1
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Li S, Lu X, Lin X, Zhang Y, Liu Q, Chen S. Cleavage of gasdermin by apoptotic caspases triggers pyroptosis restricting bacterial colonization in Hydra. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105139. [PMID: 38325499 DOI: 10.1016/j.dci.2024.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Gasdermin (GSDM) proteins, as the direct executors of pyroptosis, are structurally and functionally conserved among vertebrates and play crucial roles in host defense against infection, inflammation, and cancer. However, the origin of functional GSDMs remains elusive in the animal kingdom. Here, we found that functional GSDME homologs first appeared in the cnidarian. Moreover, these animal GSDME homologs share evolutionarily conserved apoptotic caspase cleavage sites. Thus, we verified the functional conservation of apoptotic caspase-GSDME cascade in Hydra, a representative species of cnidarian. Unlike vertebrate GSDME homologs, HyGSDME could be cleaved by four Hydra caspase homologs with caspase-3 activity at two sites. Furthermore, in vivo activation of Hydra caspases resulted in HyGSDME cleavage to induce pyroptosis, exacerbating injury and restricting bacterial burden, which protects Hydra from pathogen invasion. In conclusion, these results suggest that GSDME-dependent pyroptosis may be an ancient and conserved host defense mechanism, which may contribute to better understanding on the origin and evolution of GSDMs.
Collapse
Affiliation(s)
- Shuxin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyang Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuqing Lin
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
4
|
Degli Esposti M. Did mitophagy follow the origin of mitochondria? Autophagy 2024; 20:985-993. [PMID: 38361280 PMCID: PMC11135861 DOI: 10.1080/15548627.2024.2307215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Isa V, Seveso D, Diamante L, Montalbetti E, Montano S, Gobbato J, Lavorano S, Galli P, Louis YD. Physical and cellular impact of environmentally relevant microplastic exposure on thermally challenged Pocillopora damicornis (Cnidaria, Scleractinia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170651. [PMID: 38320710 DOI: 10.1016/j.scitotenv.2024.170651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Microplastic pollution is an increasing threat to coral reefs, which are already strongly challenged by climate change-related heat stress. Although it is known that scleractinian corals can ingest microplastic, little is known about their egestion and how microplastic exposure may impair corals at physiological and cellular levels. In addition, the effects of microplastic pollution at current environmental concentration have been little investigated to date, particularly in corals already impacted by heat stress. In this study, the combined effects of these environmental threats on Pocillopora damicornis were investigated from a physical and cellular perspective. Colonies were exposed to three concentrations of polyethylene microplastic beads (no microplastic beads: [No MP], 1 mg/L: [Low MP]; 10 mg/L: [High MP]), and two different temperatures (25 °C and 30 °C) for 72 h. No visual signs of stress in corals, such as abnormal mucus production and polyp extroflection, were recorded. At [Low MP], beads adhered to colonies were ingested but were also egested. Moreover, thermally stressed colonies showed a lower adhesion and higher egestion of microplastic beads. Coral bleaching was observed with an increase in temperature and microplastic bead concentration, as indicated by a general decrease in chlorophyll concentration and Symbiodiniaceae density. An increase in lipid peroxidation was measured in colonies exposed to [Low MP] and [High MP] and an up-regulation of stress response gene hsp70 was observed due to the synergistic interaction of both stressors. Overall, our findings showed that heat stress still represents the main threat to P. damicornis, while the effect of microplastics on coral health and physiology may be minor, especially at control temperature. However, microplastics could exacerbate the effect of thermal stress on cellular homeostasis, even at [Low MP]. While reducing ocean warming is critical for preserving coral reefs, effective management of emerging threats like microplastic pollution is equally essential.
Collapse
Affiliation(s)
- Valerio Isa
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy
| | - Davide Seveso
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Luca Diamante
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives.
| | - Simone Montano
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Jacopo Gobbato
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy
| | - Paolo Galli
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; University of Dubai, Dubai, P.O. Box 14143, United Arab Emirates
| | - Yohan Didier Louis
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| |
Collapse
|
6
|
Hartman ML, Czyz M. BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ 2023:10.1038/s41418-023-01158-5. [PMID: 37031274 DOI: 10.1038/s41418-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Proteins from the BCL-2 family control cell survival and apoptosis in health and disease, and regulate apoptosis-unrelated cellular processes. BCL-Gonad (BCL-G, also known as BCL2-like 14) is a non-typical protein of the family as its long isoform (BCL-GL) consists of BH2 and BH3 domains without the BH1 motif. BCL-G is predominantly expressed in normal testes and different organs of the gastrointestinal tract. The complexity of regulatory mechanisms of BCL-G expression and post-translational modifications suggests that BCL-G may play distinct roles in different types of cells and disorders. While several genetic alterations of BCL2L14 have been reported, gene deletions and amplifications prevail, which is also confirmed by the analysis of sequencing data for different types of cancer. Although the studies validating the phenotypic consequences of genetic manipulations of BCL-G are limited, the role of BCL-G in apoptosis has been undermined. Recent studies using gene-perturbation approaches have revealed apoptosis-unrelated functions of BCL-G in intracellular trafficking, immunomodulation, and regulation of the mucin scaffolding network. These studies were, however, limited mainly to the role of BCL-G in the gastrointestinal tract. Therefore, further efforts using state-of-the-art methods and various types of cells are required to find out more about BCL-G activities. Deciphering the isoform-specific functions of BCL-G and the BCL-G interactome may result in the designing of novel therapeutic approaches, in which BCL-G activity will be either imitated using small-molecule BH3 mimetics or inhibited to counteract BCL-G upregulation. This review summarizes two decades of research on BCL-G.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
7
|
Xiao B, Li D, Liao B, Zheng H, Yang X, Xie Y, Xie Z, Li C. Effects of microplastic combined with Cr(III) on apoptosis and energy pathway of coral endosymbiont. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39750-39763. [PMID: 36602726 DOI: 10.1007/s11356-022-25041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The combined effect of polyethylene (PE) microplastics and chromium (Cr(III)) on the scleractinian coral Acropora pruinosa (A. pruinosa) was investigated. The endpoints analysed in this study included the endosymbiont density, the chlorophyll a + c content, and the activity of enzymes involved in apoptosis (caspase-1, caspase-3), glycolysis (lactate dehydrogenase, LDH), the pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH) and electron transfer coenzyme (nicotinamide adenine dinucleotide, NAD+/NADH). During the 7-day exposure to PE and Cr(III) stress, the endosymbiont density and chlorophyll content decreased gradually. The caspase-1 and caspase-3 activities increased in the high-concentration Cr(III) exposure group. Furthermore, the LDH and G6PDH activities decreased significantly, and the NAD+/NADH was decreased significantly. In summary, the results showed that PE and Cr(III) stress inhibited the endosymbiont energy metabolism enzymes and further led to endosymbiont apoptosis in coral. In addition, under exposure to the combination of stressors, when the concentration of Cr(III) remained at 1 × 10-2 mg/L, the toxic effects of heavy metals on the endosymbiont were temporarily relieved with elevated PE concentrations. In contrast, when coral polyps were exposed to 5 mg/L PE and increasing Cr(III) concentrations, their metabolic activities were seriously disturbed, which increased the burden of energy consumption. In the short term, the toxic effect of Cr(III) was more obvious than that of PE because Cr(III) exposure leads to endosymbiont apoptosis and irreversible damage. This is the first study to provide insights into the combined effect of microplastic and Cr(III) stress on the apoptosis and energy pathways of coral endosymbionts. This study suggested that microplastics combined with Cr(III) are an important factor affecting the apoptosis and energy metabolism of endosymbionts, accelerating the collapse of the balance between the coral host and symbiotic endosymbiont.
Collapse
Affiliation(s)
- Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Dongdong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Baolin Liao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Xiaodong Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Yongqi Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Ziqiang Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China.
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Takekata H, Hamazato H, Suan TE, Izumi R, Yaguchi H, Matsunami M, Isomura N, Takemura A. Transcriptome Analysis in a Scleractinian Coral, Acropora tenuis, during the Spawning Season With Reference to the Gonadal Condition. Zoolog Sci 2022; 39:570-580. [PMID: 36495492 DOI: 10.2108/zs220016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Synchronous spawning is a striking feature of coral. Although it is important for reproductive success, corals reallocate energy for reproduction to growth when they are damaged by external stimuli. To assess the transcriptome before and after spawning in the scleractinian coral Acropora tenuis, we tagged three colonies (one bleached and two unbleached) in the field around Sesoko Island (Okinawa, Japan) in November 2016, sampled them monthly from May to July 2017, and performed RNA sequencing (RNA-Seq) analysis. Histological analysis revealed that the previously bleached colony possessed gametes in June, by which time the other two colonies had already spawned. In RNA-Seq analyses, multi-dimensional scaling based on gene expression similarity among the samples reflected the differences between colonies and between months except for the sample of a non-spawned colony in May, which was similar to the samples in June. The similarity of the non-spawned colony sample in May to the samples in June was also shown in hierarchical clustering based on the expression patterns of the genes that were differentially expressed between months in the spawned colonies. These results suggest that non-spawning was already decided in May, and that the physiological condition in a non-spawned colony in May was advanced to June. RNA-Seq analysis also showed that genes related to gametogenesis and those related to apoptosis were upregulated before and after spawning, respectively.
Collapse
Affiliation(s)
- Hiroki Takekata
- Center for Strategic Research Project, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan,
| | - Hirono Hamazato
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Tan Ee Suan
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Ryotaro Izumi
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Hajime Yaguchi
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Japan
| | - Naoko Isomura
- Department of Bioresources Engineering, Okinawa National College of Technology, Nago-City, Okinawa 905-2192, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
9
|
Zhang J, Richards ZT, Adam AAS, Chan CX, Shinzato C, Gilmour J, Thomas L, Strugnell JM, Miller DJ, Cooke I. Evolutionary responses of a reef-building coral to climate change at the end of the last glacial maximum. Mol Biol Evol 2022; 39:msac201. [PMID: 36219871 PMCID: PMC9578555 DOI: 10.1093/molbev/msac201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effects of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet, few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
- Collections and Research, Western Australian Museum, 49 Kew Street Welshpool, WA 6106, Australia
| | - Arne A S Adam
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo277-8564, Chiba, Japan
| | - James Gilmour
- Australia Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA, 6009, Australia
| | - Luke Thomas
- Australia Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA, 6009, Australia
- Oceans Graduate School, The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jan M Strugnell
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - David J Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan 904-0495
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
10
|
Cziesielski MJ, Liew YJ, Cui G, Aranda M. Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia. Commun Biol 2022; 5:760. [PMID: 35902758 PMCID: PMC9334593 DOI: 10.1038/s42003-022-03724-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Rising ocean temperatures are increasing the rate and intensity of coral mass bleaching events, leading to the collapse of coral reef ecosystems. To better understand the dynamics of coral-algae symbioses, it is critical to decipher the role each partner plays in the holobiont's thermotolerance. Here, we investigated the role of the symbiont by comparing transcriptional heat stress responses of anemones from two thermally distinct locations, Florida (CC7) and Hawaii (H2) as well as a heterologous host-symbiont combination composed of CC7 host anemones inoculated with the symbiont Breviolum minutum (SSB01) from H2 anemones (CC7-B01). We find that oxidative stress and apoptosis responses are strongly influenced by symbiont type, as further confirmed by caspase-3 activation assays, but that the overall response to heat stress is dictated by the compatibility of both partners. Expression of genes essential to symbiosis revealed a shift from a nitrogen- to a carbon-limited state only in the heterologous combination CC7-B01, suggesting a bioenergetic disruption of symbiosis during stress. Our results indicate that symbiosis is highly fine-tuned towards particular partner combinations and that heterologous host-symbiont combinations are metabolically less compatible under stress. These results are essential for future strategies aiming at increasing coral resilience using heterologous thermotolerant symbionts.
Collapse
Affiliation(s)
- Maha J Cziesielski
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yi Jin Liew
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,CSIRO Health & Biosecurity, North Ryde, NSW, Australia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
11
|
Suraweera CD, Banjara S, Hinds MG, Kvansakul M. Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family. Int J Mol Sci 2022; 23:ijms23073691. [PMID: 35409052 PMCID: PMC8998228 DOI: 10.3390/ijms23073691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023] Open
Abstract
The B-cell lymphoma-2 (Bcl-2) family is a group of genes regulating intrinsic apoptosis, a process controlling events such as development, homeostasis and the innate and adaptive immune responses in metazoans. In higher organisms, Bcl-2 proteins coordinate intrinsic apoptosis through their regulation of the integrity of the mitochondrial outer membrane; this function appears to have originated in the basal metazoans. Bcl-2 genes predate the cnidarian-bilaterian split and have been identified in porifera, placozoans and cnidarians but not ctenophores and some nematodes. The Bcl-2 family is composed of two groups of proteins, one with an α-helical Bcl-2 fold that has been identified in porifera, placozoans, cnidarians, and almost all higher bilaterians. The second group of proteins, the BH3-only group, has little sequence conservation and less well-defined structures and is found in cnidarians and most bilaterians, but not porifera or placozoans. Here we examine the evolutionary relationships between Bcl-2 proteins. We show that the structures of the Bcl-2-fold proteins are highly conserved over evolutionary time. Some metazoans such as the urochordate Oikopleura dioica have lost all Bcl-2 family members. This gene loss indicates that Bcl-2 regulated apoptosis is not an absolute requirement in metazoans, a finding mirrored in recent gene deletion studies in mice. Sequence analysis suggests that at least some Bcl-2 proteins lack the ability to bind BH3-only antagonists and therefore potentially have other non-apoptotic functions. By examining the foundations of the Bcl-2 regulated apoptosis, functional relationships may be clarified that allow us to understand the role of specific Bcl-2 proteins in evolution and disease.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Suresh Banjara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
12
|
Revealing therapeutic targets and mechanism of baicalin for anti-chronic gastritis using proteomic analysis of the gastric tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123214. [DOI: 10.1016/j.jchromb.2022.123214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
|
13
|
Bleaching physiology: who's the 'weakest link' - host vs. symbiont? Emerg Top Life Sci 2022; 6:17-32. [PMID: 35179208 DOI: 10.1042/etls20210228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
Environmental stress, such as an increase in the sea surface temperature, triggers coral bleaching, a profound dysfunction of the mutualist symbiosis between the host cnidarians and their photosynthetic dinoflagellates of the Family Symbiodiniaceae. Because of climate change, mass coral bleaching events will increase in frequency and severity in the future, threatening the persistence of this iconic marine ecosystem at global scale. Strategies adapted to coral reefs preservation and restoration may stem from the identification of the succession of events and of the different molecular and cellular contributors to the bleaching phenomenon. To date, studies aiming to decipher the cellular cascade leading to temperature-related bleaching, emphasized the involvement of reactive species originating from compromised bioenergetic pathways (e.g. cellular respiration and photosynthesis). These molecules are responsible for damage to various cellular components causing the dysregulation of cellular homeostasis and the breakdown of symbiosis. In this review, we synthesize the current knowledge available in the literature on the cellular mechanisms caused by thermal stress, which can initiate or participate in the cell cascade leading to the loss of symbionts, with a particular emphasis on the role of each partner in the initiating processes.
Collapse
|
14
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
15
|
Shinzato C, Khalturin K, Inoue J, Zayasu Y, Kanda M, Kawamitsu M, Yoshioka Y, Yamashita H, Suzuki G, Satoh N. Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes. Mol Biol Evol 2021; 38:16-30. [PMID: 32877528 PMCID: PMC7783167 DOI: 10.1093/molbev/msaa216] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures.
Collapse
Affiliation(s)
- Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jun Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.,Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miyuki Kanda
- DNA Sequence Section (SQC), Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayumi Kawamitsu
- DNA Sequence Section (SQC), Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Yamashita
- Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Okinawa, Japan
| | - Go Suzuki
- Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
16
|
Pang HE, Poquita-Du RC, Jain SS, Huang D, Todd PA. Among-genotype responses of the coral Pocillopora acuta to emersion: implications for the ecological engineering of artificial coastal defences. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105312. [PMID: 33848694 DOI: 10.1016/j.marenvres.2021.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Stony corals are promising transplant candidates for the ecological engineering of artificial coastal defences such as seawalls as they attract and host numerous other organisms. However, seawalls are exposed to a wide range of environmental stressors associated with periods of emersion during low tide such as desiccation and changes in salinity, temperature, and solar irradiance. All of these variables have known deleterious effects on coral physiology, growth, and fitness. In this study, we performed parallel experiments (in situ and ex situ) to examine among-genotype responses of Pocillopora acuta to emersion by quantifying growth, photophysiological metrics (Fv/Fm, non-photochemical quenching [NPQ], endosymbiont density, and chlorophyll [chl] a concentration) and survival, following different emersion periods. Results showed that coral fragments emersed for longer durations (>2 h) exhibited reduced growth and survival. Endosymbiont density and NPQ, but not Fv/Fm and chl a concentration, varied significantly among genotypes across different durations of emersion. Overall, the ability of P. acuta to tolerate emersion for up to 2 h suggests its potential to serve as a 'starter species' for transplantation efforts on seawalls. Further, careful characterisation and selection of genotypes with a high capacity to withstand emersion can help maximise the efficacy of ecological engineering using coral transplants.
Collapse
Affiliation(s)
- Hui En Pang
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Rosa Celia Poquita-Du
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - Sudhanshi Sanjeev Jain
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Danwei Huang
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
17
|
Bailey GF, Coelho JC, Poole AZ. Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease. J Exp Biol 2020; 223:jeb229906. [PMID: 32978315 DOI: 10.1242/jeb.229906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.
Collapse
Affiliation(s)
- Grace F Bailey
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| |
Collapse
|
18
|
Shrestha S, Tung J, Grinshpon RD, Swartz P, Hamilton PT, Dimos B, Mydlarz L, Clark AC. Caspases from scleractinian coral show unique regulatory features. J Biol Chem 2020; 295:14578-14591. [PMID: 32788218 PMCID: PMC7586219 DOI: 10.1074/jbc.ra120.014345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization.
Collapse
Affiliation(s)
- Suman Shrestha
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Jessica Tung
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Robert D Grinshpon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul T Hamilton
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Bradford Dimos
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Laura Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
19
|
Popgeorgiev N, Sa JD, Jabbour L, Banjara S, Nguyen TTM, Akhavan-E-Sabet A, Gadet R, Ralchev N, Manon S, Hinds MG, Osigus HJ, Schierwater B, Humbert PO, Rimokh R, Gillet G, Kvansakul M. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. SCIENCE ADVANCES 2020; 6:6/40/eabc4149. [PMID: 32998881 PMCID: PMC7527217 DOI: 10.1126/sciadv.abc4149] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 06/10/2023]
Abstract
In metazoans, Bcl-2 family proteins are major regulators of mitochondrially mediated apoptosis; however, their evolution remains poorly understood. Here, we describe the molecular characterization of the four members of the Bcl-2 family in the most primitive metazoan, Trichoplax adhaerens All four trBcl-2 homologs are multimotif Bcl-2 group, with trBcl-2L1 and trBcl-2L2 being highly divergent antiapoptotic Bcl-2 members, whereas trBcl-2L3 and trBcl-2L4 are homologs of proapoptotic Bax and Bak, respectively. trBax expression permeabilizes the mitochondrial outer membrane, while trBak operates as a BH3-only sensitizer repressing antiapoptotic activities of trBcl-2L1 and trBcl-2L2. The crystal structure of a trBcl-2L2:trBak BH3 complex reveals that trBcl-2L2 uses the canonical Bcl-2 ligand binding groove to sequester trBak BH3, indicating that the structural basis for apoptosis control is conserved from T. adhaerens to mammals. Finally, we demonstrate that both trBax and trBak BH3 peptides bind selectively to human Bcl-2 homologs to sensitize cancer cells to chemotherapy treatment.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | - Jaison D Sa
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Lea Jabbour
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Suresh Banjara
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Trang Thi Minh Nguyen
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Aida Akhavan-E-Sabet
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rudy Gadet
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Nikola Ralchev
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS et Université de Bordeaux, CS61390, 1 Rue Camille Saint-Saëns, 33000 Bordeaux, France
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3050, Australia
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, Division of Molecular Evolution, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, Division of Molecular Evolution, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Patrick O Humbert
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ruth Rimokh
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Germain Gillet
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
20
|
Diversity in the intrinsic apoptosis pathway of nematodes. Commun Biol 2020; 3:478. [PMID: 32859965 PMCID: PMC7456325 DOI: 10.1038/s42003-020-01208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 11/08/2022] Open
Abstract
Early studies of the free-living nematode C. elegans informed us how BCL-2-regulated apoptosis in humans is regulated. However, subsequent studies showed C. elegans apoptosis has several unique features compared with human apoptosis. To date, there has been no detailed analysis of apoptosis regulators in nematodes other than C. elegans. Here, we discovered BCL-2 orthologues in 89 free-living and parasitic nematode taxa representing four evolutionary clades (I, III, IV and V). Unlike in C. elegans, 15 species possess multiple (two to five) BCL-2-like proteins, and some do not have any recognisable BCL-2 sequences. Functional studies provided no evidence that BAX/BAK proteins have evolved in nematodes, and structural studies of a BCL-2 protein from the basal clade I revealed it lacks a functionally important feature of the C. elegans orthologue. Clade I CED-4/APAF-1 proteins also possess WD40-repeat sequences associated with apoptosome assembly, not present in C. elegans, or other nematode taxa studied.
Collapse
|
21
|
Galasso C, Celentano S, Costantini M, D’Aniello S, Ianora A, Sansone C, Romano G. Diatom-Derived Polyunsaturated Aldehydes Activate Similar Cell Death Genes in Two Different Systems: Sea Urchin Embryos and Human Cells. Int J Mol Sci 2020; 21:ijms21155201. [PMID: 32708040 PMCID: PMC7439121 DOI: 10.3390/ijms21155201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death, such as apoptosis and autophagy, are key processes that are activated early on during development, leading to remodelling in embryos and homeostasis in adult organisms. Genomic conservation of death factors has been largely investigated in the animal and plant kingdoms. In this study, we analysed, for the first time, the expression profile of 11 genes involved in apoptosis (extrinsic and intrinsic pathways) and autophagy in sea urchin Paracentrotus lividus embryos exposed to antiproliferative polyunsaturated aldehydes (PUAs), and we compared these results with those obtained on the human cell line A549 treated with the same molecules. We found that sea urchins and human cells activated, at the gene level, a similar cell death response to these compounds. Despite the evolutionary distance between sea urchins and humans, we observed that the activation of apoptotic and autophagic genes in response to cytotoxic compounds is a conserved process. These results give first insight on death mechanisms of P. lividus death mechanisms, also providing additional information for the use of this marine organism as a useful in vitro model for the study of cell death signalling pathways activated in response to chemical compounds.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Susanna Celentano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| |
Collapse
|
22
|
Shikina S, Chen CC, Chiu YL, Tsai PH, Chang CF. Apoptosis in gonadal somatic cells of scleractinian corals: implications of structural adjustments for gamete production and release. Proc Biol Sci 2020; 287:20200578. [PMID: 32605522 DOI: 10.1098/rspb.2020.0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apoptosis is an evolutionarily conserved process of programmed cell death. Here, we show structural changes in the gonads caused by apoptosis during gametogenesis in the scleractinian coral, Euphyllia ancora. Anatomical and histological analyses revealed that from the non-spawning to the spawning season, testes and ovaries increased in size due to active proliferation, differentiation and development of germ cells. Additionally, the thickness and cell density of the gonadal somatic layer decreased significantly as the spawning season approached. Further analyses demonstrated that the changes in the gonadal somatic layer were caused by apoptosis in a subpopulation of gonadal somatic cells. The occurrence of apoptosis in the gonadal somatic layer was also confirmed in other scleractinian corals. Our findings suggest that decreases in thickness and cell density of the gonadal somatic layer are structural adjustments facilitating oocyte and spermary (male germ cell cluster) enlargement and subsequent gamete release from the gonads. In animal reproduction, apoptosis in germ cells is an important process that controls the number and quality of gametes. However, apoptosis in gonadal somatic cells has rarely been reported among metazoans. Thus, our data provide evidence for a unique use of apoptosis in animal reproduction.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Department of AquSaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Pin-Hsuan Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.,Department of AquSaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
23
|
Examining the Effect of Heat Stress on Montastraea cavernosa (Linnaeus 1767) from a Mesophotic Coral Ecosystem (MCE). WATER 2020. [DOI: 10.3390/w12051303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coral reefs are under increasing pressure from global warming. Little knowledge, however, exists regarding heat induced stress on deeper mesophotic coral ecosystems (MCEs). Here, we examined the effect of acute (72 h) and chronic (480 h) heat stress on the host coral Montastraea cavernosa (Linnaeus 1767) collected from an upper MCE (~30 m) in Florida, USA. We examined six immune/stress-related genes: ribosomal protein L9 (RpL9), ribosomal protein S7 (RpS7), B-cell lymphoma 2 apoptosis regulator (BCL-2), heat shock protein 90 (HSP90), catalase, and cathepsin L1, as a proxy for coral response to heat stress. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate the gene expression. Overall, both acute and chronic heat stress treatments elicited a response in gene expression relative to control samples. Acute heat exposure resulted in up-regulation of catalase, BCL-2, and HSP90 at all time points from hour 24 to 48, suggesting the activation of an oxidative protective enzyme, molecular chaperone, and anti-apoptotic protein. Fewer genes were up-regulated in the chronic experiment until hour 288 (30 °C) where catalase, RpL9, and RpS7 were significantly up-regulated. Chronic heat exposure elicited a physiological response at 30 °C, which we propose as a heat-stress threshold for Montastraea cavernosa (M. cavernosa) collected from an MCE.
Collapse
|
24
|
Cui N, Luo H, Zhao Y. Protective effect of GYY4137, a water‑soluble hydrogen sulfide‑releasing molecule, on intestinal ischemia‑reperfusion. Mol Med Rep 2020; 21:1633-1639. [PMID: 32016475 DOI: 10.3892/mmr.2020.10961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to clarify the protective effects of p‑methoxyphenyl morpholino‑phosphinodithioic acid (GYY4137), a water‑soluble hydrogen sulfide‑releasing molecule, on a rat model of intestinal ischemia‑reperfusion (IIR). A total of 40 healthy male Sprague Dawley (SD) rats were randomly divided into four groups (n=10/group): Group A, a sham‑surgery group; Group B, the IIR group; group C, rats with IIR that were administered an abdominal injection of low‑dose GYY4137 (40 mg/kg); and group D, rats with IIR that were administered high‑dose GYY4137 (80 mg/kg). Intestinal histomorphology was observed using hematoxylin and eosin staining, and the concentrations of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. Apoptotic index (AI) was determined by terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling. Reverse transcription‑quantitative PCR analysis was performed to assess the expression levels of intestinal caspase‑3, Bax and Bcl‑2. Notably, disordered arrangement of intestinal villi and mucosal necrosis were detected in group B, which was substantially improved by GYY4137 treatment (groups C and D). MDA content (nmol/mg) was 2.83±0.36, 9.23±0.78, 4.97±0.45 and 3.51±1.05 nmol/mg in groups A, B, C and D, respectively. In addition, SOD concentration (U/mg) was 135.37±3.34, 76.45±1.39, 95.13±1.64 and 115.13±2.54 in groups A, B, C and D, respectively. Furthermore, AI in group B (21.73±1.17%) was markedly higher than that in group A (4.53±0.28%) and in the GYY4137 intervention groups (9.53±0.96 and 6.53±0.76% in groups C and D, respectively). Compared with in group A, the mRNA expression levels of Bax and caspase‑3 were markedly higher in group B (P<0.05), whereas the expression of Bcl‑2 was significantly lower (P<0.05). Furthermore, compared with in group B, Bcl‑2 expression was higher, and Bax and caspase‑3 expression was lower in groups C and D (P<0.05). In conclusion, GYY4137 may alleviate IIR‑induced damage in SD rats.
Collapse
Affiliation(s)
- Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yu Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
25
|
Yang L, Chang B, Guo Y, Wu X, Liu L. The role of oxidative stress-mediated apoptosis in the pathogenesis of uric acid nephropathy. Ren Fail 2020; 41:616-622. [PMID: 31269852 PMCID: PMC6610514 DOI: 10.1080/0886022x.2019.1633350] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: By copying the uric acid nephropathy rat model, the oxidative stress injury of mitochondria was caused in renal tubular epithelial cells and the relationship between the injury and the induction of cell apoptosis was identified. Methods: All rats were randomly divided into NC (normal control, NC) group, HUA (high uric acid, HUA) group and GSH (reductive glutathione, GSH) group. The values were quantitatively tested in the kidney tissues, including 24-h urinary protein quantity, serum creatinine, blood uric acid, the MDA (malondialdehyde, MDA) and SOD (superoxide dismutase, SOD) oxidative stress indicators. The expression of p53, Bax and caspase-9/-3 were detected by immunoblotting. TUNEL assays were used to detect the apoptosis of renal tubular epithelial cells. Result: In HUA and GSH groups, the 24-h urinary protein(24UTP), serum creatinine, and blood uric acid increased gradually with the increase of the replication cycle and the increase was significant compared to the NC group (p < .05). Compared to the NC group, MDA increased whereas SOD decreased. The expression of apoptotic proteins, such as p53, Bax, and caspase-9/-3 in the mitochondria was significantly different (p < .05). TUNEL assay revealed that the renal tubular epithelial cells in HUA group were largely apoptotic, whereas the GSH group improved significantly. Conclusion: Mitochondria incurred the substantial damage due to being in a state of oxidative stress, which was the primary cause of apoptosis in the renal tubule epithelial cells. GSH exhibited the effective resistance to the influence of oxidative stress and can restore the damage in the renal tubular epithelial cells.
Collapse
Affiliation(s)
- Lijuan Yang
- a Department of Physiology , Bengbu Medical College , Bengbu , People's Republic of China
| | - Baochao Chang
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Yaling Guo
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Xueping Wu
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Lei Liu
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| |
Collapse
|
26
|
Xing JJ, Hou JG, Ma ZN, Wang Z, Ren S, Wang YP, Liu WC, Chen C, Li W. Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif 2019; 52:e12627. [PMID: 31094028 PMCID: PMC6668974 DOI: 10.1111/cpr.12627] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Objectives Based on previous reports that ginsenosides have been shown to exert better preventive effects on cisplatin‐induced kidney injury, the present work aims to evaluate the protective effects of ginsenoside Rb3 (G‐Rb3) on cisplatin‐induced renal damage and underlying mechanisms in vivo and in vitro. Materials and methods The protective effect of G‐Rb3 on cisplatin‐induced acute renal failure in ICR mouse model and HEK293 cell model was investigated, and the underlying possible mechanisms were also explored. For animal experiment, renal function, kidney histology, inflammation, oxidative stress, relative protein molecules involved in apoptosis and autophagy signalling pathways were assessed. In addition, rapamycin (a specific inhibitor of mTOR), compound C (a specific inhibitor of AMPK) and acetylcysteine (NAC, a specific ROS scavenger) were employed to testify the effects of AMPK/mTOR signal pathway on the protective effects of G‐Rb3 in HEK293 cells. Results Pre‐treatment with G‐Rb3 at doses of 10 and 20 mg/kg for ten days significantly reversed the increases in serum creatinine (CRE), blood urea nitrogen (BUN) and malondialdehyde (MDA), and decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Histopathological examination further revealed that G‐Rb3 inhibited cisplatin‐induced nephrotoxicity. G‐Rb3 diminished cisplatin‐induced increase in protein expression levels of p62, Atg3, Atg5 and Atg7, and decrease in protein expression level of p‐mTOR and the ratio of LC3‐I/LC3‐II, indicating that G‐Rb3 suppressed cisplatin‐induced activation of autophagy. Inhibition of autophagy induced inactivation of apoptosis, which suggested that autophagy played an adverse effect on cisplatin‐evoked renal damage. Further, we found that G‐Rb3 might potentially modulate the expressions of AMPK‐related signal pathways. Conclusions These findings clearly suggested that G‐Rb3‐mediated alleviation of cisplatin‐induced nephrotoxicity was in part due to regulation of AMPK‐/mTOR‐mediated autophagy and inhibition of apoptosis in vitro and in vivo.
Collapse
Affiliation(s)
- Jing-Jing Xing
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Intelligent Synthetic Biology Center, Daejeon, Korea
| | - Zhi-Na Ma
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
27
|
Aguilar C, Raina JB, Fôret S, Hayward DC, Lapeyre B, Bourne DG, Miller DJ. Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics 2019; 20:148. [PMID: 30786881 PMCID: PMC6381741 DOI: 10.1186/s12864-019-5527-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Results Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. Conclusions This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5527-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catalina Aguilar
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine & Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida, 33149, USA.,Atlantic Oceanographic and Meteorological Laboratories (AOML), NOAA, 4301 Rickenbacker Causeway, Miami, Florida, 33149, USA
| | - Jean-Baptiste Raina
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Climate Change Cluster (C3), University of Technology, Sydney, NSW, 2007, Australia
| | - Sylvain Fôret
- ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - David C Hayward
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Bruno Lapeyre
- Laboratoire d'excellence CORAIL, Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), Moorea, B.P.1013, Papeete, French Polynesia
| | - David G Bourne
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.,Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - David J Miller
- AIMS@JCU and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
28
|
Gorelick-Ashkenazi A, Weiss R, Sapozhnikov L, Florentin A, Tarayrah-Ibraheim L, Dweik D, Yacobi-Sharon K, Arama E. Caspases maintain tissue integrity by an apoptosis-independent inhibition of cell migration and invasion. Nat Commun 2018; 9:2806. [PMID: 30022065 PMCID: PMC6052023 DOI: 10.1038/s41467-018-05204-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/22/2018] [Indexed: 11/15/2022] Open
Abstract
Maintenance of tissue integrity during development and homeostasis requires the precise coordination of several cell-based processes, including cell death. In animals, the majority of such cell death occurs by apoptosis, a process mediated by caspase proteases. To elucidate the role of caspases in tissue integrity, we investigated the behavior of Drosophila epithelial cells that are severely compromised for caspase activity. We show that these cells acquire migratory and invasive capacities, either within 1–2 days following irradiation or spontaneously during development. Importantly, low levels of effector caspase activity, which are far below the threshold required to induce apoptosis, can potently inhibit this process, as well as a distinct, developmental paradigm of primordial germ cell migration. These findings may have implications for radiation therapy in cancer treatment. Furthermore, given the presence of caspases throughout metazoa, our results could imply that preventing unwanted cell migration constitutes an ancient non-apoptotic function of these proteases. In addition to regulating programmed cell death, caspases also have non-apoptotic roles. Here, the authors show that low level caspase activity prevents cell migration to maintain tissue integrity.
Collapse
Affiliation(s)
| | - Ron Weiss
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lena Sapozhnikov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602-2607, USA
| | | | - Dima Dweik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
29
|
Deciphering the nature of the coral-Chromera association. ISME JOURNAL 2018; 12:776-790. [PMID: 29321691 PMCID: PMC5864212 DOI: 10.1038/s41396-017-0005-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/22/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of Chromera velia as a novel coral-associated microalga, this organism has attracted interest because of its unique evolutionary position between the photosynthetic dinoflagellates and the parasitic apicomplexans. The nature of the relationship between Chromera and its coral host is controversial. Is it a mutualism, from which both participants benefit, a parasitic relationship, or a chance association? To better understand the interaction, larvae of the common Indo-Pacific reef-building coral Acropora digitifera were experimentally infected with Chromera, and the impact on the host transcriptome was assessed at 4, 12, and 48 h post-infection using Illumina RNA-Seq technology. The transcriptomic response of the coral to Chromera was complex and implies that host immunity is strongly suppressed, and both phagosome maturation and the apoptotic machinery is modified. These responses differ markedly from those described for infection with a competent strain of the coral mutualist Symbiodinium, instead resembling those of vertebrate hosts to parasites and/or pathogens such as Mycobacterium tuberculosis. Consistent with ecological studies suggesting that the association may be accidental, the transcriptional response of A. digitifera larvae leads us to conclude that Chromera could be a coral parasite, commensal, or accidental bystander, but certainly not a beneficial mutualist.
Collapse
|
30
|
|
31
|
胡 司, 李 辉, 康 品, 陈 天, 李 妙, 朱 建, 高 大, 张 恒, 王 洪. [Effects of simvastatin on aortic vascular endothelial cell apoptosis and Bcl-2 protein expression in a rat model of atherosclerosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1456-1460. [PMID: 29180324 PMCID: PMC6779642 DOI: 10.3969/j.issn.1673-4254.2017.11.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To explore the effects of simvastatin on vascular endothelial cell apoptosis and Bcl-2 protein expression in the aorta in a rat model of atherosclerosis. METHODS Thirty-six rats were randomized into control group (n=10), atherosclerosis model group (n=13) and simvastatin intervention group (n=13). In the latter two groups, rat models of atherosclerosis were established by intraperitoneal injection of vitamin D3 combined with high-fat feeding for 6 weeks, and the control rats were fed with regular diet. In the intervention group, the rats were further fed with high-fat diet with daily simvastatin treatment for 4 weeks. After the treatments, the pathological changes and plaque in the thoracic aorta were observed, and the expression of Bcl-2 protein was detected with immunohistochemistry. TUNEL assay was used to determine the apoptosis index (AI) of the vascular endothelial cells. RESULTS Compared with that in the control group, Bcl-2 protein expression in the aorta of atherosclerotic rats was significantly decreased (P<0.05); simvastatin treatment obviously increased the expression of Bcl-2 protein in atherosclerotic rats (P<0.05) to a level similar to that in the control group. The AI was the highest in the model group (P<0.05) and comparable between the control and simvastatin treatment group. CONCLUSION The therapeutic effect of simvastatin against atherosclerosis is probably mediated by up-regulation of Bcl-2 protein, which inhibits vascular endothelial cell apoptosis in rats with aortic atherosclerosis.
Collapse
Affiliation(s)
- 司淦 胡
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 辉 李
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 品方 康
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 天平 陈
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 妙男 李
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 建 朱
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 大胜 高
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 恒 张
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - 洪巨 王
- />蚌埠医学院第一附属医院 心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
- 王洪巨,博士,教授,E-mail:
| |
Collapse
|
32
|
Poli D, Fabbri E, Goffredo S, Airi V, Franzellitti S. Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa. PLoS One 2017; 12:e0171456. [PMID: 28199351 PMCID: PMC5310758 DOI: 10.1371/journal.pone.0171456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the P. verrucosa hsp70 transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in P. verrucosa. Corals exhibiting higher basal hsp70 levels may display enhanced tolerance towards environmental stressors.
Collapse
Affiliation(s)
- Davide Poli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
- * E-mail:
| |
Collapse
|
33
|
Thurber RV, Payet JP, Thurber AR, Correa AMS. Virus-host interactions and their roles in coral reef health and disease. Nat Rev Microbiol 2017; 15:205-216. [PMID: 28090075 DOI: 10.1038/nrmicro.2016.176] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jérôme P Payet
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.,College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Andrew R Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.,College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Adrienne M S Correa
- BioSciences Department, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
34
|
Quistad SD, Grasis JA, Barr JJ, Rohwer FL. Viruses and the origin of microbiome selection and immunity. ISME JOURNAL 2016; 11:835-840. [PMID: 27983723 DOI: 10.1038/ismej.2016.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/15/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
The last common metazoan ancestor (LCMA) emerged over half a billion years ago. These complex metazoans provided newly available niche space for viruses and microbes. Modern day contemporaries, such as cnidarians, suggest that the LCMA consisted of two cell layers: a basal endoderm and a mucus-secreting ectoderm, which formed a surface mucus layer (SML). Here we propose a model for the origin of metazoan immunity based on external and internal microbial selection mechanisms. In this model, the SML concentrated bacteria and their associated viruses (phage) through physical dynamics (that is, the slower flow fields near a diffusive boundary layer), which selected for mucin-binding capabilities. The concentration of phage within the SML provided the LCMA with an external microbial selective described by the bacteriophage adherence to mucus (BAM) model. In the BAM model, phage adhere to mucus protecting the metazoan host against invading, potentially pathogenic bacteria. The same fluid dynamics that concentrated phage and bacteria in the SML also concentrated eukaryotic viruses. As eukaryotic viruses competed for host intracellular niche space, those viruses that provided the LCMA with immune protection were maintained. If a resident virus became pathogenic or if a non-beneficial infection occurred, we propose that tumor necrosis factor (TNF)-mediated programmed cell death, as well as other apoptosis mechanisms, were utilized to remove virally infected cells. The ubiquity of the mucosal environment across metazoan phyla suggest that both BAM and TNF-induced apoptosis emerged during the Precambrian era and continue to drive the evolution of metazoan immunity.
Collapse
Affiliation(s)
- Steven D Quistad
- Department of Biology, San Diego State University, San Diego, CA, USA.,Laboratoire de Colloïdes et Matériaux Divisés (LCMD), Institute of Chemistry, Biology, and Innovation, ESPCI ParisTech/CNRS UMR 8231/PSL Research University, Paris, France.,Laboratoire de Colloïdes et Matériaux Divisés (LCMD), Institute of Chemistry, Biology, and Innovation, ESPCI ParisTech/CNRS UMR 8231/PSL Research University, Paris, France
| | - Juris A Grasis
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Jeremy J Barr
- Department of Biology, San Diego State University, San Diego, CA, USA.,School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Forest L Rohwer
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
35
|
Kvitt H, Rosenfeld H, Tchernov D. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals. Sci Rep 2016; 6:30359. [PMID: 27460544 PMCID: PMC4961959 DOI: 10.1038/srep30359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.
Collapse
Affiliation(s)
- Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel.,The Interuniversity Institute for Marine Science P.O.B 469, Eilat 88103, Israel
| | - Hanna Rosenfeld
- Israel Oceanographic and Limnological Research, National Center for Mariculture, P.O.B. 1212, Eilat 88112, Israel
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| |
Collapse
|
36
|
Abstract
The evolution of the tumor necrosis factor/tumor necrosis factor receptor superfamily (TNF/TNFR) is complicated and not well understood. To date, most TNFR studies have focused on vertebrate models leaving the role of TNFRs in invertebrates largely unexplored. The evolution of important cellular processes including stress response, apoptosis, development, and inflammation will be better understood by examining the TNF/TNFR superfamily in ancient invertebrate phyla. How widespread is this gene family within the evolutionary tree of life and is there evidence for similar function in invertebrates? A first step is to identify the presence or absence of these genes within basal metazoan taxa using the signature cysteine-rich domain (CRD) of the TNFR superfamily. In this perspective, we will start by examining what is currently known about the function of TNFRs in invertebrates. Then, we will assess the role of TNFRs in apoptosis and explore the origins of the domains found in TNFRs including the death domain (DD) and CRD. Finally, we will examine the phylogenetic relationship between TNFRs containing DDs identified to date. From these data, we propose a model for a Precambrian origin of TNFRs and their functional role in apoptosis.
Collapse
|