibel carp (Carassius gibelio), a recurrent auto-allo-hexaploid fish. First, we identified three divergent foxl2 homeologs (Cgfoxl2a-B, Cgfoxl2b-A, and Cgfoxl2b-B), each of them possessing three highly conserved alleles and revealed their biased retention/loss. Then, their abundant sexual dimorphism and biased expression were uncovered in hypothalamic-pituitary-gonadal axis. Significantly, granulosa cells and three subpopulations of thecal cells were distinguished by cellular localization of CgFoxl2a and CgFoxl2b, and the functional roles and the involved process were traced in folliculogenesis. Finally, we successfully edited multiple foxl2 homeologs and/or alleles by using CRISPR/Cas9. Cgfoxl2a-B deficiency led to ovary development arrest or complete sex reversal, whereas complete disruption of Cgfoxl2b-A and Cgfoxl2b-B resulted in the depletion of germ cells. Taken together, the detailed cellular localization and functional differences indicate that Cgfoxl2a and Cgfoxl2b have subfunctionalized and cooperated to regulate folliculogenesis and gonad differentiation, and Cgfoxl2b has evolved a new function in oogenesis. Therefore, the current study provides a typical case of homeolog/allele diversification, retention/loss, biased expression, and sub-/neofunctionalization in the evolution of duplicated genes driven by polyploidy and subsequent diploidization from the recurrent polyploid fish.
Collapse
Affiliation(s)
- Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xi Yu
- Ningxia Fisheries Research Institute, Yinchuan, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Jin YH, Robledo D, Hickey JM, McGrew MJ, Houston RD. Surrogate broodstock to enhance biotechnology research and applications in aquaculture. Biotechnol Adv 2021; 49:107756. [PMID: 33895331 PMCID: PMC8192414 DOI: 10.1016/j.biotechadv.2021.107756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Aquaculture is playing an increasingly important role in meeting global demands for seafood, particularly in low and middle income countries. Genetic improvement of aquaculture species has major untapped potential to help achieve this, with selective breeding and genome editing offering exciting avenues to expedite this process. However, limitations to these breeding and editing approaches include long generation intervals of many fish species, alongside both technical and regulatory barriers to the application of genome editing in commercial production. Surrogate broodstock technology facilitates the production of donor-derived gametes in surrogate parents, and comprises transplantation of germ cells of donors into sterilised recipients. There are many successful examples of intra- and inter-species germ cell transfer and production of viable offspring in finfish, and this leads to new opportunities to address the aforementioned limitations. Firstly, surrogate broodstock technology raises the opportunity to improve genome editing via the use of cultured germ cells, to reduce mosaicism and potentially enable in vivo CRISPR screens in the progeny of surrogate parents. Secondly, the technology has pertinent applications in preservation of aquatic genetic resources, and in facilitating breeding of high-value species which are otherwise difficult to rear in captivity. Thirdly, it holds potential to drastically reduce the effective generation interval in aquaculture breeding programmes, expediting the rate of genetic gain. Finally, it provides new opportunities for dissemination of tailored, potentially genome edited, production animals of high genetic merit for farming. This review focuses on the state-of-the-art of surrogate broodstock technology, and discusses the next steps for its applications in research and production. The integration and synergy of genomics, genome editing, and reproductive technologies have exceptional potential to expedite genetic gain in aquaculture species in the coming decades. Genetic improvement in aquaculture species has a major role in global food security. Advances in biotechnology provide new opportunities to support aquaculture breeding. Advances in biotechnology provide new opportunities to support aquaculture breeding. Donor-derived gametes can be produced from surrogate broodstock of several aquaculture species. Surrogate broodstock technology provides new opportunities for application of genome editing. Surrogate broodstock can accelerate genetic gain, and improve dissemination of elite germplasm.
Collapse
Affiliation(s)
- Ye Hwa Jin
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Diego Robledo
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK.
| |
Collapse
|
10
|
Ge S, Dan C, Xiong Y, Gong G, Mei J, Guo W, Li X. Identifying difference in primordial germ cells between XX female and XY male yellow catfish embryos. Gene 2020; 761:145037. [PMID: 32777526 DOI: 10.1016/j.gene.2020.145037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
Primordial germ cells (PGCs) are singled out from somatic cells very early during embryogenesis, then they migrate towards the genital ridge and differentiate into gametes through oogenesis or spermatogenesis. Labeling PGCs with Localized RNAexpression (LRE) technique by fluorescent proteins has been widely applied among teleost species to study the germ cell development and gonad differentiation. In this study, we first cloned and characterized the 3' untranslated regions (3'UTRs) of nanos homolog 1-like (nos1l), dead end (dnd), and vasa in yellow catfish (Pelteobagrus fulvidraco), and then synthesized the GFP-nos1l/dnd/vasa 3'UTR mRNAs. Each of these three 3'UTRs could label PGCs in yellow catfish embryos, of which, vasa 3'UTR exhibited the highest labeling efficiency. To identify the differences in PGCs at embryonic stage, XX all-female and XY all-male yellow catfish embryos were produced and injected with GFP-vasa 3'UTR mRNA. We observed the PGC migration route in these two monosex embryos from 24 hpf to 7 dpf, and found there was no difference between them. Besides, the PGC number was counted at 48 hpf, and the result showed that the average PGC number in XX females (11.3) was significantly larger than that in XY males (8.1).These findings provide an insight into the development of PGCs in yellow catfish embryos and the relationship between embryonicPGCnumberand thelatergonaddifferentiation.
Collapse
Affiliation(s)
- Si Ge
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaohui Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, Liu S, Sun Y, Zhu Z, Trudeau VL, Hu W. Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish. Endocrinology 2020; 161:5638064. [PMID: 31758175 DOI: 10.1210/endocr/bqz024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xuefan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Samarin AM, Samarin AM, Østbye TKK, Ruyter B, Sampels S, Burkina V, Blecha M, Policar T. The possible involvement of oxidative stress in the oocyte ageing process in goldfish Carassius auratus (Linnaeus, 1758). Sci Rep 2019; 9:10469. [PMID: 31320670 PMCID: PMC6639355 DOI: 10.1038/s41598-019-46895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Decreasing egg quality following oocyte ageing is a major restricting factor for the breeding programs. The mechanisms behind this process has not yet been clarified. To examine the possible involvement of oxidative stress in the oocyte ageing process, the relative mRNA abundance of specific transcripts were determined in oocytes collected from 6 females and incubated in vitro for 18 hours post stripping at 20 °C in goldfish Carassius auratus. During the 18 hour-post-stripping ageing of the oocytes, relative mRNA levels of candidate transcripts involved in oxidative injury, mitochondrial function and stress response, cell cycles, apoptosis, reproduction and germ line speciation and developmental competence were measured by real-time PCR. None of the relative mRNA abundance of the examined genes were significantly altered through oocyte ageing. In addition, the amount of thiobarbituric acid reactive substances (TBARS), an indicator of lipid peroxidation, did not change over time following stripping. The activity of the antioxidant enzymes also remained constant during oocyte ageing. The results of the current study indicated that oxidative stress unlikely plays a role as an initiator or promotor in the progress of oocyte ageing in goldfish.
Collapse
Affiliation(s)
- Azadeh Mohagheghi Samarin
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Azin Mohagheghi Samarin
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | | | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, NO-1431, Ås, Norway
| | - Sabine Sampels
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, PO Box 7015, 75007, Uppsala, Sweden
| | - Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Miroslav Blecha
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Tomas Policar
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
13
|
Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun 2019; 10:3053. [PMID: 31311924 PMCID: PMC6635516 DOI: 10.1038/s41467-019-10894-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
The germline is the only cellular lineage capable of transferring genetic information from one generation to the next. Intergenerational transmission of epigenetic memory through the germline, in the form of DNA methylation, has been proposed; however, in mammals this is largely prevented by extensive epigenetic erasure during germline definition. Here we report that, unlike mammals, the continuously-defined ‘preformed’ germline of zebrafish does not undergo genome-wide erasure of DNA methylation during development. Our analysis also uncovers oocyte-specific germline amplification and demethylation of an 11.5-kb repeat region encoding 45S ribosomal RNA (fem-rDNA). The peak of fem-rDNA amplification coincides with the initial expansion of stage IB oocytes, the poly-nucleolar cell type responsible for zebrafish feminisation. Given that fem-rDNA overlaps with the only zebrafish locus identified thus far as sex-linked, we hypothesise fem-rDNA expansion could be intrinsic to sex determination in this species. Germline cells transfer genetic information to offspring, and in zebrafish, drive sex determination. Here the authors report that, unlike mammals, the germline of zebrafish does not undergo genome-wide DNA methylation erasure, while amplifying and demethylating sex-linked rDNA during feminisation.
Collapse
Affiliation(s)
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
14
|
Xiao Q, Sun Y, Liang X, Zhang L, Onxayvieng K, Li Z, Li D. Visualizing primordial germ cell migration in embryos of rice field eel (Monopterus albus) using fluorescent protein tagged 3' untranslated regions of nanos3, dead end and vasa. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:62-69. [PMID: 31176867 DOI: 10.1016/j.cbpb.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022]
Abstract
In rice field eel (Monopterus albus), germ cell development in the developing gonad has been revealed in detail. However, it is unclear how primordial germ cells (PGCs) migrate to the somatic part of the gonad (genital ridge). This study visualized PGC migration by injecting a chimeric mRNA containing a fluorescent protein fused to the 3' untranslated region (3'UTR) of three different genes, nanos3 of zebrafish (Danio rerio) and dead end (dnd) and vasa of rice field eel. The mRNAs were injected either alone or in pairs into embryos at the one-cell stage. The results showed that mRNAs containing nanos3 and dnd 3'UTRs labeled PGCs over a wider time frame than those containing vasa 3'UTR, suggesting that nanos3 and dnd 3'UTRs are suitable for visualizing PGCs in rice field eel. Using this direct visualization method, the normal migration route of PGCs was observed from the 50%-epiboly stage to hatching stage for the first time, and the ectopic PGCs were also visualized during this period in rice field eel. These findings extend our knowledge of germ cell development, and lay a foundation for further research on the relationship between PGCs and sex differentiation, and on incubation conditions for embryos in rice field eel.
Collapse
Affiliation(s)
- Qing Xiao
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiqing Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihan Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kommaly Onxayvieng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Dapeng Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Wu L, Li Y, Xu Y, Li Y, Wang L, Ma X, Liu H, Li X, Zhou L. Cloning and characterization of wnt4a gene in a natural triploid teleost, Qi river crucian carp (Carassius auratus). Gen Comp Endocrinol 2019; 277:104-111. [PMID: 30923007 DOI: 10.1016/j.ygcen.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 10/27/2022]
Abstract
WNT4 (wingless-type MMTV integration site family, member 4) plays a key role in the ovarian differentiation and development in mammals. However, the possible roles of Wnt4 during gonadal differentiation and development need further clarification in teleosts. In this study, we cloned and characterized the full-length cDNA of Qi river crucian carp (Carassius auratus) wnt4a gene (CA-wnt4a). The cDNA of CA-wnt4a is 2337 bp, including the ORF of 1059 bp, encoding a putative protein with a transmembrane domain and a WNT family domain. Sequence and phylogenetic analyses revealed that the CA-Wnt4a identified is a genuine Wnt4a. Tissue distribution analysis showed that CA-wnt4a is expressed in all the tissues examined, including ovary. CA-wnt4a undergoes a stepwise increase in the embryonic stages, suggesting that CA-wnt4a might be involved in the early developmental stage. Ontogenic analysis demonstrated that CA-wnt4a expression is upregulated in the ovaries at 30-50 days after hatching (dah), the critical period of sex determination/differentiation in Qi river crucian carp. From 90 dah, the expression of CA-wnt4a was gradually downregulated in the developing ovaries. Immunohistochemistry demonstrated that CA-Wnt4a was expressed in the somatic and germ cells of the ovary by 30 dah, thereafter, positive signals of Wnt4a were detected in the somatic cells, oogonia and primary growth oocytes from 60 dah. In the sex-reversed testis induced by letrozole treatment, the expression level of CA-wnt4a was significantly downregulated. When CA-wnt4a expression was inhibited by injection of FH535 (an inhibitor of canonical Wnt/β-catenin signal pathway) in the ovaries, levels of cyp19a1a, foxl2 mRNA were significantly downregulated, while sox9b and cyp11c1 were upregulated, which suggested that together with Foxl2-leading estrogen pathway, CA-wnt4a signaling pathway might be involved in ovarian differentiation and repression of the male pathway gene expression in Qi river crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yongjing Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yufeng Xu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yanfeng Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
16
|
Hosseini S, Ha NT, Simianer H, Falker-Gieske C, Brenig B, Franke A, Hörstgen-Schwark G, Tetens J, Herzog S, Sharifi AR. Genetic mechanism underlying sexual plasticity and its association with colour patterning in zebrafish (Danio rerio). BMC Genomics 2019; 20:341. [PMID: 31060508 PMCID: PMC6503382 DOI: 10.1186/s12864-019-5722-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Elevated water temperature, as is expected through climate change, leads to masculinization in fish species with sexual plasticity, resulting in changes in population dynamics. These changes are one important ecological consequence, contributing to the risk of extinction in small and inbred fish populations under natural conditions, due to male-biased sex ratio. Here we investigated the effect of elevated water temperature during embryogenesis on sex ratio and sex-biased gene expression profiles between two different tissues, namely gonad and caudal fin of adult zebrafish males and females, to gain new insights into the molecular mechanisms underlying sex determination (SD) and colour patterning related to sexual attractiveness. RESULTS Our study demonstrated sex ratio imbalances with 25.5% more males under high-temperature condition, resulting from gonadal masculinization. The result of transcriptome analysis showed a significantly upregulated expression of male SD genes (e.g. dmrt1, amh, cyp11c1 and sept8b) and downregulation of female SD genes (e.g. zp2.1, vtg1, cyp19a1a and bmp15) in male gonads compared to female gonads. Contrary to expectations, we found highly differential expression of colour pattern (CP) genes in the gonads, suggesting the 'neofunctionalisation' of those genes in the zebrafish reproduction system. However, in the caudal fin, no differential expression of CP genes was identified, suggesting the observed differences in colouration between males and females in adult fish may be due to post-transcriptional regulation of key enzymes involved in pigment synthesis and distribution. CONCLUSIONS Our study demonstrates male-biased sex ratio under high temperature condition and support a polygenic SD (PSD) system in laboratory zebrafish. We identify a subset of pathways (tight junction, gap junction and apoptosis), enriched for SD and CP genes, which appear to be co-regulated in the same pathway, providing evidence for involvement of those genes in the regulation of phenotypic sexual dimorphism in zebrafish.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany. .,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany.
| | - Ngoc-Thuy Ha
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany.,Institute of Veterinary Medicine, University of Goettingen, Goettingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Jens Tetens
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Sebastian Herzog
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany.,Department for Computational Neuroscience, 3rd Physics Institute-Biophysics, University of Goettingen, Goettingen, Germany
| | - Ahmad Reza Sharifi
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| |
Collapse
|
17
|
Ye D, Zhu L, Zhang Q, Xiong F, Wang H, Wang X, He M, Zhu Z, Sun Y. Abundance of Early Embryonic Primordial Germ Cells Promotes Zebrafish Female Differentiation as Revealed by Lifetime Labeling of Germline. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:217-228. [PMID: 30671659 PMCID: PMC6441407 DOI: 10.1007/s10126-019-09874-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/07/2019] [Indexed: 05/30/2023]
Abstract
Teleost sex differentiation largely depends on the number of undifferentiated germ cells. Here, we describe the generation and characterization of a novel transgenic zebrafish line, Tg(piwil1:egfp-UTRnanos3)ihb327Tg, which specifically labels the whole lifetime of germ cells, i.e., from primordial germ cells (PGCs) at shield stage to the oogonia and early stage of oocytes in the ovary and to the early stage of spermatogonia, spermatocyte, and spermatid in the testis. By using this transgenic line, we carefully observed the numbers of PGCs from early embryonic stage to juvenile stage and the differentiation process of ovary and testis. The numbers of PGCs became variable at as early as 1 day post-fertilization (dpf). Interestingly, the embryos with a high amount of PGCs mainly developed into females and the ones with a low amount of PGCs mainly developed into males. By using transient overexpression and transgenic induction of PGC-specific bucky ball (buc), we further proved that induction of abundant PGCs at embryonic stage promoted later ovary differentiation and female development. Taken together, we generate an ideal transgenic line Tg(piwil1:egfp-UTRnanos3)ihb327Tg which can visualize zebrafish germline for a lifetime, and we have utilized this line to study germ cell development and gonad differentiation of teleost and to demonstrate that the increase of PGC number at embryonic stage promotes female differentiation.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Expression and intracellular localization of Nanos2-homologue protein in primordial germ cells and spermatogonial stem cells. ZYGOTE 2019; 27:82-88. [PMID: 30888312 DOI: 10.1017/s0967199419000066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SummaryThe decision by germ cells to differentiate and undergo either oogenesis or spermatogenesis takes place during embryonic development and Nanos plays an important role in this process. The present study was designed to investigate the expression patterns in rat of Nanos2-homologue protein in primordial germ cells (PGCs) over different embryonic developmental days as well as in spermatogonial stem cells (SSCs). Embryos from three different embryonic days (E8.5, E10.5, E11.5) and SSCs were isolated and used to detect Nanos2-homologue protein using immunocytochemistry, western blotting, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Interestingly, Nanos2 expression was detected in PGCs at day E11.5 onwards and up to colonization of PGCs in the genital ridge of fetal gonads. No Nanos2 expression was found in PGCs during early embryonic days (E8.5 and 10.5). Furthermore, immunohistochemical and immunofluorescence data revealed that Nanos2 expression was restricted within a subpopulation of undifferentiated spermatogonia (As, single type A SSCs and Apr, paired type A SSCs). The same results were confirmed by our western blot and RT-PCR data, as Nanos2 protein and transcripts were detected only in PGCs from day E11.5 and in undifferentiated spermatogonia (As and Apr). Furthermore, Nanos2-positive cells were also immunodetected and sorted using flow cytometry from the THY1-positive SSCs population, and this strengthened the idea that these cells are stem cells. Our findings suggested that stage-specific expression of Nanos2 occurred on different embryonic developmental days, while during the postnatal period Nanos2 expression is restricted to As and Apr SSCs.
Collapse
|
19
|
Mohagheghi Samarin A, Mohagheghi Samarin A, Østbye TKK, Ruyter B, Sampels S, Burkina V, Blecha M, Gela D, Policar T. Alteration of mRNA abundance, oxidation products and antioxidant enzyme activities during oocyte ageing in common carp Cyprinus carpio. PLoS One 2019; 14:e0212694. [PMID: 30794661 PMCID: PMC6386366 DOI: 10.1371/journal.pone.0212694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Oocyte ageing is the most important factor affecting egg quality of several fish species after ovulation. Oxidative stress has been proposed as the initiator of the oocyte ageing process in other vertebrates. To identify the role of oxidative stress and apoptosis on the progress of oocyte ageing in the common carp Cyprinus carpio, changes in the relative mRNA abundance of selected transcripts were examined. The possible alteration in the oxidation status of the oocytes during ageing was also studied. In addition, the activity of antioxidant enzymes during oocyte ageing was evaluated. Oocytes from 6 females were incubated in vivo for 14 hours post-ovulation (HPO) and in vitro for 10 hours post-stripping (HPS) at 20°C before fertilization. Hatching rates were over 65% up to 4–6 HPO, finally dropping to 1.3% at 12–14 HPO.Hatching rates were over 65% up to 4–6 HPO, finally dropping to 1.3% at 12–14 HPO. Hatching rates were more than 70% for the eggs stored in vitro up to 6 HPS and then decreased to 21.3% at 10 HPS. The results demonstrated no significant changes in the relative mRNA levels of oxidative stress-related genes or genes involved in the cell cycle during the progress of oocyte ageing in common carp. Additionally, the amount of TBARS and carbonyls did not change as time elapsed following ovulation. The apoptosis-related genes however, were significantly altered following the prolonged time interval between ovulation and fertilization. The lack of response of both activities of antioxidant enzymes and oxidation products during oocyte ageing strengthens the conclusion that oxidative stress is unlikely to be a main factor determining the progress of oocyte ageing in common carp. However, an increase in the mRNA abundance of apoptosis-related genes demonstrates that apoptotic pathway might be involved in the progress of oocyte ageing.
Collapse
Affiliation(s)
- Azin Mohagheghi Samarin
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
- * E-mail:
| | - Azadeh Mohagheghi Samarin
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | | | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Sabine Sampels
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Miroslav Blecha
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - David Gela
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Tomas Policar
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| |
Collapse
|
20
|
Hosseini S, Brenig B, Tetens J, Sharifi AR. Phenotypic plasticity induced using high ambient temperature during embryogenesis in domesticated zebrafish, Danio rerio. Reprod Domest Anim 2018; 54:435-444. [PMID: 30472784 PMCID: PMC7379563 DOI: 10.1111/rda.13382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Ambient temperature during early stages of life has a substantial effect on physiological processes, eliciting phenotypic plasticity during zebrafish developmental stages. Zebrafish are known to possess a noteworthy ability to modify their phenotype in dependence of environmental factors. However, there is a poor understanding of the effects of temperature during embryogenesis, which influences the biological functions such as survival ability and masculinization in later developmental stages. Since the middle embryonic phase (pharyngula period) is genetically the most conserved stage in embryogenesis, it is very susceptible to embryonic lethality in developmental processes of vertebrates. Here, we tested the effect of transient perturbations (heat shock) during early development (5–24 hr post‐fertilization; hpf) at 35°C compared to control group at 28°C, on survival ability of zebrafish to study the embryonic and post‐embryonic mortality. We studied the variation of heat‐induced masculinization among and across the families in response to high temperature. Furthermore, morphometric traits of adult zebrafish at different developmental time points were measured in order to estimate the temperature × sex interaction effect. We found the highest embryonic mortality around the gastrula and segmentation periods in both experimental groups, with significantly lower survival ability in the temperature‐treated group (73.30% ± 0.58% vs. 70.19% ± 0.57%, respectively). A higher hatching success was observed in the control group (71.08% ± 0.61%) compared to the heat‐induced group (67.95% ± 0.60%). A distinct reduction in survival ability was also observed in both experimental groups during the first two weeks after hatching, followed by a reduced level of changes thereafter. We found sex ratio imbalances across all families, with 25.2% more males under temperature treatment. Our study on growth performance has shown a positive effect of increased temperature on growth plasticity, with a greater impact on female fish in response to high ambient temperature.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany.,Institute of Veterinary Medicine, University of Goettingen, Goettingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| | - Ahmad Reza Sharifi
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Goettingen, Germany
| |
Collapse
|
21
|
Dan C, Lin Q, Gong G, Yang T, Xiong S, Xiong Y, Huang P, Gui JF, Mei J. A novel PDZ domain-containing gene is essential for male sex differentiation and maintenance in yellow catfish (Pelteobagrus fulvidraco). Sci Bull (Beijing) 2018; 63:1420-1430. [PMID: 36658982 DOI: 10.1016/j.scib.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
Abstract
The sex-determining genes are found to be variable among different fish species. Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture fish species in China with XX/XY sex-determining type. Recently, YY super-male yellow catfish has been successfully produced by combining hormonal-induced sex reversal method with sex chromosome-linked markers. Here, we identified a novel PDZ domain-containing gene in yellow catfish designated as pfpdz1, in whose intron the sex-linked marker was located. The coding sequence of pfpdz1 in Y chromosome was identical to that in X chromosome except a missense SNP (A/T) that changes an amino acid (E8V) in the N-terminal region. Pfpdz1 displayed male-specific expression during sex differentiation. Overexpression of pfpdz1 using additive transgenesis induces XX ovary to differentiate into testis-like tissue, while the targeted inactivation of pfpdz1 in Y chromosome using CRISPR/Cas9-mediated mutagenesis triggers ovarian differentiation. Furthermore, we demonstrated that pfpdz1 initiates testicular differentiation through upregulating expression of amh, dmrt1 and sox9a1, as well as downregulating expression of cyp19a1, foxl2 and wnt4. Our data provide functional evidence that pfpdz1 is significant for male differentiation and maintenance in yellow catfish.
Collapse
Affiliation(s)
- Cheng Dan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaohong Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuting Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Octavera A, Yoshizaki G. Production of donor-derived offspring by allogeneic transplantation of spermatogonia in Chinese rosy bitterling†. Biol Reprod 2018; 100:1108-1117. [DOI: 10.1093/biolre/ioy236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anna Octavera
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
23
|
Yao Y, Yang J, Sun-Waterhouse D, Cui C, Wang W, Dong K. Pilot-scale Protamex™-catalysed production of round scad protein hydrolysates:effects of agitation alone and combined with aeration. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yujing Yao
- Food department; Guangdong Food and Drug Vocational College; Guangzhou 510520 China
| | - Juan Yang
- College of Light Industry and Food Science; South China University of Technology; Guangzhou 510640 China
| | - Dongxiao Sun-Waterhouse
- College of Light Industry and Food Science; South China University of Technology; Guangzhou 510640 China
| | - Chun Cui
- College of Light Industry and Food Science; South China University of Technology; Guangzhou 510640 China
| | - Wei Wang
- College of Light Industry and Food Science; South China University of Technology; Guangzhou 510640 China
| | - Keming Dong
- College of Light Industry and Food Science; South China University of Technology; Guangzhou 510640 China
- Guangdong Weiwei biotechnology Co. LTD; Guangzhou 511440 China
| |
Collapse
|
24
|
Zhu T, Gui L, Zhu Y, Li Y, Li M. Dnd is required for primordial germ cell specification in Oryzias celebensis. Gene 2018; 679:36-43. [PMID: 30171940 DOI: 10.1016/j.gene.2018.08.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/15/2022]
Abstract
Dead end (dnd) is a germ plasm component that plays an essential role for primordial germ cell (PGC) development in vertebrates. Previously, we have found that dnd is the first fish PGC specifier in medaka. Here, we present an additional evidence that dnd is the determinant for PGC specification in Oryzias celebensis. In adult tissues, the O. celebensis dnd (Ocdnd) RNA shows germ cells specific expression in gonads. In the testis, Ocdnd RNA is strongly detected in spermatogonia and meiotic cells and gradually decreases during the spermatogenesis. In the ovary, Ocdnd RNA is present throughout oogenesis. In the embryos, Ocdnd RNA is maternally provided and asymmetrically localized to prominent particles of presumptive PGCs before gastrulation stage and restricted to PGCs subsequently. In addition, Ocdnd 3' UTR can induce specific and stabilized GFP reporter expression in PGCs. Furthermore, knockdown of Ocdnd by morpholino (MO) injection abolishes the PGCs formation and this can be rescued by co-injection of medaka dnd (Oldnd) mRNA. More importantly, overexpression of Oldnd mRNA surprisingly boosts PGCs number. These results provide insights into function of dnd as a conserved specifier of PGCs in the genus Oryzias.
Collapse
Affiliation(s)
- Tianyu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China
| | - Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China
| | - Yu Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
25
|
Schedina IM, Groth D, Schlupp I, Tiedemann R. The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna. BMC Genomics 2018; 19:12. [PMID: 29298680 PMCID: PMC5753479 DOI: 10.1186/s12864-017-4382-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40% of the transcripts for each species were functionally annotated and about 70% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species. Electronic supplementary material The online version of this article (10.1186/s12864-017-4382-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ina Maria Schedina
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Detlef Groth
- Department of Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 14, 14476, Potsdam, Germany
| | - Ingo Schlupp
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.
| |
Collapse
|
26
|
Lin Q, Mei J, Li Z, Zhang X, Zhou L, Gui JF. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish. Genetics 2017; 207:1007-1022. [PMID: 28893856 DOI: 10.1534/genetics.117.300274/-/dc1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/08/2017] [Indexed: 05/27/2023] Open
Abstract
Spermatogenesis is a fundamental process in male reproductive biology and depends on precise balance between self-renewal and differentiation of male germ cells. However, the regulative factors for controlling the balance are poorly understood. In this study, we examined the roles of amh and dmrt1 in male germ cell development by generating their mutants with Crispr/Cas9 technology in zebrafish. Amh mutant zebrafish displayed a female-biased sex ratio, and both male and female amh mutants developed hypertrophic gonads due to uncontrolled proliferation and impaired differentiation of germ cells. A large number of proliferating spermatogonium-like cells were observed within testicular lobules of the amh-mutated testes, and they were demonstrated to be both Vasa- and PH3-positive. Moreover, the average number of Sycp3- and Vasa-positive cells in the amh mutants was significantly lower than in wild-type testes, suggesting a severely impaired differentiation of male germ cells. Conversely, all the dmrt1-mutated testes displayed severe testicular developmental defects and gradual loss of all Vasa-positive germ cells by inhibiting their self-renewal and inducing apoptosis. In addition, several germ cell and Sertoli cell marker genes were significantly downregulated, whereas a prominent increase of Insl3-positive Leydig cells was revealed by immunohistochemical analysis in the disorganized dmrt1-mutated testes. Our data suggest that amh might act as a guardian to control the balance between proliferation and differentiation of male germ cells, whereas dmrt1 might be required for the maintenance, self-renewal, and differentiation of male germ cells. Significantly, this study unravels novel functions of amh gene in fish.
Collapse
Affiliation(s)
- Qiaohong Lin
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuemei Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
27
|
Lin Q, Mei J, Li Z, Zhang X, Zhou L, Gui JF. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish. Genetics 2017; 207:1007-1022. [PMID: 28893856 PMCID: PMC5676237 DOI: 10.1534/genetics.117.300274] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023] Open
Abstract
Spermatogenesis is a fundamental process in male reproductive biology and depends on precise balance between self-renewal and differentiation of male germ cells. However, the regulative factors for controlling the balance are poorly understood. In this study, we examined the roles of amh and dmrt1 in male germ cell development by generating their mutants with Crispr/Cas9 technology in zebrafish. Amh mutant zebrafish displayed a female-biased sex ratio, and both male and female amh mutants developed hypertrophic gonads due to uncontrolled proliferation and impaired differentiation of germ cells. A large number of proliferating spermatogonium-like cells were observed within testicular lobules of the amh-mutated testes, and they were demonstrated to be both Vasa- and PH3-positive. Moreover, the average number of Sycp3- and Vasa-positive cells in the amh mutants was significantly lower than in wild-type testes, suggesting a severely impaired differentiation of male germ cells. Conversely, all the dmrt1-mutated testes displayed severe testicular developmental defects and gradual loss of all Vasa-positive germ cells by inhibiting their self-renewal and inducing apoptosis. In addition, several germ cell and Sertoli cell marker genes were significantly downregulated, whereas a prominent increase of Insl3-positive Leydig cells was revealed by immunohistochemical analysis in the disorganized dmrt1-mutated testes. Our data suggest that amh might act as a guardian to control the balance between proliferation and differentiation of male germ cells, whereas dmrt1 might be required for the maintenance, self-renewal, and differentiation of male germ cells. Significantly, this study unravels novel functions of amh gene in fish.
Collapse
Affiliation(s)
- Qiaohong Lin
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuemei Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
28
|
Wu GC, Li HW, Tey WG, Lin CJ, Chang CF. Expression profile of amh/Amh during bi-directional sex change in the protogynous orange-spotted grouper Epinephelus coioides. PLoS One 2017; 12:e0185864. [PMID: 29016690 PMCID: PMC5634590 DOI: 10.1371/journal.pone.0185864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023] Open
Abstract
Gonadal differentiation is tightly regulated by the initial sex determining gene and the downstream sex-related genes in vertebrates. However, sex change in fish can alter the sexual fate from one sex to the other. Chemical-induced maleness in the protogynous orange-spotted grouper is transient, and a reversible sex change occurs after the chemical treatment is withdrawn. We used these characteristics to study Amh signaling during bi-directional sex change in the grouper. We successfully induced the female-to-male sex change by chemical (aromatase inhibitor, AI, or methyltestosterone, MT) treatment. A dormant gonad (a low proliferation rate of early germ cells and no characteristics of both sexes) was found during the transient phase of reversible male-to-female sex change after the withdrawal of chemical administration. Our results showed that amh (anti-mullerian hormone) and its receptor amhr2 (anti-mullerian hormone receptor type 2) were significantly increased in the gonads during the process of female-to-male sex change. Amh is expressed in the Sertoli cells surrounding the type A spermatogonia in the female-to-male grouper. Male-related gene (dmrt1 and sox9) expression was immediately decreased in MT-terminated males during the reversible male-to-female sex change. However, Amh expression was found in the surrounding cells of type A spermatogonia-like cells during the transient phase of reversible male-to-female sex change. This phenomenon is correlated with the dormancy of type A spermatogonia-like cells. Thus, Amh signaling is suggested to play roles in regulating male differentiation during the female-to-male sex change and in inhibiting type-A spermatogonia-like cell proliferation/differentiation during the reversible male-to-female sex change. We suggest that Amh signaling might play dual roles during bi-directional sex change in grouper.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| |
Collapse
|
29
|
Kleppe L, Andersson E, Skaftnesmo KO, Edvardsen RB, Fjelldal PG, Norberg B, Bogerd J, Schulz RW, Wargelius A. Sex steroid production associated with puberty is absent in germ cell-free salmon. Sci Rep 2017; 7:12584. [PMID: 28974703 PMCID: PMC5626747 DOI: 10.1038/s41598-017-12936-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
In all vertebrates studied so far, germ cells are not required for pubertal maturation of the gonadal steroidogenic system, subsequent development of secondary sex characteristics and reproductive behavior. To explore if the absence of germ cells affects puberty or growth in Atlantic salmon, germ cell-free (GCF), dnd knockout and wild type (WT) postsmolts were stimulated to enter puberty. No GCF fish entered puberty, whereas 66.7% (males) and 30% (females) WT fish completed or entered puberty, respectively. Expression of genes related to steroidogenesis (star, cyp17a1, cyp11β, cyp19a1a), gonadal somatic cells (insl3, amh, igf3), oocytes (bmp15), gonadotropin receptors (fshr, lhcgr), and pituitary gonadotropic cells (fshb, lhb, gnrhr4) showed an immature status and failure to up-regulate gonadal sex steroid production in male and female GCF fish was also reflected in low or undetectable plasma sex steroids (11-ketotestosterone, estradiol-17β and testosterone). A gender difference (high in females, low in males) was found in the expression of star and cyp17a1 in GCF fish. No clear difference in growth was detected between GCF and immature WT fish, while growth was compromised in maturing WT males. We demonstrate for the first time in a vertebrate that germ cells are required for pubertal activation of the somatic steroidogenic cells.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Jan Bogerd
- Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
30
|
Li SZ, Liu W, Li Z, Li WH, Wang Y, Zhou L, Gui JF. greb1 regulates convergent extension movement and pituitary development in zebrafish. Gene 2017; 627:176-187. [DOI: 10.1016/j.gene.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/18/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
|
31
|
Zhang J, Liu W, Jin Y, Jia P, Jia K, Yi M. MiR-202-5p is a novel germ plasm-specific microRNA in zebrafish. Sci Rep 2017; 7:7055. [PMID: 28765643 PMCID: PMC5539161 DOI: 10.1038/s41598-017-07675-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
Gametogenesis is a complicated biological process by which sperm and egg are produced for genetic transmission between generations. In many animals, the germline is segregated from the somatic lineage in early embryonic development through the specification of primordial germ cells (PGCs), the precursors of gametes for reproduction and fertility. In some species, such as fruit fly and zebrafish, PGCs are determined by the maternally provided germ plasm which contains various RNAs and proteins. Here, we identified a germ plasm/PGC-specific microRNA miR-202-5p for the first time in zebrafish. MiR-202-5p was specifically expressed in gonad. In female, it was expressed and accumulated in oocytes during oogenesis. Quantitative reverse transcription PCR and whole mount in situ hybridization results indicated that miR-202-5p exhibited a typical germ plasm /PGC-specific expression pattern throughout embryogenesis, which was consistent with that of the PGC marker vasa, indicating that miR-202-5p was a component of germ plasm and a potential PGC marker in zebrafish. Our present study might be served as a foundation for further investigating the regulative roles of miRNAs in germ plasm formation and PGC development in zebrafish and other teleost.
Collapse
Affiliation(s)
- Jing Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
32
|
Gao FX, Wang Y, Zhang QY, Mou CY, Li Z, Deng YS, Zhou L, Gui JF. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes. BMC Genomics 2017; 18:561. [PMID: 28738780 PMCID: PMC5525251 DOI: 10.1186/s12864-017-3945-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. Results To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A+, candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A+, F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as “chemokine signaling pathway”, “Toll-like receptor signaling pathway” and others, were remarkably much more than those from clone A+ and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A+. In contrast to strong immune defense in resistant clone H, susceptible clone A+ showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A+ failed to resist virus offensive and evidently induced apoptosis or death. Conclusions Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3945-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuan-Sheng Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
33
|
Sun ZH, Zhou L, Li Z, Liu XC, Li SS, Wang Y, Gui JF. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:47-57. [DOI: 10.1016/j.cbpb.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/25/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
|
34
|
Li XY, Liu XL, Ding M, Li Z, Zhou L, Zhang XJ, Gui JF. A novel male-specific SET domain-containing gene setdm identified from extra microchromosomes of gibel carp males. Sci Bull (Beijing) 2017; 62:528-536. [PMID: 36659360 DOI: 10.1016/j.scib.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 01/21/2023]
Abstract
Various genes have been screened on extra chromosomes, but their molecular characterization, expression pattern and biological function are still unclear. Here, we utilized a male-specific sequence of polyploid gibel carp (Carassius gibelio) to identify a novel male-specific SET (Su(var)3-9, Enhancer-of-zeste, Trithorax) domain-containing gene setdm on extra microchromosomes of gibel carp males. And setdm was characterized in molecule and expression aspects, in which its expression was specific to testis, and had relative high transcription during middle/late stages of testis development. Moreover, prominent expression of Setdm in spermatogenic cells was observed in testis through immunofluorescence co-localization analysis. These results suggest that biological function of setdm might be related to testis development and spermatogenesis of gibel carp. Additionally, the homeologous gene setdmf of setdm, was also characterized, and its expression was gonad-specific, in which its expressed product was detected to mainly distribute in gametogenic cells of testis and ovary, and to have dynamic expression pattern similar to that of setdm. Based on the current results, we propose that the novel male-specific setdm on extra microchromosomes might be functional divergence gene of the gonad-specific setdmf. Therefore, these findings will help us to further understand evolutionary fate and functional role of genes on extra microchromosomes.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
35
|
Sun ZH, Wang Y, Lu WJ, Li Z, Liu XC, Li SS, Zhou L, Gui JF. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides. Int J Mol Sci 2017; 18:E685. [PMID: 28333083 PMCID: PMC5412271 DOI: 10.3390/ijms18040685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
36
|
Fan Z, Wu Z, Wang L, Zou Y, Zhang P, You F. Characterization of Embryo Transcriptome of Gynogenetic Olive Flounder Paralichthys olivaceus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:545-553. [PMID: 27638397 DOI: 10.1007/s10126-016-9716-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Olive flounder Paralichthys olivaceus is an important commercially cultured marine flatfish in China, Korea, and Japan. Gynogenesis, via meiogynogenesis and mitogynogenesis, shows advantages in breeding and sex control, but the low survival rate, especially for mitogynogenesis, limits its application. In this study, we sequenced the embryo transcriptomes of gynogenetic haploid, meiogynogenetic diploid, mitogynogenetic diploid, and common diploid flounder and investigated their respective genetic characteristics by analyzing differentiated expressed genes. Compared with common diploid, the gynogenetic haploid showed significant downregulation in notch signaling and wingless-related integration site (Wnt) signaling pathways, which may be the source of haploid syndrome. In both meiogynogenesis and mitogynogenesis, several upregulated genes including complement C3, formin-2, and intelectin may be related to increased survival compared to the haploid. The downregulation of immune system and energy metabolism-related genes caused retarded development of gynogenetic diploids compared with the common diploid. These data provided new and important information for application of artificially induced gynogenesis to aquaculture.
Collapse
Affiliation(s)
- Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
37
|
Li SZ, Liu W, Li Z, Wang Y, Zhou L, Yi MS, Gui JF. Molecular characterization and expression pattern of a germ cell marker gene dnd in gibel carp (Carassius gibelio). Gene 2016; 591:183-190. [PMID: 27418526 DOI: 10.1016/j.gene.2016.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/27/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
As a germ cell marker gene, Dead end (dnd) has been identified and characterized in many vertebrates. Recently, we created a complete germ cell-depleted gonad model by the dnd-specific morpholino-mediated knockdown approach, and revealed sex-biased gene expression alteration through utilizing unisexual gynogenetic superiority in polyploid gibel carp. However, dnd and its expression pattern are still unclear in the gibel carp. In this study, we further analyzed molecular characterization of gibel carp dnd and its dynamic expression pattern during gametogenesis and embryogenesis. Similar to other homologs in vertebrates, gibel carp dnd contains a conserved RRM motif and five other motifs, and is highly evolutionary conserved in genomic organization and neighborhood gene synteny. RT-PCR and Western blot analyses showed its gonad-specific expression intensively in testis and ovary. Section in situ hybridization (SISH) and immunofluorescence localization revealed its dynamic expression pattern specific to oogenic cells and spermatogenetic cells during oogenesis and spermatogenesis. Moreover, its temporal and spatial distribution specific to PGCs were also demonstrated by RT-PCR and whole mount in situ hybridization (WISH) during embryogenesis. Therefore, gibel carp Dnd is a conserved germ cell marker during gametogenesis, and its maternal transcript is also a useful marker for tracing PGC specification and migration.
Collapse
Affiliation(s)
- Shi-Zhu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Liu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Mei-Sheng Yi
- Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
38
|
Extra Microchromosomes Play Male Determination Role in Polyploid Gibel Carp. Genetics 2016; 203:1415-24. [PMID: 27017622 DOI: 10.1534/genetics.115.185843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/19/2016] [Indexed: 11/18/2022] Open
Abstract
Sex is generally determined by sex chromosomes in vertebrates, and sex chromosomes exhibit the most rapidly-evolving traits. Sex chromosome evolution has been revealed previously in numerous cases, but the association between sex chromosome origin and the reproduction mode transition from unisexual to sexual reproduction remains unclear. Here, we have isolated a male-specific sequence via analysis of amplified fragment length polymorphism from polyploid gibel carp (Carassius gibelio), a species that not only has the ability to reproduce unisexually but also contains males in wild populations. Subsequently, we have found through FISH analysis that males have several extra microchromosomes with repetitive sequences and transposable elements when compared to females. Moreover, we produced sex-reversed physiological females with a male-specific marker by using estradiol hormone treatment, and two gynogenetic families were established from them. In addition, the male incidence rates of two gynogenetic families were revealed to be closely associated with the extra microchromosome number of the sex-reversed physiological females. These results suggest that the extra microchromosomes in males might resemble a common feature of sex chromosomes and might play a significant role in male determination during the evolutionary trajectory of the reproduction mode transition from unisexual to sexual reproduction in the polyploid fish.
Collapse
|
39
|
Sun M, Ting Li Y, Liu Y, Chin Lee S, Wang L. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Sci Rep 2016; 6:19405. [PMID: 26786678 PMCID: PMC4726346 DOI: 10.1038/srep19405] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Cadmium (Cd) pollution is a serious global problem, which causes irreversible toxic effects on animals. Freshwater crab, Sinopotamon henanense, is a useful environmental indicator since it is widely distributed in benthic habitats whereby it tends to accumulate Cd and other toxicants. However, its molecular responses to Cd toxicity remain unclear. In this study, we performed transcriptome sequencing and gene expression analyses of its hepatopancreas with and without Cd treatments. A total of 7.78 G clean reads were obtained from the pooled samples, and 68,648 unigenes with an average size of 622 bp were assembled, in which 5,436 were metabolism-associated and 2,728 were stimulus response-associated that include 380 immunity-related unigenes. Expression profile analysis demonstrated that most genes involved in macromolecular metabolism, oxidative phosphorylation, detoxification and anti-oxidant defense were up-regulated by Cd exposure, whereas immunity-related genes were down-regulated, except the genes involved in phagocytosis were up-regulated. The current data indicate that Cd exposure alters gene expressions in a concentration-dependent manner. Therefore, our results provide the first comprehensive S.henanense transcriptome dataset, which is useful for biological and ecotoxicological studies on this crab and its related species at molecular level, and some key Cd-responsive genes may provide candidate biomarkers for monitoring aquatic pollution by heavy metals.
Collapse
Affiliation(s)
- Min Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yi Ting Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shao Chin Lee
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|