1
|
Zhang Q, Fu Y, Zhang Y, Liu H. Genome-wide identification and expression profiling of the Wnt gene family in three abalone species. Genes Genomics 2024; 46:1363-1374. [PMID: 39397130 DOI: 10.1007/s13258-024-01579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The Wnt gene family plays pivotal roles in a variety of biological processes including cell proliferation and differentiation, apoptosis, and embryonic development. Identifying the Wnt signaling pathway in abalone could provide a basis for elucidating growth and development mechanisms and improving quality. OBJECTIVE To identify the number, protein physicochemical properties, gene structure, phylogenetic analysis, and expression profiles of the Wnt gene family in abalone. METHODS A comprehensive genome-wide analysis was performed to identify the Wnt gene family in the genomes of three abalone species (Haliotis discus hannai, H. rubra, and H. rufescens). RESULTS Ten single-copy Wnt genes were identified in each abalone species, suggesting that the number of Wnt genes was relatively conserved in Haliotis. Eight Wnt gene subfamilies, including Wnt1, Wnt4, Wnt5, Wnt6, Wnt7, Wnt10, Wnt16, and WntA, are present in all three species. Each abalone species contains two species-specific subfamilies (Wnt9 and Wnt11 in H. discus hannai, Wnt2 and Wnt11 in H. rubra, and Wnt2 and Wnt9 in H. rufescens), reflecting polymorphisms of the Wnt genes in Haliotis. Interestingly, gastropods are characterised by the loss of Wnt8, suggesting a potential evolutionary specificity in gastropods. As expected, Wnt3 is absent in all protostomes, including the abalone. In addition, spatio-temporal expression profiling revealed differential expression levels of the Wnt genes at different developmental stages and in different tissues of H. discus hannai. HdWnt5 and HdWntA might participate in several processes during larval development stages, including germ layer formation and body axis elongation. HdWnt5 may be involved in eye and tentacle development. HdWnt10 may be related to muscle development, and HdWnt6 may be involved in shell formation in abalone. CONCLUSION To our knowledge, the results of this study, which is the first genome-wide investigation of the Wnt gene family in abalone, lay the groundwork for future research on the evolution and function of the Wnt gene family in Gastropoda.
Collapse
Affiliation(s)
- Qian Zhang
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yangtao Fu
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yanyan Zhang
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Hourong Liu
- Department of Customs Inspection and Quarantine, Shanghai Customs University, Shanghai, 201204, China.
| |
Collapse
|
2
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. Neural Dev 2024; 19:16. [PMID: 39118162 PMCID: PMC11308222 DOI: 10.1186/s13064-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human Leucine Rich Repeat Kinase 2 (LRRK2) gene. Mutations in this gene are the most common cause of inherited Parkinson's Disease (PD), highlighting the importance of understanding its function. Despite two decades of research, however, the function of LRRK2 is not well established. METHODS To investigate the function of LRRKs in Nematostella vectensis, we applied small molecule inhibitors targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. RESULTS In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. CONCLUSIONS Our work introduces a new model organism with which to study LRRK biology. We report that LRRK kinase activity is necessary for the development and regeneration of Nematostella. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
Affiliation(s)
- Grace Holmes
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK
| | - Sophie R Ferguson
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA
| | - Patrick Alfryn Lewis
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK.
- UCL Queen Square Institute of Neurology, University of London, London, WC1N 3BG, UK.
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| |
Collapse
|
3
|
Sierra NC, Olsman N, Yi L, Pachter L, Goentoro L, Gold DA. A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration. Genome Biol Evol 2024; 16:evae120. [PMID: 38922665 PMCID: PMC11214158 DOI: 10.1093/gbe/evae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Noah Olsman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lynn Yi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Vargas A, DeBiasse M, Dykes L, Edgar A, Hayes T, Groso D, Babonis L, Martindale M, Ryan J. Morphological and dietary changes encoded in the genome of Beroe ovata, a ctenophore-eating ctenophore. NAR Genom Bioinform 2024; 6:lqae072. [PMID: 38895105 PMCID: PMC11184263 DOI: 10.1093/nargab/lqae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
As the sister group to all other animals, ctenophores (comb jellies) are important for understanding the emergence and diversification of numerous animal traits. Efforts to explore the evolutionary processes that promoted diversification within Ctenophora are hindered by undersampling genomic diversity within this clade. To address this gap, we present the sequence, assembly and initial annotation of the genome of Beroe ovata. Beroe possess unique morphology, behavior, ecology and development. Unlike their generalist carnivorous kin, beroid ctenophores feed exclusively on other ctenophores. Accordingly, our analyses revealed a loss of chitinase, an enzyme critical for the digestion of most non-ctenophore prey, but superfluous for ctenophorivores. Broadly, our genomic analysis revealed that extensive gene loss and changes in gene regulation have shaped the unique biology of B. ovata. Despite the gene losses in B. ovata, our phylogenetic analyses on photosensitive opsins and several early developmental regulatory genes show that these genes are conserved in B. ovata. This additional sampling contributes to a more complete reconstruction of the ctenophore ancestor and points to the need for extensive comparisons within this ancient and diverse clade of animals. To promote further exploration of these data, we present BovaDB (http://ryanlab.whitney.ufl.edu/bovadb/), a portal for the B. ovata genome.
Collapse
Affiliation(s)
- Alexandra M Vargas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, Radford University, Radford, VA 24142, USA
| | - Lana L Dykes
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - T Danielle Hayes
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Daniel J Groso
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Cole AG, Steger J, Hagauer J, Denner A, Ferrer Murguia P, Knabl P, Narayanaswamy S, Wick B, Montenegro JD, Technau U. Updated single cell reference atlas for the starlet anemone Nematostella vectensis. Front Zool 2024; 21:8. [PMID: 38500146 PMCID: PMC10946136 DOI: 10.1186/s12983-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al. Cell 173(6):1520-1534.e20). However, the mapping of the single cell reads still suffers from relatively poor gene annotations and a draft genome consisting of many scaffolds. RESULTS Here we present a new wildtype resource of the developmental single cell atlas, by re-mapping of sequence data first published in Steger et al. (2022) and Cole et al. (Nat Commun 14(1):1747, 2023), to the new chromosome-level genome assembly and corresponding gene models in Zimmermann et al. (Nat Commun 14, 8270 (2023). https://doi.org/10.1038/s41467-023-44080-7 ). We expand the pre-existing dataset through the incorporation of additional sequence data derived from the capture and sequencing of cell suspensions from four additional samples: 24 h gastrula, 2d planula, an inter-parietal region of the bodywall from a young unsexed animal, and another adult mesentery from a mature male animal. CONCLUSION Our analyses of the full cell-state inventory provide transcriptomic signatures for 127 distinct cell states, of which 47 correspond to neuroglandular subtypes. We also identify two distinct putatively immune-related transcriptomic profiles that segregate between the inner and outer cell layers. Furthermore, the new gene annotation Nv2 has markedly improved the mapping on the single cell transcriptome data and will therefore be of great value for the community and anyone using the dataset.
Collapse
Affiliation(s)
- Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Julia Steger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Hagauer
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Andreas Denner
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sanjay Narayanaswamy
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Brittney Wick
- UCSC Cellbrowser, University of California, Santa Cruz, USA
| | - Juan D Montenegro
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Max Perutz Labs, University of Vienna, Dr. Bohrgasse 9, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. RESEARCH SQUARE 2023:rs.3.rs-3525606. [PMID: 37986927 PMCID: PMC10659525 DOI: 10.21203/rs.3.rs-3525606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human LRRK2 gene (nvLRRK2). The leucine rich repeat kinase 2 (LRRK2) gene, when mutated, is the most common cause of inherited Parkinson's Disease (PD). Its protein product (LRRK2) has implications in a variety of cellular processes, however, the full function of LRRK2 is not well established. Current research is focusing on understanding the function of LRRK2, including both its physiological role as well as its pathobiological underpinnings. Methods We used bioinformatics to determine the cross-species conservation of LRRK2, then applied drugs targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. Results An in-silico characterization and phylogenetic analysis of nvLRRK2 comparing it to human LRRK2 highlighted key conserved motifs and residues. In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. Conclusions Our work introduces a new model organism with which to study LRRK biology. We show a necessity for LRRK2 in development and regeneration. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
|
7
|
Qarri A, Rinkevich B. Transient impacts of UV-B irradiation on whole body regeneration in a colonial urochordate. Dev Biol 2023; 503:83-94. [PMID: 37619713 DOI: 10.1016/j.ydbio.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Within the chordates, only some colonial ascidians experience whole body regeneration (WBR), where amputated small colonial fragments containing blood-vessels have the capability to regenerate the entire functional adult zooid within 1-3 weeks. Studying WBR in small colonial fragments taken at different blastogenic stages (the weekly developmental process characteristic to botryllid ascidians) from the ascidian Botrylloides leachii, about half of the fragments were able to complete regeneration (cWBR) three weeks following separation, about half were still in uncomplete, running regeneration (rWBR), and only a small percentage died. cWBR significantly increased in fragments that originated from a late blastogenic stage compared to an early stage. Most B. leachii populations reside in shallow waters, under variable daily natural UV irradiation, and it is of interest to elucidate irradiation effects on development and regeneration. Here, we show that UV-B irradiation resulted in enhanced mortality, with abnormal morphological changes in surviving fragments, yet with non-significant cWBR vs. rWBRs. Further, UV-B irradiation influenced the proportion of blood cells (morula cells, hemoblasts) and of multinucleated cells, a new WBR-associated cell type. At 24-h post-amputation we observed enhanced expression of β-catenin (a signaling pathway that plays indispensable roles in cell renewal and regeneration), H3 and PCNA in all cell types of non-irradiated as compared to irradiated fragments. These elevated levels were considerably reduced 9-days later. Since WBR is a highly complex phenomenon, the employment of specific experimental conditions, as UV-B irradiation, alongside blastogenesis (the weekly developmental process), elucidates undisclosed facets of this unique biological occurrence such as transient expression of signature genes.
Collapse
Affiliation(s)
- Andy Qarri
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, POB 9753, Tel Shikmona 3109701, Haifa, Israel; The Department of Maritime Civilizations, Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 3498838, Israel.
| | - Baruch Rinkevich
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, POB 9753, Tel Shikmona 3109701, Haifa, Israel
| |
Collapse
|
8
|
Xu J, Mead O, Moya A, Caglar C, Miller DJ, Adamski M, Adamska M. Wound healing and regeneration in the reef building coral Acropora millepora. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.979278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Branching scleractinian corals are niche-constructing organisms, providing continuously-growing, structural foundation for spectacularly biodiverse coral reef ecosystems. A large part of their success lies in the ability to quickly regenerate following mechanical damage. Even now, when the corals undergo great decline due to anthropogenic weather and storm extremes, it is surprising how little is known about molecular mechanisms governing regeneration in these iconic organisms. In this study, we used RNA-seq to identify genes involved in the regeneration of Acropora millepora, starting with the initial wound closure up to complete rebuilding of lost structures. Many of the differentially expressed genes we found in the wound healing steps are homologues of genes known to be involved in wound healing and regeneration of bilaterian and other cnidarian species, prominently including multiple components of FGF and Wnt signalling pathways. Comparison between genes involved in wound healing and continuous growth of the colony demonstrates both similarity and distinctiveness of the genetic programmes controlling these processes. A striking example is specific expression of c-Fos, a transcription factor with conserved role in early injury response, during the earliest stages of wound healing of A. millepora. By comparing results obtained in diverse experimental conditions including a closed-loop, recirculating aquarium and a flow-through system of marine station, we have demonstrated feasibility of using zooxanthellate scleractinian corals as experimental models in fundamental biology research, including studies of regeneration.
Collapse
|
9
|
Shum CW, Nong W, So WL, Li Y, Qu Z, Yip HY, Swale T, Ang PO, Chan KM, Chan TF, Chu KH, Chui AP, Lau KF, Ngai SM, Xu F, Hui JH. Genome of the sea anemone Exaiptasia pallida and transcriptome profiles during tentacle regeneration. Front Cell Dev Biol 2022; 10:900321. [PMID: 36072338 PMCID: PMC9444052 DOI: 10.3389/fcell.2022.900321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022] Open
Abstract
Cnidarians including sea anemones, corals, hydra, and jellyfishes are a group of animals well known for their regeneration capacity. However, how non-coding RNAs such as microRNAs (also known as miRNAs) contribute to cnidarian tissue regeneration is poorly understood. Here, we sequenced and assembled the genome of the sea anemone Exaiptasia pallida collected in Hong Kong waters. The assembled genome size of E. pallida is 229.21 Mb with a scaffold N50 of 10.58 Mb and BUSCO completeness of 91.1%, representing a significantly improved genome assembly of this species. The organization of ANTP-class homeobox genes in this anthozoan further supported the previous findings in jellyfishes, where most of these genes are mainly located on three scaffolds. Tentacles of E. pallida were excised, and both mRNA and miRNA were sequenced at 9 time points (0 h, 6 h, 12 h, 18 h, 1 day, 2, 3, 6, and 8 days) from regenerating tentacles. In addition to the Wnt signaling pathway and homeobox genes that are shown to be likely involved in tissue regeneration as in other cnidarians, we have shown that GLWamide neuropeptides, and for the first time sesquiterpenoid pathway genes could potentially be involved in the late phase of cnidarian tissue regeneration. The established sea anemone model will be useful for further investigation of biology and evolution in, and the effect of climate change on this important group of animals.
Collapse
Affiliation(s)
- Cheryl W.Y. Shum
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas Swale
- Dovetail Genomics, Scotts Valley, CA, United States
| | - Put O. Ang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Apple P.Y. Chui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai Ming Ngai
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jerome H.L. Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Jerome H.L. Hui,
| |
Collapse
|
10
|
Croce O, Röttinger E. Creating a User-Friendly and Open-Access Gene Expression Database for Comparing Embryonic Development and Regeneration in Nematostella vectensis. Methods Mol Biol 2022; 2450:649-662. [PMID: 35359334 PMCID: PMC9761911 DOI: 10.1007/978-1-0716-2172-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sea anemone Nematostella vectensis has emerged as a powerful research model to understand at the gene regulatory network level, to what extend regeneration recapitulates embryonic development. Such comparison involves massive transcriptomic analysis, a routine approach for identifying differential gene expression. Here we present a workflow to build a user-friendly, mineable, and open-access database providing access to the scientific community to various RNAseq datasets.
Collapse
Affiliation(s)
- Olivier Croce
- Institute for Research on Cancer and Aging in Nice (IRCAN), Université Côte d'Azur, CNRS, INSERM, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Eric Röttinger
- Institute for Research on Cancer and Aging in Nice (IRCAN), Université Côte d'Azur, CNRS, INSERM, Nice, France.
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France.
| |
Collapse
|
11
|
Plessier F, Schmutz S, Novault S, Marlow H. Single-Cell Transcriptomic Analysis in the Regenerating Cnidarian Nematostella vectensis. Methods Mol Biol 2022; 2450:565-581. [PMID: 35359329 PMCID: PMC9761532 DOI: 10.1007/978-1-0716-2172-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cnidarians have historically served as excellent laboratory models for regenerative development given their capacity to regrow large portions of the adult organism. This capacity is notably absent or poorly developed in the powerful genetic laboratory models Drosophila, C. elegans, and mouse. Increasingly, development of genetic and genomic resources and the application of next-generation sequencing-based techniques in cnidarian systems has further expanded the potential of cnidarian regenerative models. Here, we present a workflow for the characterization of the regenerative response in the sea anemone Nematostella vectensis utilizing fluorescence-activated cell sorting and a plate-based single-cell RNA-sequencing pipeline. This approach can characterize the transcriptional response during regeneration in distinct populations of cells, thus providing a quantitative view of a whole organism process at cellular resolution.
Collapse
Affiliation(s)
- Flora Plessier
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
- École Doctorale "Complexité du Vivant" ED515, Sorbonne Université, Paris, France
- Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Klein S, Frazier V, Readdean T, Lucas E, Diaz-Jimenez EP, Sogin M, Ruff ES, Echeverri K. Common Environmental Pollutants Negatively Affect Development and Regeneration in the Sea Anemone Nematostella vectensis Holobiont. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.786037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The anthozoan sea anemone Nematostella vectensis belongs to the phylum of cnidarians which also includes jellyfish and corals. Nematostella are native to United States East Coast marsh lands, where they constantly adapt to changes in salinity, temperature, oxygen concentration and pH. Its natural ability to continually acclimate to changing environments coupled with its genetic tractability render Nematostella a powerful model organism in which to study the effects of common pollutants on the natural development of these animals. Potassium nitrate, commonly used in fertilizers, and Phthalates, a component of plastics are frequent environmental stressors found in coastal and marsh waters. Here we present data showing how early exposure to these pollutants lead to dramatic defects in development of the embryos and eventual mortality possibly due to defects in feeding ability. Additionally, we examined the microbiome of the animals and identified shifts in the microbial community that correlated with the type of water that was used to grow the animals, and with their exposure to pollutants.
Collapse
|
13
|
Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells 2021; 10:cells10102692. [PMID: 34685672 PMCID: PMC8534814 DOI: 10.3390/cells10102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.
Collapse
|
14
|
Srivastava M. Beyond Casual Resemblances: Rigorous Frameworks for Comparing Regeneration Across Species. Annu Rev Cell Dev Biol 2021; 37:415-440. [PMID: 34288710 DOI: 10.1146/annurev-cellbio-120319-114716] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of animal phyla have species that can regenerate. Comparing regeneration across animals can reconstruct the molecular and cellular evolutionary history of this process. Recent studies have revealed some similarity in regeneration mechanisms, but rigorous comparative methods are needed to assess whether these resemblances are ancestral pathways (homology) or are the result of convergent evolution (homoplasy). This review aims to provide a framework for comparing regeneration across animals, focusing on gene regulatory networks (GRNs), which are substrates for assessing process homology. The homology of the wound-induced activation of Wnt signaling and of adult stem cells are discussed as examples of ongoing studies of regeneration that enable comparisons in a GRN framework. Expanding the study of regeneration GRNs in currently studied species and broadening taxonomic sampling for these approaches will identify processes that are unifying principles of regeneration biology across animals. These insights are important both for evolutionary studies of regeneration and for human regenerative medicine. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
15
|
The Tentacular Spectacular: Evolution of Regeneration in Sea Anemones. Genes (Basel) 2021; 12:genes12071072. [PMID: 34356088 PMCID: PMC8306839 DOI: 10.3390/genes12071072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sea anemones vary immensely in life history strategies, environmental niches and their ability to regenerate. While the sea anemone Nematostella vectensis is the starlet of many key regeneration studies, recent work is emerging on the diverse regeneration strategies employed by other sea anemones. This manuscript will explore current molecular mechanisms of regeneration employed by non-model sea anemones Exaiptasia diaphana (an emerging model species for coral symbiosis studies) and Calliactis polypus (a less well-studied species) and examine how these species compare to the model sea anemone N. vectensis. We summarize the field of regeneration within sea anemones, within the greater context of phylum Cnidaria and in other invertebrate models of regeneration. We also address the current knowledge on two key systems that may be implemented in regeneration: the innate immune system and developmental pathways, including future aspects of work and current limitations.
Collapse
|
16
|
Parisi MG, Grimaldi A, Baranzini N, La Corte C, Dara M, Parrinello D, Cammarata M. Mesoglea Extracellular Matrix Reorganization during Regenerative Process in Anemonia viridis (Forskål, 1775). Int J Mol Sci 2021; 22:5971. [PMID: 34073146 PMCID: PMC8198993 DOI: 10.3390/ijms22115971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
Given the anatomical simplicity and the extraordinary ability to regenerate missing parts of the body, Cnidaria represent an excellent model for the study of the mechanisms regulating regenerative processes. They possess the mesoglea, an amorphous and practically acellular extracellular matrix (ECM) located between the epidermis and the gastrodermis of the body and tentacles and consists of the same molecules present in the ECM of vertebrates, such as collagen, laminin, fibronectin and proteoglycans. This feature makes cnidarians anthozoans valid models for understanding the ECM role during regenerative processes. Indeed, it is now clear that its role in animal tissues is not just tissue support, but instead plays a key role during wound healing and tissue regeneration. This study aims to explore regenerative events after tentacle amputation in the Mediterranean anemone Anemonia viridis, focusing in detail on the reorganization of the ECM mesoglea. In this context, both enzymatic, biometric and histological experiments reveal how this gelatinous connective layer plays a fundamental role in the correct restoration of the original structures by modifying its consistency and stiffness. Indeed, through the deposition of collagen I, it might act as a scaffold and as a guide for the reconstruction of missing tissues and parts, such as amputated tentacles.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant 3, 21100 Varese, Italy;
| | - Nicolò Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant 3, 21100 Varese, Italy;
| | - Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| |
Collapse
|
17
|
Ramirez AN, Loubet-Senear K, Srivastava M. A Regulatory Program for Initiation of Wnt Signaling during Posterior Regeneration. Cell Rep 2021; 32:108098. [PMID: 32877680 DOI: 10.1016/j.celrep.2020.108098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Whole-body regeneration relies on the re-establishment of body axes for patterning of new tissue. Wnt signaling is required to correctly regenerate tissues along the primary axis in many animals. However, the causal mechanisms that first launch Wnt signaling during regeneration are poorly characterized. We use the acoel worm Hofstenia miamia to identify processes that initiate Wnt signaling during posterior regeneration and find that the ligand wnt-3 is upregulated early in posterior-facing wounds. Functional studies reveal that wnt-3 is required to regenerate posterior tissues. wnt-3 is expressed in stem cells, it is needed for their proliferation, and its function is stem cell dependent. Chromatin accessibility data reveal that wnt-3 activation requires input from the general wound response. In addition, the expression of a different Wnt ligand, wnt-1, before amputation is required for wound-induced activation of wnt-3. Our study establishes a gene regulatory network for initiating Wnt signaling in posterior tissues in a bilaterian.
Collapse
Affiliation(s)
- Alyson N Ramirez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kaitlyn Loubet-Senear
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Structural and Functional Characterization of the FGF Signaling Pathway in Regeneration of the Polychaete Worm Alitta virens (Annelida, Errantia). Genes (Basel) 2021; 12:genes12060788. [PMID: 34063978 PMCID: PMC8224027 DOI: 10.3390/genes12060788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Epimorphic regeneration of lost body segments is a widespread phenomenon across annelids. However, the molecular inducers of the cell sources for this reparative morphogenesis have not been identified. In this study, we focused on the role of fibroblast growth factor (FGF) signaling in the posterior regeneration of Alitta virens. For the first time, we showed an early activation of FGF ligands and receptor expression in an annelid regenerating after amputation. The expression patterns indicate that the entire regenerative bud is competent to FGFs, whose activity precedes the initiation of cell proliferation. The critical requirement of FGF signaling, especially at early stages, is also supported by inhibitor treatments followed by proliferation assay, demonstrating that induction of blastemal cells depends on FGFs. Our results show that FGF signaling pathway is a key player in regenerative response, while the FGF-positive wound epithelium, ventral nerve cord and some mesodermal cells around the gut could be the inducing tissues. This mechanism resembles reparative regeneration of vertebrate appendages suggesting such a response to the injury may be ancestral for all bilaterians.
Collapse
|
19
|
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 2021; 78:3941-3956. [PMID: 33515282 PMCID: PMC11072743 DOI: 10.1007/s00018-021-03760-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022]
Abstract
Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.
Collapse
Affiliation(s)
- Loïc Bideau
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| |
Collapse
|
20
|
Cazet JF, Cho A, Juliano CE. Generic injuries are sufficient to induce ectopic Wnt organizers in Hydra. eLife 2021; 10:60562. [PMID: 33779545 PMCID: PMC8049744 DOI: 10.7554/elife.60562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Adrienne Cho
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
21
|
Amiel AR, Michel V, Carvalho JE, Shkreli M, Petit C, Röttinger E. [The sea anemone Nematostella vectensis, an emerging model for biomedical research: Mechano-sensitivity, extreme regeneration and longevity]. Med Sci (Paris) 2021; 37:167-177. [PMID: 33591260 DOI: 10.1051/medsci/2020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nematostella has fascinating features such as whole-body regeneration, the absence of signs of aging and importantly, the absence of age-related diseases. Easy to culture and spawn, this little sea anemone in spite of its "simple" aspect, displays interesting morphological characteristics similar to vertebrates and an unexpected similarity in gene content/genome organization. Importantly, the scientific community working on Nematostella is developing a variety of functional genomics tools that enable scientists to use this anemone in the field of regenerative medicine, longevity and mecano-sensory diseases. As a complementary research model to vertebrates, this marine invertebrate is emerging and promising to dig deeper into those fields of research in an integrative manner (entire organism) and provides new opportunities for scientists to lift specific barriers that can be encountered with other commonly used animal models.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Vincent Michel
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France
| | - João E Carvalho
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Marina Shkreli
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France
| | - Christine Petit
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France - Collège de France, 75005 Paris, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| |
Collapse
|
22
|
Leclère L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D, Gat U. Dynamic Evolution of the Cthrc1 Genes, a Newly Defined Collagen-Like Family. Genome Biol Evol 2020; 12:3957-3970. [PMID: 32022859 PMCID: PMC7058181 DOI: 10.1093/gbe/evaa020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates. We identify Cthrc1 orthologs in two distant cnidarian species, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica, both of which harbor multiple copies of this gene. We find that Cthrc1 clade-specific diversification occurred multiple times in cnidarians as well as in most metazoan clades where we detected this gene. Many other groups, such as arthropods and nematodes, have entirely lost this gene family. Most vertebrates display a single highly conserved gene, and we show that the sequence evolutionary rate of Cthrc1 drastically decreased within the gnathostome lineage. Interestingly, this reduction coincided with the origin of its conserved upstream neighboring gene, Frizzled 6 (FZD6), which in mice has been shown to functionally interact with Cthrc1. Structural modeling methods further reveal that the yet uncharacterized C-terminal domain of Cthrc1 is similar in structure to the globular C1q superfamily domain, also found in the C-termini of collagens VIII and X. Thus, our studies show that the Cthrc1 genes are a collagen-like family with a variable short collagen triple helix domain and a highly conserved C-terminal domain structure resembling the C1q family.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Tal S Nir
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Michael Bazarsky
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Merav Braitbard
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Uri Gat
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
23
|
Sinigaglia C, Peron S, Eichelbrenner J, Chevalier S, Steger J, Barreau C, Houliston E, Leclère L. Pattern regulation in a regenerating jellyfish. eLife 2020; 9:e54868. [PMID: 32894220 PMCID: PMC7524552 DOI: 10.7554/elife.54868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Jellyfish, with their tetraradial symmetry, offer a novel paradigm for addressing patterning mechanisms during regeneration. Here we show that an interplay between mechanical forces, cell migration and proliferation allows jellyfish fragments to regain shape and functionality rapidly, notably by efficient restoration of the central feeding organ (manubrium). Fragmentation first triggers actomyosin-powered remodeling that restores body umbrella shape, causing radial smooth muscle fibers to converge around 'hubs' which serve as positional landmarks. Stabilization of these hubs, and associated expression of Wnt6, depends on the configuration of the adjoining muscle fiber 'spokes'. Stabilized hubs presage the site of the manubrium blastema, whose growth is Wnt/β-catenin dependent and fueled by both cell proliferation and long-range cell recruitment. Manubrium morphogenesis is modulated by its connections with the gastrovascular canal system. We conclude that body patterning in regenerating jellyfish emerges mainly from local interactions, triggered and directed by the remodeling process.
Collapse
Affiliation(s)
- Chiara Sinigaglia
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Sophie Peron
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Jeanne Eichelbrenner
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Julia Steger
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Carine Barreau
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| |
Collapse
|
24
|
Feeding-dependent tentacle development in the sea anemone Nematostella vectensis. Nat Commun 2020; 11:4399. [PMID: 32879319 PMCID: PMC7467937 DOI: 10.1038/s41467-020-18133-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this developmental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability. How the developmental capacity of long-lived animals copes with fluctuations in the food supply is unclear. Here, the authors show using the sea anemone Nematostella vectensis that the crosstalk between Target of Rapamycin and fibroblast growth factor signalling in ring muscles links postembryonic tentacle patterning with food availability.
Collapse
|
25
|
van der Burg CA, Pavasovic A, Gilding EK, Pelzer ES, Surm JM, Smith HL, Walsh TP, Prentis PJ. The Rapid Regenerative Response of a Model Sea Anemone Species Exaiptasia pallida Is Characterised by Tissue Plasticity and Highly Coordinated Cell Communication. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:285-307. [PMID: 32016679 DOI: 10.1007/s10126-020-09951-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Regeneration of a limb or tissue can be achieved through multiple different pathways and mechanisms. The sea anemone Exaiptasia pallida has been observed to have excellent regenerative proficiency, but this has not yet been described transcriptionally. In this study, we examined the genetic expression changes during a regenerative timecourse and reported key genes involved in regeneration and wound healing. We found that the major response was an early (within the first 8 h) upregulation of genes involved in cellular movement and cell communication, which likely contribute to a high level of tissue plasticity resulting in the rapid regeneration response observed in this species. We find the immune system was only transcriptionally active in the first 8 h post-amputation and conclude, in accordance with previous literature, that the immune system and regeneration have an inverse relationship. Fifty-nine genes (3.8% of total) differentially expressed during regeneration were identified as having no orthologues in other species, indicating that regeneration in E. pallida may rely on the activation of species-specific novel genes. Additionally, taxonomically restricted novel genes, including species-specific novels, and highly conserved genes were identified throughout the regenerative timecourse, showing that both may work in concert to achieve complete regeneration.
Collapse
Affiliation(s)
- Chloé A van der Burg
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4067, Australia
| | - Elise S Pelzer
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Hayden L Smith
- Earth, Environment and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute for Future Environments, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Terence P Walsh
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Peter J Prentis
- Earth, Environment and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute for Future Environments, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
26
|
Genomic analysis of the tryptome reveals molecular mechanisms of gland cell evolution. EvoDevo 2019; 10:23. [PMID: 31583070 PMCID: PMC6767649 DOI: 10.1186/s13227-019-0138-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background Understanding the drivers of morphological diversity is a persistent challenge in evolutionary biology. Here, we investigate functional diversification of secretory cells in the sea anemone Nematostella vectensis to understand the mechanisms promoting cellular specialization across animals. Results We demonstrate regionalized expression of gland cell subtypes in the internal ectoderm of N. vectensis and show that adult gland cell identity is acquired very early in development. A phylogenetic survey of trypsins across animals suggests that this gene family has undergone numerous expansions. We reveal unexpected diversity in trypsin protein structure and show that trypsin diversity arose through independent acquisitions of non-trypsin domains. Finally, we show that trypsin diversification in N. vectensis was effected through a combination of tandem duplication, exon shuffling, and retrotransposition. Conclusions Together, these results reveal the numerous evolutionary mechanisms that drove trypsin duplication and divergence during the morphological specialization of cell types and suggest that the secretory cell phenotype is highly adaptable as a vehicle for novel secretory products.
Collapse
|
27
|
Cary GA, Wolff A, Zueva O, Pattinato J, Hinman VF. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol 2019; 17:16. [PMID: 30795750 PMCID: PMC6385403 DOI: 10.1186/s12915-019-0633-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Metazoan lineages exhibit a wide range of regenerative capabilities that vary among developmental stage and tissue type. The most robust regenerative abilities are apparent in the phyla Cnidaria, Platyhelminthes, and Echinodermata, whose members are capable of whole-body regeneration (WBR). This phenomenon has been well characterized in planarian and hydra models, but the molecular mechanisms of WBR are less established within echinoderms, or any other deuterostome system. Thus, it is not clear to what degree aspects of this regenerative ability are shared among metazoa. Results We characterize regeneration in the larval stage of the Bat Star (Patiria miniata). Following bisection along the anterior-posterior axis, larvae progress through phases of wound healing and re-proportioning of larval tissues. The overall number of proliferating cells is reduced following bisection, and we find evidence for a re-deployment of genes with known roles in embryonic axial patterning. Following axial respecification, we observe a significant localization of proliferating cells to the wound region. Analyses of transcriptome data highlight the molecular signatures of functions that are common to regeneration, including specific signaling pathways and cell cycle controls. Notably, we find evidence for temporal similarities among orthologous genes involved in regeneration from published Platyhelminth and Cnidarian regeneration datasets. Conclusions These analyses show that sea star larval regeneration includes phases of wound response, axis respecification, and wound-proximal proliferation. Commonalities of the overall process of regeneration, as well as gene usage between this deuterostome and other species with divergent evolutionary origins reveal a deep similarity of whole-body regeneration among the metazoa. Electronic supplementary material The online version of this article (10.1186/s12915-019-0633-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Andrew Wolff
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Joseph Pattinato
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
28
|
Cao PL, Kumagai N, Inoue T, Agata K, Makino T. JmjC Domain-Encoding Genes Are Conserved in Highly Regenerative Metazoans and Are Associated with Planarian Whole-Body Regeneration. Genome Biol Evol 2019; 11:552-564. [PMID: 30698705 PMCID: PMC6390904 DOI: 10.1093/gbe/evz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
The capacity for regeneration varies greatly among metazoans, yet little is known about the evolutionary processes leading to such different regeneration abilities. In particular, highly regenerative species such as planarians and cnidarians can regenerate the whole body from an amputated fragment; however, a common molecular basis, if any, among these species remains unclear. Here, we show that genes encoding Jumonji C (JmjC) domain-containing proteins are associated with high regeneration ability. We classified 132 fully sequenced metazoans into two groups with high or low regeneration abilities and identified 118 genes conserved in the high regenerative group that were lost in species in the low regeneration group during evolution. Ninety-six percent of them were JmjC domain-encoding genes. We denoted the candidate genes as high regenerative species-specific JmjC domain-encoding genes (HRJDs). We observed losses of HRJDs in Helobdella robusta, which lost its high regeneration ability during evolution based on phylogenetic analysis. By RNA sequencing analyses, we observed that HRJD orthologs were differentially expressed during regeneration in two Cnidarians, as well as Platyhelminthes and Urochordata, which are highly regenerative species. Furthermore, >50% of the head and tail parts of amputated planarians (Dugesia japonica) died during regeneration after RNA interference of HRJD orthologs. These results indicate that HRJD are strongly associated with a high regeneration ability in metazoans. HRJD paralogs regulate gene expression by histone demethylation; thus, HRJD may be related to epigenetic regulation controlling stem cell renewal and stem cell differentiation during regeneration. We propose that HRJD play a central role in epigenetic regulation during regeneration.
Collapse
Affiliation(s)
- Ping-Lin Cao
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Nobuyoshi Kumagai
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
29
|
Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018; 145:dev.162867. [PMID: 29739837 DOI: 10.1242/dev.162867] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023]
Abstract
For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.
Collapse
Affiliation(s)
- Jacob F Warner
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Vincent Guerlais
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Hereroa Johnston
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Karine Nedoncelle
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| |
Collapse
|
30
|
Gufler S, Artes B, Bielen H, Krainer I, Eder MK, Falschlunger J, Bollmann A, Ostermann T, Valovka T, Hartl M, Bister K, Technau U, Hobmayer B. β-Catenin acts in a position-independent regeneration response in the simple eumetazoan Hydra. Dev Biol 2017; 433:310-323. [PMID: 29108673 DOI: 10.1016/j.ydbio.2017.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Wnt/β-Catenin signaling plays crucial roles in regenerative processes in eumetazoans. It also acts in regeneration and axial patterning in the simple freshwater polyp Hydra, whose morphallactic regenerative capacity is unparalleled in the animal kingdom. Previous studies have identified β-catenin as an early response gene activated within the first 30min in Hydra head regeneration. Here, we have studied the role of β-Catenin in more detail. First, we show that nuclear β-Catenin signaling is required for head and foot regeneration. Loss of nuclear β-Catenin function blocks head and foot regeneration. Transgenic Hydra tissue, in which β-Catenin is over-expressed, regenerates more heads and feet. In addition, we have identified a set of putative β-Catenin target genes by transcriptional profiling, and these genes exhibit distinct expression patterns in the hypostome, in the tentacles, or in an apical gradient in the body column. All of them are transcriptionally up-regulated in the tips of early head and foot regenerates. In foot regenerates, this is a transient response, and expression starts to disappear after 12-36h. ChIP experiments using an anti-HydraTcf antibody show Tcf binding at promoters of these targets. We propose that gene regulatory β-Catenin activity in the pre-patterning phase is generally required as an early regeneration response. When regenerates are blocked with iCRT14, initial local transcriptional activation of β-catenin and the target genes occurs, and all these genes remain upregulated at the site of both head and foot regeneration for the following 2-3 days. This indicates that the initial regulatory network is followed by position-specific programs that inactivate fractions of this network in order to proceed to differentiation of head or foot structures. brachyury1 (hybra1) has previously been described as early response gene in head and foot regeneration. The HyBra1 protein, however, appears in head regenerating tips not earlier than about twelve hours after decapitation, and HyBra1 translation does not occur in iCRT14-treated regenerates. Foot regenerates never show detectable levels of HyBra1 protein at all. These results suggest that translational control mechanisms may play a decisive role in the head- and foot-specific differentiation phase, and HyBra1 is an excellent candidate for such a key regulator of head specification.
Collapse
Affiliation(s)
- S Gufler
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - B Artes
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - H Bielen
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - I Krainer
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - M-K Eder
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - J Falschlunger
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - A Bollmann
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - T Ostermann
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - T Valovka
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - M Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - K Bister
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - U Technau
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - B Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria.
| |
Collapse
|
31
|
Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus. Sci Rep 2017; 7:41458. [PMID: 28150733 PMCID: PMC5288695 DOI: 10.1038/srep41458] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Wound healing and regeneration in cnidarian species, a group that forms the sister phylum to Bilateria, remains poorly characterised despite the ability of many cnidarians to rapidly repair injuries, regenerate lost structures, or re-form whole organisms from small populations of somatic cells. Here we present results from a fully replicated RNA-Seq experiment to identify genes that are differentially expressed in the sea anemone Calliactis polypus following catastrophic injury. We find that a large-scale transcriptomic response is established in C. polypus, comprising an abundance of genes involved in tissue patterning, energy dynamics, immunity, cellular communication, and extracellular matrix remodelling. We also identified a substantial proportion of uncharacterised genes that were differentially expressed during regeneration, that appear to be restricted to cnidarians. Overall, our study serves to both identify the role that conserved genes play in eumetazoan wound healing and regeneration, as well as to highlight the lack of information regarding many genes involved in this process. We suggest that functional analysis of the large group of uncharacterised genes found in our study may contribute to better understanding of the regenerative capacity of cnidarians, as well as provide insight into how wound healing and regeneration has evolved in different lineages.
Collapse
|