1
|
Shi L, Zhou X, Qi P. Resin Acid Copper Salt, an Interesting Chemical Pesticide, Controls Rice Bacterial Leaf Blight by Regulating Bacterial Biofilm, Motility, and Extracellular Enzymes. Molecules 2024; 29:4297. [PMID: 39339292 PMCID: PMC11434517 DOI: 10.3390/molecules29184297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial virulence plays an important role in infection. Antibacterial virulence factors are effective for preventing crop bacterial diseases. Resin acid copper salt as an effective inhibitor exhibited excellent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity with an EC50 of 50.0 μg mL-1. Resin acid copper salt (RACS) can reduce extracellular polysaccharides' (EPS's) biosynthesis by down-regulating gumB relative expression. RACS can also effectively inhibit the bio-mass of Xoo biofilm. It can reduce the activity of Xoo extracellular amylase at a concentration of 100 μg mL-1. Meanwhile, the results of virtual computing suggested that RACS is an enzyme inhibitor. RACS displayed good curative activity with a control effect of 38.5%. Furthermore, the result of the phytotoxicity assessment revealed that RACS exhibited slight toxicity compared with the control at a concentration of 200 μg mL-1. The curative effect was increased to 45.0% using an additional antimicrobial agent like orange peel essential oil. RACS markedly inhibited bacterial pathogenicity at a concentration of 100 μg mL-1 in vivo.
Collapse
Affiliation(s)
- Lihong Shi
- Guizhou Province Engineering Research Center of Medical Resourceful Healthcare Products, College of Pharmacy, Guiyang Healthcare Vocational University, Guiyang 550081, China;
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Puying Qi
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Kumar R, Chanda B, Adkins S, Kousik CS. Comparative transcriptome analysis of resistant and susceptible watermelon genotypes reveals the role of RNAi, callose, proteinase, and cell wall in squash vein yellowing virus resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1426647. [PMID: 39157511 PMCID: PMC11327015 DOI: 10.3389/fpls.2024.1426647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Watermelon (Citrullus lanatus) is the third largest fruit crop in the world in term of production. However, it is susceptible to several viruses. Watermelon vine decline (WVD), caused by whitefly-transmitted squash vein yellowing virus (SqVYV), is a disease that has caused over $60 million in losses in the US and continues to occur regularly in southeastern states. Understanding the molecular mechanisms underlying resistance to SqVYV is important for effective disease management. A time-course transcriptomic analysis was conducted on resistant (392291-VDR) and susceptible (Crimson Sweet) watermelon genotypes inoculated with SqVYV. Significantly higher levels of SqVYV were observed over time in the susceptible compared to the resistant genotype. The plasmodesmata callose binding protein (PDCB) gene, which is responsible for increased callose deposition in the plasmodesmata, was more highly expressed in the resistant genotype than in the susceptible genotype before and after inoculation, suggesting the inhibition of cell-to-cell movement of SqVYV. The potential role of the RNA interference (RNAi) pathway was observed in the resistant genotype based on differential expression of eukaryotic initiation factor (eIF), translin, DICER, ribosome inactivating proteins, RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) genes after inoculation. The significant differential expression of hormone-related genes, including those involved in the ethylene, jasmonic acid, auxin, cytokinin, gibberellin, and salicylic acid signaling pathways, was observed, emphasizing their regulatory roles in the defense response. Genes regulating pectin metabolism, cellulose synthesis, cell growth and development, xenobiotic metabolism, and lignin biosynthesis were overexpressed in the susceptible genotype, suggesting that alterations in cell wall integrity and growth processes result in disease symptom development. These findings will be helpful for further functional studies and the development of SqVYV-resistant watermelon cultivars.
Collapse
Affiliation(s)
- Rahul Kumar
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
- ORISE participant, USVL, USDA-ARS, Charleston, SC, United States
| | - Bidisha Chanda
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
| | - Scott Adkins
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Chandrasekar S. Kousik
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
| |
Collapse
|
3
|
Hajibarat Z, Saidi A, Zeinalabedini M, Mousapour Gorji A, Ghaffari MR, Shariati V, Ahmadvand R. Genotyping-by-sequencing and weighted gene co-expression network analysis of genes responsive against Potato virus Y in commercial potato cultivars. PLoS One 2024; 19:e0303783. [PMID: 38787845 PMCID: PMC11125566 DOI: 10.1371/journal.pone.0303783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Potato is considered a key component of the global food system and plays a vital role in strengthening world food security. A major constraint to potato production worldwide is the Potato Virus Y (PVY), belonging to the genus Potyvirus in the family of Potyviridae. Selective breeding of potato with resistance to PVY pathogens remains the best method to limit the impact of viral infections. Understanding the genetic diversity and population structure of potato germplasm is important for breeders to improve new cultivars for the sustainable use of genetic materials in potato breeding to PVY pathogens. While, genetic diversity improvement in modern potato breeding is facing increasingly narrow genetic basis and the decline of the genetic diversity. In this research, we performed genotyping-by-sequencing (GBS)-based diversity analysis on 10 commercial potato cultivars and weighted gene co-expression network analysis (WGCNA) to identify candidate genes related to PVY-resistance. WGCNA is a system biology technique that uses the WGCNA R software package to describe the correlation patterns between genes in multiple samples. In terms of consumption, these cultivars are a high rate among Iranian people. Using population structure analysis, the 10 cultivars were clustered into three groups based on the 118343 single nucleotide polymorphisms (SNPs) generated by GBS. Read depth ranged between 5 and 18. The average data size and Q30 of the reads were 145.98 Mb and 93.63%, respectively. Based on the WGCNA and gene expression analysis, the StDUF538, StGTF3C5, and StTMEM161A genes were associated with PVY resistance in the potato genome. Further, these three hub genes were significantly involved in defense mechanism where the StTMEM161A was involved in the regulation of alkalization apoplast, the StDUF538 was activated in the chloroplast degradation program, and the StGTF3C5 regulated the proteins increase related to defense in the PVY infected cells. In addition, in the genetic improvement programs, these hub genes can be used as genetic markers for screening commercial cultivars for PVY resistance. Our survey demonstrated that the combination of GBS-based genetic diversity germplasm analysis and WGCNA can assist breeders to select cultivars resistant to PVY as well as help design proper crossing schemes in potato breeding.
Collapse
Affiliation(s)
- Zahra Hajibarat
- Faculty of Life Sciences & Biotechnology, Department of Cell & Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Faculty of Life Sciences & Biotechnology, Department of Cell & Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ahmad Mousapour Gorji
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Vahid Shariati
- National Institute of Genetic Engineering and Biotechnology, NIGEB Genome Center, Tehran, Iran
| | - Rahim Ahmadvand
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
4
|
Magar ND, Shah P, Barbadikar KM, Bosamia TC, Madhav MS, Mangrauthia SK, Pandey MK, Sharma S, Shanker AK, Neeraja CN, Sundaram RM. Long non-coding RNA-mediated epigenetic response for abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108165. [PMID: 38064899 DOI: 10.1016/j.plaphy.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.
Collapse
Affiliation(s)
- Nakul D Magar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Tejas C Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gujarat, 364002, India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Arun K Shanker
- Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 500059, India
| | - C N Neeraja
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
5
|
Matros A, Schikora A, Ordon F, Wehner G. QTL for induced resistance against leaf rust in barley. FRONTIERS IN PLANT SCIENCE 2023; 13:1069087. [PMID: 36714737 PMCID: PMC9877528 DOI: 10.3389/fpls.2022.1069087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Leaf rust caused by Puccinia hordei is one of the major diseases of barley (Hordeum vulgare L.) leading to yield losses up to 60%. Even though, resistance genes Rph1 to Rph28 are known, most of these are already overcome. In this context, priming may promote enhanced resistance to P. hordei. Several bacterial communities such as the soil bacterium Ensifer (syn. Sinorhizobium) meliloti are reported to induce resistance by priming. During quorum sensing in populations of gram negative bacteria, they produce N-acyl homoserine-lactones (AHL), which induce resistance in plants in a species- and genotype-specific manner. Therefore, the present study aims to detect genotypic differences in the response of barley to AHL, followed by the identification of genomic regions involved in priming efficiency of barley. A diverse set of 198 spring barley accessions was treated with a repaired E. meliloti natural mutant strain expR+ch producing a substantial amount of AHL and a transformed E. meliloti strain carrying the lactonase gene attM from Agrobacterium tumefaciens. For P. hordei resistance the diseased leaf area and the infection type were scored 12 dpi (days post-inoculation), and the corresponding relative infection and priming efficiency were calculated. Results revealed significant effects (p<0.001) of the bacterial treatment indicating a positive effect of priming on resistance to P. hordei. In a genome-wide association study (GWAS), based on the observed phenotypic differences and 493,846 filtered SNPs derived from the Illumina 9k iSelect chip, genotyping by sequencing (GBS), and exome capture data, 11 quantitative trait loci (QTL) were identified with a hot spot on the short arm of the barley chromosome 6H, associated to improved resistance to P. hordei after priming with E. meliloti expR+ch. Genes in these QTL regions represent promising candidates for future research on the mechanisms of plant-microbe interactions.
Collapse
Affiliation(s)
- Andrea Matros
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Gwendolin Wehner
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
6
|
Hameed A, Poznanski P, Noman M, Ahmed T, Iqbal A, Nadolska-Orczyk A, Orczyk W. Barley Resistance to Fusarium graminearum Infections: From Transcriptomics to Field with Food Safety Concerns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14571-14587. [PMID: 36350344 DOI: 10.1021/acs.jafc.2c05488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Global climate change and the urgency to transform food crops require substantial breeding efforts to meet the food security challenges. Barley, an important cereal, has remained a preferential host of phytotoxic diseases caused by the Fusarium graminearum that not only severely reduces the crop yield but also compromises its food quality due to the accumulation of mycotoxins. To develop resistance against Fusarium infections, a better understanding of the host-pathogen interaction is inevitable and could be tracked through molecular insights. Here, we focused precisely on the potential gene targets that are exclusive to this devastating pathosystem and could be harnessed for fast breeding of barley. We also discuss the eco-friendly applications of nanobio hybrid and the CRISPR technology for barley protection. This review covers the critical information gaps within the subject and may be useful for the sustainable improvement of barley from the perspective of food and environmental safety concerns.
Collapse
Affiliation(s)
- Amir Hameed
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Pawel Poznanski
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adnan Iqbal
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| |
Collapse
|
7
|
Tang B, Zhang Z, Zhao X, Xu Y, Wang L, Chen XL, Wang W. Multi-Omics Analysis Reveals a Regulatory Network of ZmCCT During Maize Resistance to Gibberella Stalk Rot at the Early Stage. FRONTIERS IN PLANT SCIENCE 2022; 13:917493. [PMID: 35812937 PMCID: PMC9260664 DOI: 10.3389/fpls.2022.917493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Gibberella stalk rot (GSR) caused by Fusarium graminearum is one of the most devastating diseases in maize; however, the regulatory mechanism of resistance to GSR remains largely unknown. We performed a comparative multi-omics analysis to reveal the early-stage resistance of maize to GSR. We inoculated F. graminearum to the roots of susceptible (Y331) and resistant (Y331-ΔTE) near-isogenic lines containing GSR-resistant gene ZmCCT for multi-omics analysis. Transcriptome detected a rapid reaction that confers resistance at 1-3 hpi as pattern-triggered immunity (PTI) response to GSR. Many key properties were involved in GSR resistance, including genes in photoperiod and hormone pathways of salicylic acid and auxin. The activation of programmed cell death-related genes and a number of metabolic pathways at 6 hpi might be important to prevent further colonization. This is consistent with an integrative analysis of transcriptomics and proteomics that resistant-mediated gene expression reprogramming exhibited a dynamic pattern from 3 to 6 hpi. Further metabolomics analysis revealed that the amount of many chemical compounds was altered in pathways associated with the phenylpropanoid biosynthesis and the phenylalanine metabolism, which may play key roles to confer the GSR resistance. Taken together, we generated a valuable resource to interpret the defense mechanism during early GSR resistance.
Collapse
Affiliation(s)
- Bozeng Tang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhaoheng Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xinyu Zhao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yang Xu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Li Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Konkin D, Hsueh YC, Kirzinger M, Kubaláková M, Haldar A, Balcerzak M, Han F, Fedak G, Doležel J, Sharpe A, Ouellet T. Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL. BMC Genomics 2022; 23:228. [PMID: 35321662 PMCID: PMC8944066 DOI: 10.1186/s12864-022-08433-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background The tall wheatgrass species Thinopyrum elongatum carries a strong fusarium head blight (FHB) resistance locus located on the long arm of chromosome 7 (7EL) as well as resistance to leaf and stem rusts, all diseases with a significant impact on wheat production. Towards understanding the contribution of Th. elongatum 7EL to improvement of disease resistance in wheat, the genomic sequence of the 7EL fragment present in the wheat Chinese Spring (CS) telosomic addition line CS-7EL was determined and the contribution and impact of 7EL on the rachis transcriptome during FHB infection was compared between CS and CS-7EL. Results We assembled the Th. elongatum 7EL chromosome arm using a reference-guided approach. Combining this assembly with the available reference sequence for CS hexaploid wheat provided a reliable reference for interrogating the transcriptomic differences in response to infection conferred by the 7EL fragment. Comparison of the transcriptomes of rachis tissues from CS and CS-7EL showed expression of Th. elongatum transcripts as well as modulation of wheat transcript expression profiles in the CS-7EL line. Expression profiles at 4 days after infection with Fusarium graminearum, the causal agent of FHB, showed an increased in expression of genes associated with an effective defense response, in particular glucan endo-1,3-beta-glucosidases and chitinases, in the FHB-resistant line CS-7EL while there was a larger increase in differential expression for genes associated with the level of fungal infection in the FHB-susceptible line CS. One hundred and seven 7EL transcripts were expressed in the smallest 7EL region defined to carry FHB resistance. Conclusion 7EL contributed to CS-7EL transcriptome by direct expression and through alteration of wheat transcript profiles. FHB resistance in CS-7EL was associated with transcriptome changes suggesting a more effective defense response. A list of candidate genes for the FHB resistance locus on 7EL has been established. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08433-8.
Collapse
Affiliation(s)
- David Konkin
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| | - Ya-Chih Hsueh
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Morgan Kirzinger
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Marie Kubaláková
- Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, CZ-77900, Olomouc, Czech Republic
| | - Aparna Haldar
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences No1, Beijing, China
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, CZ-77900, Olomouc, Czech Republic
| | - Andrew Sharpe
- Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| |
Collapse
|
9
|
Rashid MM, Vaishnav A, Verma RK, Sharma P, Suprasanna P, Gaur RK. Epigenetic regulation of salinity stress responses in cereals. Mol Biol Rep 2021; 49:761-772. [PMID: 34773178 DOI: 10.1007/s11033-021-06922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.
Collapse
Affiliation(s)
- Md Mahtab Rashid
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281121, India.,Agroecology and Environment, Agroscope (Reckenholz), 8046, Zürich, Switzerland
| | - Rakesh Kumar Verma
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - P Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - R K Gaur
- Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
10
|
Manes N, Brauer EK, Hepworth S, Subramaniam R. MAMP and DAMP signaling contributes resistance to Fusarium graminearum in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6628-6639. [PMID: 34405877 DOI: 10.1093/jxb/erab285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/06/2021] [Indexed: 05/19/2023]
Abstract
Plants perceive externally produced microbe-associated molecular patterns (MAMPs) and endogenously produced danger-associated molecular patterns (DAMPs) to activate inducible immunity. While several inducible immune responses have been observed during Fusarium graminearum infection, the identity of the signaling pathways involved is only partly known. We screened 227 receptor kinase and innate immune response genes in Arabidopsis to identify nine genes with a role in F. graminearum resistance. Resistance-promoting genes included the chitin receptors LYK5 and CERK1, and the reactive oxygen species (ROS)-producing NADPH oxidase RbohF, which were required for full inducible immune responses during infection. Two of the genes identified in our screen, APEX and the PAMP-induced peptide 1 (PIP1) DAMP receptor RLK7, repressed F. graminearum resistance. Both RbohF and RLK7 were required for full chitin-induced immune responses and PIP1 precursor expression was induced by chitin and F. graminearum infection. Together, this indicates that F. graminearum resistance is mediated by MAMP and DAMP signaling pathways and that chitin-induced signaling is enhanced by PIP1 perception and ROS production.
Collapse
Affiliation(s)
- Nimrat Manes
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Elizabeth K Brauer
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Shelley Hepworth
- Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
11
|
Tucker JR, Legge WG, Maiti S, Hiebert CW, Simsek S, Yao Z, Xu W, Badea A, Fernando WGD. Transcriptome Alterations of an in vitro-Selected, Moderately Resistant, Two-Row Malting Barley in Response to 3ADON, 15ADON, and NIV Chemotypes of Fusarium graminearum. FRONTIERS IN PLANT SCIENCE 2021; 12:701969. [PMID: 34456945 PMCID: PMC8385242 DOI: 10.3389/fpls.2021.701969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 06/01/2023]
Abstract
Fusarium head blight caused by Fusarium graminearum is a devastating disease of malting barley. Mycotoxins associated with contaminated grain can be transferred from malt to beer and pose a health risk to consumers. In western Canada, F. graminearum has undergone an adaptive shift from 15ADON constituency to dominance by virulent 3ADON-producers; likewise, NIV-producers have established in regions of southern United States. Lack of adapted resistance sources with adequate malting quality has promoted the use of alternative breeding methodologies, such as in vitro selection. We studied the low-deoxynivalenol characteristic of in vitro selected, two-row malting barley variety "Norman" by RNAseq in contrast to its parental line "CDC Kendall," when infected by 15ADON-, 3ADON-, and NIV-producing isolates of F. graminearum. The current study documents higher mycotoxin accumulation by 3ADON isolates, thereby representing increased threat to barley production. At 72-96-h post infection, significant alterations in transcription patterns were observed in both varieties with pronounced upregulation of the phenylpropanoid pathway and detoxification gene categories (UGT, GST, CyP450, and ABC), particularly in 3ADON treatment. Defense response was multitiered, where differential expression in "Norman" associated with antimicrobial peptides (thionin 2.1, defensing, non-specific lipid-transfer protein) and stress-related proteins, such as late embryogenesis abundant proteins, heat-shock, desiccation related, and a peroxidase (HvPrx5). Several gene targets identified in "Norman" would be useful for application of breeding varieties with reduced deoxynivalenol content.
Collapse
Affiliation(s)
- James R. Tucker
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - William G. Legge
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Sujit Maiti
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Senay Simsek
- Department of Plant Science, North Dakota State University, Fargo, ND, United States
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Ana Badea
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | | |
Collapse
|
12
|
Nida H, Girma G, Mekonen M, Tirfessa A, Seyoum A, Bejiga T, Birhanu C, Dessalegn K, Senbetay T, Ayana G, Tesso T, Ejeta G, Mengiste T. Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1167-1184. [PMID: 33452894 DOI: 10.1007/s00122-020-03762-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
GWAS analysis revealed variations at loci harboring seed storage, late embryogenesis abundant protein, and a tannin biosynthesis gene associated with sorghum grain mold resistance. Grain mold is the most important disease of sorghum [Sorghum bicolor (L.) Moench]. It starts at the early stages of grain development due to concurrent infection by multiple fungal species. The genetic architecture of resistance to grain mold is poorly understood. Using a diverse set of 635 Ethiopian sorghum accessions, we conducted a multi-stage disease rating for resistance to grain mold under natural infestation in the field. Through genome-wide association analyses with 173,666 SNPs and multiple models, two novel loci were identified that were consistently associated with grain mold resistance across environments. Sequence variation at new loci containing sorghum KAFIRIN gene encoding a seed storage protein affecting seed texture and LATE EMBRYOGENESIS ABUNDANT 3 (LEA3) gene encoding a protein that accumulates in seeds, previously implicated in stress tolerance, were significantly associated with grain mold resistance. The KAFIRIN and LEA3 loci were also significant factors in grain mold resistance in accessions with non-pigmented grains. Moreover, we consistently detected the known SNP (S4_62316425) in TAN1 gene, a regulator of tannin accumulation in sorghum grain to be significantly associated with grain mold resistance. Identification of loci associated with new mechanisms of resistance provides fresh insight into genetic control of the trait, while the highly resistant accessions can serve as sources of resistance genes for breeding. Overall, our association data suggest the critical role of loci harboring seed protein genes and implicate grain chemical and physical properties in sorghum grain mold resistance.
Collapse
Affiliation(s)
- Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Moges Mekonen
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Alemu Tirfessa
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Amare Seyoum
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Tamirat Bejiga
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Chemeda Birhanu
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Kebede Dessalegn
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Tsegau Senbetay
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Getachew Ayana
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, 3007 Throckmorton PSC, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Su WH, Yang C, Dong Y, Johnson R, Page R, Szinyei T, Hirsch CD, Steffenson BJ. Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening. Food Chem 2020; 343:128507. [PMID: 33160773 DOI: 10.1016/j.foodchem.2020.128507] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Fusarium head blight (FHB), a fungus disease of small grain cereal crops, results in reduced yields and diminished value of harvested grain due to the presence of deoxynivalenol (DON), a mycotoxin produced by the causal pathogen Fusarium graminearum. DON and other tricothecene mycotoxins pose serious health risks to both humans and livestock, especially swine. Due to these health concerns, barley used for malting, food or feed is routinely assayed for DON levels. Various methods are available for assaying DON levels in grain samples including enzyme-linked immunosorbent assay (ELISA) and gas chromatography-mass spectrometry (GC-MS). ELISA and GC-MS are very accurate; however, assaying grain samples by these techniques are laborious, expensive and destructive. In this study, we explored the feasibility of using hyperspectral imaging (382-1030 nm) to develop a rapid and non-destructive protocol for assaying DON in barley kernels. Samples of 888 and 116 from various genetic lines were selected for calibration and prediction. Full-wavelength locally weighted partial least squares regression (LWPLSR) achieved high accuracy with the coefficient of determination in prediction (R2P) of 0.728 and root mean square error of prediction (RMSEP) of 3.802. Competitive adaptive reweighted sampling (CARS) was used to choose potential feature wavelengths, and these selected variables were further optimized using the iterative selection of successive projections algorithm (ISSPA). The CARS-ISSPA-LWPLSR model developed using 7 feature variables yielded R2P of 0.680 and RMSEP of 4.213 in DON content prediction. Based on the 7 wavelengths selected by CARS-ISSPA, partial least square discriminant analysis (PLSDA) discriminated barley kernels having lower DON (less than1.25 mg/kg) levels from those with higher levels (including 1.25-3 mg/kg, 3-5 mg/kg, and 5-10 mg/kg), with Matthews correlation coefficient in cross-validation (M-RCV) of as high as 0.931. The results demonstrate that hyperspectral imaging have potential for accelerating non-destructive DON assays of barley samples.
Collapse
Affiliation(s)
- Wen-Hao Su
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China.
| | - Ce Yang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ryan Johnson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Rae Page
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Tamas Szinyei
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
14
|
Pradhan M, Pandey P, Baldwin IT, Pandey SP. Argonaute4 Modulates Resistance to Fusarium brachygibbosum Infection by Regulating Jasmonic Acid Signaling. PLANT PHYSIOLOGY 2020; 184:1128-1152. [PMID: 32723807 PMCID: PMC7536687 DOI: 10.1104/pp.20.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 05/06/2023]
Abstract
Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco (Nicotiana attenuata) with a naturally occurring hemibiotrophic pathogen, Fusarium brachygibbosum Among all AGOs, only transcripts of AGO4 were elicited after fungal infection. The disease progressed more rapidly in AGO4-silenced (irAGO4) plants than in wild type, and small RNA (smRNA) profiling revealed that 24-nucleotide smRNA accumulation was severely abrogated in irAGO4 plants. Unique microRNAs (miRNAs: 130 conserved and 208 novel, including 11 canonical miRNA sequence variants known as "isomiRs") were identified in infected plants; silencing of AGO4 strongly changed miRNA accumulation dynamics. Time-course studies revealed that infection increased accumulation of abscisic acid, jasmonates, and salicylic acid in wild type; in irAGO4 plants, infection accumulated lower jasmonate levels and lower transcripts of jasmonic acid (JA) biosynthesis genes. Treating irAGO4 plants with JA, methyl jasmonate, or cis-(+)-12-oxo-phytodienoic acid restored wild-type levels of resistance. Silencing expression of RNA-directed RNA polymerases RdR1 and RdR2 (but not RdR3) and Dicer-like3 (DCL3, but not DCL2 or DCL4) increased susceptibility to F brachygibbosum The relevance of AGO4, RdR1, RdR2, and DCL3 in a natural setting was revealed when plants individually silenced in their expression (and their binary combinations) were planted in a diseased field plot in the Great Basin Desert of Utah. These plants were more susceptible to infection and accumulated lower JA levels than wild type. We infer that AGO4-dependent smRNAs play a central role in modulating JA biogenesis and signaling during hemibiotrophic fungal infections.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal, India
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
15
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
16
|
The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. Int J Mol Sci 2020; 21:ijms21082659. [PMID: 32290420 PMCID: PMC7215362 DOI: 10.3390/ijms21082659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.
Collapse
|
17
|
Kong L, Liu Y, Wang X, Chang C. Insight into the Role of Epigenetic Processes in Abiotic and Biotic Stress Response in Wheat and Barley. Int J Mol Sci 2020; 21:ijms21041480. [PMID: 32098241 PMCID: PMC7073019 DOI: 10.3390/ijms21041480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental stresses such as salinity, drought, heat, freezing, heavy metal and even pathogen infections seriously threaten the growth and yield of important cereal crops including wheat and barley. There is growing evidence indicating that plants employ sophisticated epigenetic mechanisms to fine-tune their responses to environmental stresses. Here, we provide an overview of recent developments in understanding the epigenetic processes and elements—such as DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs—involved in plant responses to abiotic and biotic stresses in wheat and barley. Potentials of exploiting epigenetic variation for the improvement of wheat and barley are discussed.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Yanna Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- Correspondence: ; Tel.: +86-532-85953227
| |
Collapse
|
18
|
Ogrodowicz P, Kuczyńska A, Mikołajczak K, Adamski T, Surma M, Krajewski P, Ćwiek-Kupczyńska H, Kempa M, Rokicki M, Jasińska D. Mapping of quantitative trait loci for traits linked to fusarium head blight in barley. PLoS One 2020; 15:e0222375. [PMID: 32017768 PMCID: PMC6999892 DOI: 10.1371/journal.pone.0222375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/18/2020] [Indexed: 11/19/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease occurring in small grain cereals worldwide. The disease results in the reduction of grain yield, and mycotoxins accumulated in grain are also harmful to both humans and animals. It has been reported that response to pathogen infection may be associated with the morphological and developmental traits of the host plant, e.g. earliness and plant height. Despite many studies, effective markers for selection of barley genotypes with increased resistance to FHB have not been developed. In the present study, we investigated 100 recombinant inbred lines (RIL) of spring barley. Plants were examined in field conditions (three locations) in a completely randomized design with three replications. Barley genotypes were artificially infected with spores of Fusarium culmorum before heading. Apart from the main phenotypic traits (plant height, spike characteristic, grain yield), infected kernels were visually scored and the content of deoxynivalenol (DON) mycotoxin was investigated. A set of 70 Quantitative Trait Loci (QTLs) were detected through phenotyping of the mapping population in field conditions and genotyping using a barley Ilumina 9K iSelect platform. Six loci were detected for the FHB index on chromosomes 2H, 3H, 5H, and 7H. A region on the short arm of chromosome 2H was detected in which many QTLs associated with FHB- and yield-related traits were found. This study confirms that agromorphological traits are tightly related to FHB and should be taken into consideration when breeding barley plants for FHB resistance.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | | | - Tadeusz Adamski
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Maria Surma
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | | | - Michał Kempa
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Michał Rokicki
- Poznan Plant Breeding Station, Kasztanowa, Tulce, Poland
| | | |
Collapse
|
19
|
Unver T, Tombuloglu H. Barley long non-coding RNAs (lncRNA) responsive to excess boron. Genomics 2019; 112:1947-1955. [PMID: 31730798 DOI: 10.1016/j.ygeno.2019.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 02/01/2023]
Abstract
Long non-coding RNA (lncRNA) has a misleading name, since although they do not encode proteins, they may encode small peptides. Such transcripts are emerging as regulatory molecules. With the advent of next-generation sequencing technologies and novel bioinformatics tools, a tremendous amount of lncRNAs have been identified in several plant species. Recent reports demonstrated roles of plant lncRNAs such as development and environmental response. Here, we reported a genome-wide discovery of ~8000 barley lncRNAs and measured their expression pattern upon excessive boron (B) treatment. According to the tissue-based comparison, leaves have a greater number of B-responsive differentially expressed lncRNAs than the root. Functional annotation of the coding transcripts, which were co-expressed with lncRNAs, revealed that molecular function of the ion transport, establishment of localization, and response to stimulus significantly enriched only in the leaf. On the other hand, 32 barley endogenous target mimics (eTM) as lncRNAs, which potentially decoy the transcriptional suppression activity of 18 miRNAs, were obtained. Also, six lncRNAs, differentially expressed upon B-treatment, were selected and quantitatively analyzed in both B-sensitive and B-tolerant cultivars treated by excess B-level. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis confirmed the B-responsive expressional changes obtained by RNA sequencing. Notably, some lncRNAs (i.e., TCONS_00045190 and TCONS_00056415) over-expressed only in B-tolerant cultivar upon excess B treatment. Presented data including identification, expression measurement, and functional characterization of barley lncRNAs suggest that B-stress response might also be regulated by lncRNA expression, via cooperative interaction of miRNA-eTM-coding target transcript modules.
Collapse
Affiliation(s)
- Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, No: 1/1/76, 06378, Yenimahalle, Ankara, Turkey.
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
20
|
Tucker JR, Badea A, Blagden R, Pleskach K, Tittlemier SA, Fernando WGD. Deoxynivalenol-3-Glucoside Content Is Highly Associated with Deoxynivalenol Levels in Two-Row Barley Genotypes of Importance to Canadian Barley Breeding Programs. Toxins (Basel) 2019; 11:E319. [PMID: 31195591 PMCID: PMC6628427 DOI: 10.3390/toxins11060319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 01/15/2023] Open
Abstract
Barley (Hordeum vulgare L.) is a multipurpose crop that can be harvested as grain or cut prior to maturity for use as forage. Fusarium head blight (FHB) is a devastating disease of barley that reduces quality of grain. FHB can also result in the accumulation of mycotoxins such as deoxynivalenol (DON). Breeding FHB resistant varieties has been a long-term goal of many barley-producing countries, including Canada. While the genetic basis of DON detoxification via production of less-phytotoxic conjugates such as DON-3-glucoside (DON3G) is well documented in barley, little information exists in reference to varietal response. Over two years, 16 spring, two-row barley genotypes, of importance to western Canadian barley breeding programs, were grown as short-rows and inoculated following spike emergence with a Fusarium graminearum conidia suspension. Half of the plots were harvested at soft dough stage and then dissected into rachis and grain components, whereas the remainder was harvested at maturity. Multiple Fusarium-mycotoxins were assayed using liquid chromatography-mass spectrometry. Mycotoxin content was elevated at the earlier harvest point, especially in the rachis tissue. DON3G constituted a significant percentage (26%) of total trichothecene content and thus its co-occurrence with DON should be considered by barley industries. DON3G was highly correlated with DON and 3-acetyl-deoxynivalenol (3ADON). The ratio of D3G/DON exhibited consistency across genotypes, however more-resistant genotypes were characterized by a higher ratio at the soft-dough stage followed by a decrease at maturity. Plant breeding practices that use DON content as a biomarker for resistance would likely result in the development of barley cultivars with lower total DON-like compounds.
Collapse
Affiliation(s)
- James R Tucker
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, R.R. 3, Brandon, MB R7A 5Y3, Canada.
- Department of Plant Science, 66 Dafoe Road, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, R.R. 3, Brandon, MB R7A 5Y3, Canada.
| | - Richard Blagden
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - Kerri Pleskach
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - Sheryl A Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - W G Dilantha Fernando
- Department of Plant Science, 66 Dafoe Road, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
21
|
Yang JY, Fang YL, Wang P, Ye JR, Huang L. Pleiotropic Roles of ChSat4 in Asexual Development, Cell Wall Integrity Maintenance, and Pathogenicity in Colletotrichum higginsianum. Front Microbiol 2018; 9:2311. [PMID: 30405539 PMCID: PMC6208185 DOI: 10.3389/fmicb.2018.02311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Potassium has an important role to play in multiple cellular processes. In Saccharomyces cerevisiae, the serine/threonine (S/T) kinase Sat4/Hal4 is required for potassium accumulation, and thus, regulates the resistance to sodium salts and helps in the stabilization of other plasma membrane transporters. However, the functions of Sat4 in filamentous phytopathogenic fungi are largely unknown. In this study, ChSat4, the yeast Sat4p homolog in Colletotrichum higginsianum, has been identified. Target deletion of ChSAT4 resulted in defects in mycelial growth and sporulation. Intracellular K+ accumulation was significantly decreased in the ChSAT4 deletion mutant. Additionally, the ΔChsat4 mutant showed defects in cell wall integrity, hyperoxide stress response, and pathogenicity. Localization pattern analysis indicated ChSat4 was localized in the cytoplasm. Furthermore, ChSat4 showed high functional conservation with the homolog FgSat4 in Fusarium graminearum. Taken together, our data indicated that ChSat4 was important for intracellular K+ accumulation and infection morphogenesis in C. higginsianum.
Collapse
Affiliation(s)
- Ji-Yun Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yu-Lan Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
22
|
Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. BMC Genomics 2018; 19:642. [PMID: 30157778 PMCID: PMC6116500 DOI: 10.1186/s12864-018-5012-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fusarium head blight (FHB) of wheat in North America is caused mostly by the fungal pathogen Fusarium graminearum (Fg). Upon exposure to Fg, wheat initiates a series of cellular responses involving massive transcriptional reprogramming. In this study, we analyzed transcriptomics data of four wheat genotypes (Nyubai, Wuhan 1, HC374, and Shaw), at 2 and 4 days post inoculation (dpi) with Fg, using RNA-seq technology. Results A total of 37,772 differentially expressed genes (DEGs) were identified, 28,961 from wheat and 8811 from the pathogen. The susceptible genotype Shaw exhibited the highest number of host and pathogen DEGs, including 2270 DEGs associating with FHB susceptibility. Protein serine/threonine kinases and LRR-RK were associated with susceptibility at 2 dpi, while several ethylene-responsive, WRKY, Myb, bZIP and NAC-domain containing transcription factors were associated with susceptibility at 4 dpi. In the three resistant genotypes, 220 DEGs were associated with resistance. Glutathione S-transferase (GST), membrane proteins and distinct LRR-RKs were associated with FHB resistance across the three genotypes. Genes with unique, high up-regulation by Fg in Wuhan 1 were mostly transiently expressed at 2 dpi, while many defense-associated genes were up-regulated at both 2 and 4 dpi in Nyubai; the majority of unique genes up-regulated in HC374 were detected at 4 dpi only. In the pathogen, most genes showed increased expression between 2 and 4 dpi in all genotypes, with stronger levels in the susceptible host; however two pectate lyases and a hydrolase were expressed higher at 2 dpi, and acetyltransferase activity was highly enriched at 4 dpi. Conclusions There was an early up-regulation of LRR-RKs, different between susceptible and resistant genotypes; subsequently, distinct sets of genes associated with defense response were up-regulated. Differences in expression profiles among the resistant genotypes indicate genotype-specific defense mechanisms. This study also shows a greater resemblance in transcriptomics of HC374 to Nyubai, consistent with their sharing of two FHB resistance QTLs on 3BS and 5AS, compared to Wuhan 1 which carries one QTL on 2DL in common with HC374. Electronic supplementary material The online version of this article (10.1186/s12864-018-5012-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Ziying Liu
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - François Fauteux
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yunli Wang
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Curt McCartney
- Morden Research and Development Centre, AAFC, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
23
|
Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. BMC Genomics 2018. [PMID: 30157778 DOI: 10.1186/s12864-018-5012-5013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB) of wheat in North America is caused mostly by the fungal pathogen Fusarium graminearum (Fg). Upon exposure to Fg, wheat initiates a series of cellular responses involving massive transcriptional reprogramming. In this study, we analyzed transcriptomics data of four wheat genotypes (Nyubai, Wuhan 1, HC374, and Shaw), at 2 and 4 days post inoculation (dpi) with Fg, using RNA-seq technology. RESULTS A total of 37,772 differentially expressed genes (DEGs) were identified, 28,961 from wheat and 8811 from the pathogen. The susceptible genotype Shaw exhibited the highest number of host and pathogen DEGs, including 2270 DEGs associating with FHB susceptibility. Protein serine/threonine kinases and LRR-RK were associated with susceptibility at 2 dpi, while several ethylene-responsive, WRKY, Myb, bZIP and NAC-domain containing transcription factors were associated with susceptibility at 4 dpi. In the three resistant genotypes, 220 DEGs were associated with resistance. Glutathione S-transferase (GST), membrane proteins and distinct LRR-RKs were associated with FHB resistance across the three genotypes. Genes with unique, high up-regulation by Fg in Wuhan 1 were mostly transiently expressed at 2 dpi, while many defense-associated genes were up-regulated at both 2 and 4 dpi in Nyubai; the majority of unique genes up-regulated in HC374 were detected at 4 dpi only. In the pathogen, most genes showed increased expression between 2 and 4 dpi in all genotypes, with stronger levels in the susceptible host; however two pectate lyases and a hydrolase were expressed higher at 2 dpi, and acetyltransferase activity was highly enriched at 4 dpi. CONCLUSIONS There was an early up-regulation of LRR-RKs, different between susceptible and resistant genotypes; subsequently, distinct sets of genes associated with defense response were up-regulated. Differences in expression profiles among the resistant genotypes indicate genotype-specific defense mechanisms. This study also shows a greater resemblance in transcriptomics of HC374 to Nyubai, consistent with their sharing of two FHB resistance QTLs on 3BS and 5AS, compared to Wuhan 1 which carries one QTL on 2DL in common with HC374.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Ziying Liu
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - François Fauteux
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yunli Wang
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Curt McCartney
- Morden Research and Development Centre, AAFC, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
24
|
Huang Y, Haas M, Heinen S, Steffenson BJ, Smith KP, Muehlbauer GJ. QTL Mapping of Fusarium Head Blight and Correlated Agromorphological Traits in an Elite Barley Cultivar Rasmusson. FRONTIERS IN PLANT SCIENCE 2018; 9:1260. [PMID: 30233612 PMCID: PMC6127635 DOI: 10.3389/fpls.2018.01260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/09/2018] [Indexed: 05/05/2023]
Abstract
Fusarium head blight (FHB) is an important fungal disease affecting the yield and quality of barley and other small grains. Developing and deploying resistant barley cultivars is an essential component of an integrated strategy for reducing the adverse effects of FHB. Genetic mapping studies have revealed that resistance to FHB and the accumulation of pathogen-produced mycotoxins are controlled by many quantitative trait loci (QTL) with minor effects and are highly influenced by plant morphological traits and environmental conditions. Some prior studies aimed at mapping FHB resistance have used populations derived from crossing a Swiss landrace Chevron with elite breeding lines/cultivars. Both Chevron and Peatland, a sib-line of Chevron, were used as founders in the University of Minnesota barley breeding program. To understand the native resistance that might be present in the Minnesota breeding materials, a cross of an elite cultivar with a susceptible unadapted genotype is required. Here, a mapping population of 93 recombinant inbred lines (RILs) was developed from a cross between a moderately susceptible elite cultivar 'Rasmusson' and a highly susceptible Japanese landrace PI 383933. This population was evaluated for FHB severity, deoxynivalenol (DON) accumulation and various agromorphological traits. Genotyping of the population was performed with the barley iSelect 9K SNP chip and 1,394 SNPs were used to develop a genetic map. FHB severity and DON accumulation were negatively correlated with plant height (HT) and spike length (SL), and positively correlated with spike density (SD). QTL analysis using composite interval mapping (CIM) identified the largest effect QTL associated with FHB and DON on the centromeric region of chromosome 7H, which was also associated with HT, SL, and SD. A minor FHB QTL and a minor DON QTL were detected on chromosome 6H and chromosome 3H, respectively, and the Rasmusson alleles contributed to resistance. The 3H DON QTL likely represents native resistance in elite germplasm as the marker haplotype of Rasmusson at this QTL is distinct from that of Chevron. This study highlights the relationship between FHB resistance/susceptibility and morphological traits and the need for breeders to account for morphology when developing FHB resistant genotypes.
Collapse
Affiliation(s)
- Yadong Huang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Matthew Haas
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Shane Heinen
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Kevin P. Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
25
|
Regulation mechanism of long non-coding RNA in plant response to stress. Biochem Biophys Res Commun 2018; 503:402-407. [PMID: 30055799 DOI: 10.1016/j.bbrc.2018.07.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
Long non-coding RNA (lncRNA) is a non-coding RNA greater than 200 nucleotides in length. LncRNAs can regulate gene expression at transcription and post-transcription, epigenetic level, and plays an important role in a wide range of biological processes such as genomic imprinting, chromatin remodeling, transcriptional activation, transcriptional interference and cell cycle. It becomes the current hot topics in the study of molecular biology and genetics. Emerging evidence proposed that lncRNAs play important roles in response to both abiotic and biotic stress. In this review, we discuss the role of lncRNAs in drought resistance, salt resistance, disease resistance, and immunity of plants, providing strong evidence for exploring the important role of lncRNAs in plant resistance, in order to explore new ideas and new targets for prevention and control.
Collapse
|
26
|
Habib A, Powell JJ, Stiller J, Liu M, Shabala S, Zhou M, Gardiner DM, Liu C. A multiple near isogenic line (multi-NIL) RNA-seq approach to identify candidate genes underpinning QTL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:613-624. [PMID: 29170790 DOI: 10.1007/s00122-017-3023-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 05/22/2023]
Abstract
This study demonstrates how identification of genes underpinning disease-resistance QTL based on differential expression and SNPs can be improved by performing transcriptomic analysis on multiple near isogenic lines. Transcriptomic analysis has been widely used to understand the genetic basis of a trait of interest by comparing genotypes with contrasting phenotypes. However, these approaches identify such large sets of differentially expressed genes that it proves difficult to isolate which genes underpin the phenotype of interest. This study tests whether using multiple near isogenic lines (NILs) can improve the resolution of RNA-seq-based approaches to identify genes underpinning disease-resistance QTL. A set of NILs for a major effect Fusarium crown rot-resistance QTL in barley on the 4HL chromosome arm were analysed under Fusarium crown rot using RNA-seq. Differential gene expression and single nucleotide polymorphism detection analyses reduced the number of putative candidates from thousands within individual NIL pairs to only one hundred and two genes, which were differentially expressed or contained SNPs in common across NIL pairs and occurred on 4HL. Our findings support the value of performing RNA-seq analysis using multiple NILs to remove genetic background effects. The enrichment analyses indicated conserved differences in the response to infection between resistant and sensitive isolines suggesting that sensitive isolines are impaired in systemic defence response to Fusarium pseudograminearum.
Collapse
Affiliation(s)
- Ahsan Habib
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Miao Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Chunji Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
27
|
Kazan K, Gardiner DM. Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far. MOLECULAR PLANT PATHOLOGY 2018; 19:764-778. [PMID: 28411402 PMCID: PMC6638174 DOI: 10.1111/mpp.12561] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 05/16/2023]
Abstract
The ascomycete fungal pathogen Fusarium graminearum causes the globally important Fusarium head blight (FHB) disease on cereal hosts, such as wheat and barley. In addition to reducing grain yield, infection by this pathogen causes major quality losses. In particular, the contamination of food and feed with the F. graminearum trichothecene toxin deoxynivalenol (DON) can have many adverse short- and long-term effects on human and animal health. During the last decade, the interaction between F. graminearum and both cereal and model hosts has been extensively studied through transcriptomic analyses. In this review, we present an overview of how such analyses have advanced our understanding of this economically important plant-microbe interaction. From a host point of view, the transcriptomes of FHB-resistant and FHB-susceptible cereal genotypes, including near-isogenic lines (NILs) that differ by the presence or absence of quantitative trait loci (QTLs), have been studied to understand the mechanisms of disease resistance afforded by such QTLs. Transcriptomic analyses employed to dissect host responses to DON have facilitated the identification of the genes involved in toxin detoxification and disease resistance. From the pathogen point of view, the transcriptome of F. graminearum during pathogenic vs. saprophytic growth, or when infecting different cereal hosts or different tissues of the same host, have been studied. In addition, comparative transcriptomic analyses of F. graminearum knock-out mutants with altered virulence have provided new insights into pathogenicity-related processes. The F. graminearum transcriptomic data generated over the years are now being exploited to build a systems level understanding of the biology of this pathogen, with an ultimate aim of developing effective and sustainable disease prevention strategies.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld4067Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI)University of Queensland, Queensland Bioscience PrecinctSt. LuciaQld4067Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld4067Australia
| |
Collapse
|
28
|
Thapa G, Gunupuru LR, Hehir JG, Kahla A, Mullins E, Doohan FM. A Pathogen-Responsive Leucine Rich Receptor Like Kinase Contributes to Fusarium Resistance in Cereals. FRONTIERS IN PLANT SCIENCE 2018; 9:867. [PMID: 29997638 PMCID: PMC6029142 DOI: 10.3389/fpls.2018.00867] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Receptor-like kinases form the largest family of receptors in plants and play an important role in recognizing pathogen-associated molecular patterns and modulating the plant immune responses to invasive fungi, including cereal defenses against fungal diseases. But hitherto, none have been shown to modulate the wheat response to the economically important Fusarium head blight (FHB) disease of small-grain cereals. Homologous genes were identified on barley chromosome 6H (HvLRRK-6H) and wheat chromosome 6DL (TaLRRK-6D), which encode the characteristic domains of surface-localized receptor like kinases. Gene expression studies validated that the wheat TaLRRK-6D is highly induced in heads as an early response to both the causal pathogen of FHB disease, Fusarium graminearum, and its' mycotoxic virulence factor deoxynivalenol. The transcription of other wheat homeologs of this gene, located on chromosomes 6A and 6B, was also up-regulated in response to F. graminearum. Virus-induced gene silencing (VIGS) of the barley HvLRRK-6H compromised leaf defense against F. graminearum. VIGS of TaLRRK-6D in two wheat cultivars, CM82036 (resistant to FHB disease) and cv. Remus (susceptible to FHB), confirmed that TaLRRK-6D contributes to basal resistance to FHB disease in both genotypes. Although the effect of VIGS did not generally reduce grain losses due to FHB, this experiment did reveal that TaLRRK-6D positively contributes to grain development. Further gene expression studies in wheat cv. Remus indicated that VIGS of TaLRRK-6D suppressed the expression of genes involved in salicylic acid signaling, which is a key hormonal pathway involved in defense. Thus, this study provides the first evidence of receptor like kinases as an important component of cereal defense against Fusarium and highlights this gene as a target for enhancing cereal resistance to FHB disease.
Collapse
Affiliation(s)
- Ganesh Thapa
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - Lokanadha R. Gunupuru
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - James G. Hehir
- Crop Science Department, Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - Amal Kahla
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - Ewen Mullins
- Crop Science Department, Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
- *Correspondence: Fiona M. Doohan,
| |
Collapse
|
29
|
Biselli C, Bagnaresi P, Faccioli P, Hu X, Balcerzak M, Mattera MG, Yan Z, Ouellet T, Cattivelli L, Valè G. Comparative Transcriptome Profiles of Near-Isogenic Hexaploid Wheat Lines Differing for Effective Alleles at the 2DL FHB Resistance QTL. FRONTIERS IN PLANT SCIENCE 2018; 9:37. [PMID: 29434615 PMCID: PMC5797473 DOI: 10.3389/fpls.2018.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/09/2018] [Indexed: 05/07/2023]
Abstract
Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, represents one of the major wheat diseases worldwide, determining severe yield losses and reduction of grain quality due to the accumulation of mycotoxins. The molecular response associated with the wheat 2DL FHB resistance QTL was mined through a comprehensive transcriptomic analysis of the early response to F. graminearum infection, at 3 days post-inoculation, in spikelets and rachis. The analyses were conducted on two near isogenic lines (NILs) differing for the presence of the 2DL QTL (2-2618, resistant 2DL+ and 2-2890, susceptible null). The general response to fungal infection in terms of mRNAs accumulation trend was similar in both NILs, even though involving an higher number of DEGs in the susceptible NIL, and included down-regulation of the primary and energy metabolism, up-regulation of enzymes implicated in lignin and phenylpropanoid biosynthesis, activation of hormons biosynthesis and signal transduction pathways and genes involved in redox homeostasis and transcriptional regulation. The search for candidate genes with expression profiles associated with the 2DL QTL for FHB resistance led to the discovery of processes differentially modulated in the R and S NILs related to cell wall metabolism, sugar and JA signaling, signal reception and transduction, regulation of the redox status and transcription factors. Wheat FHB response-related miRNAs differentially regulated were also identified as putatively implicated in the superoxide dismutase activities and affecting genes regulating responses to biotic/abiotic stresses and auxin signaling. Altered gene expression was also observed for fungal non-codingRNAs. The putative targets of two of these were represented by the wheat gene WIR1A, involved in resistance response, and a gene encoding a jacalin-related lectin protein, which participate in biotic and abiotic stress response, supporting the presence of a cross-talk between the plant and the fungus.
Collapse
Affiliation(s)
- Chiara Biselli
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- *Correspondence: Chiara Biselli
| | - Paolo Bagnaresi
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Primetta Faccioli
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Xinkun Hu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Maria G. Mattera
- Plant Breeding Department, Institute for Sustainable Agriculture, Cordoba, Spain
- Department of Genetics–ETSIAM, University of Cordoba, Cordoba, Spain
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Therese Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Luigi Cattivelli
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Giampiero Valè
- CREA–Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- CREA–Research Centre for Cereal and Industrial Crops, Vercelli, Italy
| |
Collapse
|
30
|
Cui J, Luan Y, Jiang N, Bao H, Meng J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:577-589. [PMID: 27801966 DOI: 10.1111/tpj.13408] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/08/2016] [Indexed: 05/21/2023]
Abstract
The rapid development of omics sequencing technology has facilitated the identification of thousands of long non-coding (lnc)RNAs in plant species, but the role of lncRNAs in plant-pathogen interactions remains largely unexplored. We used comparative transcriptome analysis of Phytophthora infestans-resistant and -susceptible tomatoes to identify differentially expressed genes (DEGs) and lncRNAs (DELs), and examine lncRNA-mRNA networks. A total of 1037 DEGs and 688 DELs were identified between P. infestans-resistant and -susceptible tomatoes. The co-localization networks, including 128 DEGs and 127 DELs, were performed. We found that lncRNA16397 acted as an antisense transcript of SlGRX22 to regulate its expression, and also induced SlGRX21 expression when lncRNA16397 was overexpressed. In addition, disease symptoms and reactive oxygen species (ROS) accumulation in tomatoes overexpressing lncRNA16397 and SpGRX were fewer and lower than those in wild-type after P. infestans infection. This result suggests that tomato lncRNA16397 induces SlGRX expression to reduce ROS accumulation and alleviate cell membrane injury, resulting in enhanced resistance to P. infestans. Our results provide insight into lncRNAs involved in the response of tomato to P. infestans infection, demonstrate that the lncRNA16397-GRXs network is an important component of the P. infestans network in tomato, and provide candidates for breeding to enhance biotic stress-resistance in tomato.
Collapse
Affiliation(s)
- Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Hang Bao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
31
|
Karre S, Kumar A, Dhokane D, Kushalappa AC. Metabolo-transcriptome profiling of barley reveals induction of chitin elicitor receptor kinase gene (HvCERK1) conferring resistance against Fusarium graminearum. PLANT MOLECULAR BIOLOGY 2017; 93:247-267. [PMID: 27844244 DOI: 10.1007/s11103-016-0559-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/08/2016] [Indexed: 05/25/2023]
Abstract
We report plausible disease resistance mechanisms induced by barley resistant genotype CI89831 against Fusarium head blight (FHB) based on metabolo-transcriptomics approach. We identified HvCERK1 as a candidate gene for FHB resistance, which is functional in resistant genotype CI9831 but non-functional in susceptible cultivars H106-371 and Zhedar-2. For the first time, we were able to show a hierarchy of regulatory genes that regulated downstream biosynthetic genes that eventually produced resistance related metabolites that reinforce the cell walls to contain the pathogen progress in plant. The HvCERK1 can be used for replacing in susceptible commercial cultivars, if non-functional, based on genome editing. Fusarium head blight (FHB) management is a great challenge in barley and wheat production worldwide. Though barley genome sequence and advanced omics technologies are available, till date none of the resistance mechanisms has been clearly deciphered. Hence, this study was aimed at identifying candidate gene(s) and elucidating resistance mechanisms induced by barley resistant genotype CI9831 based on integrated metabolomics and transcriptomics approach. Following Fusarium graminearum infection, we identified accumulation of specific set of induced secondary metabolites, belonging to phenylpropanoid, hydroxycinnamic acid (HCAA) and jasmonic acid pathways, and their biosynthetic genes. In association with these, receptor kinases such as chitin elicitor receptor kinase (HvCERK1) and protein kinases such as MAP kinase 3 (HvMPK3) and MAPK substrate 1 (HvMKS1), and transcription factors such as HvERF1/5, HvNAC42, HvWRKY23 and HvWRKY70 were also found upregulated with high fold change. Polymorphism studies across three barley genotypes confirmed the presence of mutations in HvCERK1 gene in two susceptible genotypes, isolating this gene as a potential candidate for FHB resistance. Further, the silencing of functional HvCERK1 gene in the resistant genotype CI9831, followed by gene expression and metabolite analysis revealed its role as an elicitor recognition receptor that triggered downstream regulatory genes, which in turn, regulated downstream metabolic pathway genes to biosynthesize resistance related (RR) metabolites to contain the pathogen to spikelet infection. A putative model on metabolic pathway regulation is proposed.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Arun Kumar
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Dhananjay Dhokane
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ajjamada C Kushalappa
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|