1
|
Zhang D, Zhang M, Zhang L, Wang W, Hua S, Zhou C, Sun X. Long non-coding RNAs and immune cells: Unveiling the role in viral infections. Biomed Pharmacother 2024; 170:115978. [PMID: 38056234 DOI: 10.1016/j.biopha.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Viral infections present significant challenges to human health, underscoring the importance of understanding the immune response for effective therapeutic strategies. Immune cell activation leads to dynamic changes in gene expression. Numerous studies have demonstrated the crucial role of long noncoding RNAs (lncRNAs) in immune activation and disease processes, including viral infections. This review provides a comprehensive overview of lncRNAs expressed in immune cells, including CD8 T cells, CD4 T cells, B cells, monocytes, macrophages, dendritic cells, and granulocytes, during both acute and chronic viral infections. LncRNA-mediated gene regulation encompasses various mechanisms, including the modulation of viral replication, the establishment of latency, activation of interferon pathways and other critical signaling pathways, regulation of immune exhaustion and aging, and control of cytokine and chemokine production, as well as the modulation of interferon-stimulated genes. By highlighting specific lncRNAs in different immune cell types, this review enhances our understanding of immune responses to viral infections from a lncRNA perspective and suggests potential avenues for exploring lncRNAs as therapeutic targets against viral diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengna Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liqin Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weijuan Wang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Stéphane Hua
- Laboratory of Cellular Immunology and Biotechnology, Molecular Engineering for Health Unit CEA Saclay, 91191 Gif-sur-Yvette cedex, France
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiaoming Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
2
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
3
|
Nie F, Zhang J, Li M, Chang X, Duan H, Li H, Zhou J, Ji Y, Guo L. Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing. Bioengineered 2022; 13:9131-9144. [PMID: 35403571 PMCID: PMC9161911 DOI: 10.1080/21655979.2021.2008737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Furong Nie
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jingfeng Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Mengyun Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xuanniu Chang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haitao Duan
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haoyan Li
- Henan Chenxia Biomedical Co., Ltd, Zhengzhou, China
| | - Jia Zhou
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yudan Ji
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Liangxing Guo
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
4
|
The Outer Membrane Vesicles of Salmonella enterica Serovar Typhimurium Activate Chicken Immune Cells through Lipopolysaccharides and Membrane Proteins. Pathogens 2022; 11:pathogens11030339. [PMID: 35335663 PMCID: PMC8948782 DOI: 10.3390/pathogens11030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Salmonella is a common pathogen which can secrete outer membrane vesicles (OMVs). However, the effect of OMVs from Salmonella enterica Serovar Typhimurium (S. Typhimurium) of poultry origin on cells of the chicken innate immune system is not well known. In this study, S. Typhimurium OMVs were first isolated from three different poultry strains of Salmonella, Salmonella CVCC542, SALA, and SALB. In order to investigate the effect of OMVs on the maturation of monocytes into macrophages, both bone marrow-derived (BMD) monocytes and macrophage cell line HD11 cells were used. OMVs promoted the formation of monocyte dendrites in both types of cells, enabled BMD cells to become larger, and stimulated expression of LPS-induced TNF-αfactor (LITAF), IL-6, and inducible nitric oxide synthase (iNOS) genes in HD11 cells. These results demonstrated the capability of OMVs to promote the development of chicken monocytes into macrophages and the maturation of macrophages. In order to study the effect of OMVs on the phagocytosis of macrophages, chicken spleen-derived monocytes and HD11 cells were used. Phagocytosis of FITC-Salmonella and FITC-dextran by these two types of cells was enhanced after stimulation with OMVs. To determine which components in OMVs were responsible for the above observed results, OMVs were treated with proteinase K(PK) or polymyxin B (PMB). Both treatments reduced the phagocytosis of FITC-Salmonella by HD11 cells and chicken spleen mononuclear cells and reduced the secretion of IL-1β, LITAF, and IL-6 cytokines. These results demonstrated that Salmonella OMVs activated chicken macrophages and spleen mononuclear cells and the activation was achieved mainly through lipopolysaccharides and membrane proteins.
Collapse
|
5
|
Zmrhal V, Svoradova A, Batik A, Slama P. Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis. Front Cell Dev Biol 2022; 9:730804. [PMID: 35127695 PMCID: PMC8811169 DOI: 10.3389/fcell.2021.730804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) cell culture is attracting increasing attention today because it can mimic tissue environments and provide more realistic results than do conventional cell cultures. On the other hand, very little attention has been given to using 3D cell cultures in the field of avian cell biology. Although mimicking the bone marrow niche is a classic challenge of mammalian stem cell research, experiments have never been conducted in poultry on preparing in vitro the bone marrow niche. It is well known, however, that all diseases cause immunosuppression and target immune cells and their development. Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry are facing new challenges, such as greater use of alternative breeding systems and expanding production of eggs and chicken meat in developing countries. Moreover, the COVID-19 pandemic will draw greater attention to the importance of disease management in poultry because poultry constitutes a rich source of zoonotic diseases. For these reasons, and because they will lead to a better understanding of disease pathogenesis, in vivo HSC niches for studying disease pathogenesis can be valuable tools for developing more effective disease prevention, diagnosis, and control. The main goal of this review is to summarize knowledge about avian hematopoietic cells, HSC niches, avian immunosuppressive diseases, and isolation of HSC, and the main part of the review is dedicated to using 3D cell cultures and their possible use for studying disease pathogenesis with practical examples. Therefore, this review can serve as a practical guide to support further preparation of 3D avian HSC niches to study the pathogenesis of avian diseases.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrea Svoradova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- NPPC, Research Institute for Animal Production in Nitra, Luzianky, Slovak Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
6
|
Shah AU, Li Y, Ouyang W, Wang Z, Zuo J, Shi S, Yu Q, Lin J, Yang Q. From nasal to basal: single-cell sequencing of the bursa of Fabricius highlights the IBDV infection mechanism in chickens. Cell Biosci 2021; 11:212. [PMID: 34915931 PMCID: PMC8675306 DOI: 10.1186/s13578-021-00728-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chickens, important food animals and model organisms, are susceptible to many RNA viruses that invade via the nasal cavity. To determine the nasal entry site of the virus and clarify why avians are susceptible to RNA viruses, infectious bursal disease virus (IBDV) was selected because it is a typical avian RNA virus that infects chickens mainly via the nasal route. RESULTS First, we found that IBDV infected the posterior part of the nasal cavity in chickens, which is rich in lymphoid tissue and allows the virus to be easily transferred to the blood. Via the blood circulation, IBDV infected peripheral blood mononuclear cells (PBMCs) and was transferred to the bursa of Fabricius to damage the IgM + B lymphocyte population. Subsequently, the single-cell RNA sequencing (scRNA-seq) results suggested the more detailed response of different bursal cell populations (B cells, epithelial cells, dendritic cells, and fibroblasts) to IBDV. Regarding B cells, IBDV infection greatly decreased the IgM + B cell population but increased the IgA + B cell population in the bursal follicles. In contrast to B cells, bursal epithelial cells, especially basal cells, accumulated a large number of IBDV particles. Furthermore, we found that both innate RNA sensors and interferon-stimulated genes (ISGs) were highly expressed in the IBDV-infected groups, while dicer and ago2 expression was largely blocked by IBDV infection. This result suggests that dicer-related RNA interference (RNAi) might be an effective antiviral strategy for IBDV infection in avian. CONCLUSION Our study not only comprehensively elaborates on the transmission of airborne IBDV via the intranasal route and establishes the main target cell types for productive IBDV infection but also provides sufficient evidence to explain the cellular antiviral mechanism against IBDV infection.
Collapse
Affiliation(s)
- Abid Ullah Shah
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.,College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuchen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Wei Ouyang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, People's Republic of China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jinjiao Zuo
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Song Shi
- Shanghai OE Biotech. Co., Ltd, Shanghai, 201114, People's Republic of China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jian Lin
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| |
Collapse
|
7
|
Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021; 12:613197. [PMID: 34012461 PMCID: PMC8126714 DOI: 10.3389/fgene.2021.613197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3′ end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Jianhui Yang
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianxin Liu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Hui Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Rongfei Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Chunya Cao
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Liping Shi
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Weihua Wu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| |
Collapse
|
8
|
Zuo J, Cao Y, Wang Z, Shah AU, Wang W, Dai C, Chen M, Lin J, Yang Q. The mechanism of antigen-presentation of avian bone marrowed dendritic cells suppressed by infectious bronchitis virus. Genomics 2021; 113:1719-1732. [PMID: 33865956 DOI: 10.1016/j.ygeno.2021.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/07/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023]
Abstract
Dendritic cells are first guard to defend avian infectious bronchitis virus (IBV) infection and invasion. While IBV always suppress dendritic cells and escape the degradation and presentation, which might help viruses to transfer and migrant. Initially, we compared two IBV's function in activating avian bone marrow dendritic cells (BMDCs) and found that both IBV (QX and M41) did not significantly increase surface marker of avian BMDCs. Moreover, a significant decrease of m6A modification level in mRNA, but an increased in the ut RNA were observed in avian BMDCs upon the prevalent IBV (QX) infection. Further study found that both non-structural protein 7 (NSP7) and NSP16 inhibited the maturation and cytokines secretion of BMDCs, as well as their antigen-presentation ability. Lastly, we found that gga-miR21, induced by both NSP7 and NSP16, inhibited the antigen presentation of avian BMDCs. Taken together, our results illustrated how IBV inhibited the antigen-presentation of avian DCs.
Collapse
Affiliation(s)
- Jinjiao Zuo
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Yanan Cao
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Abid Ullah Shah
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Wenlei Wang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Jian Lin
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
9
|
Huang X, Xu Y, Lin Q, Guo W, Zhao D, Wang C, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Li Y, Ma G, Tang L. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production. Virulence 2021; 11:68-79. [PMID: 31865850 PMCID: PMC6961729 DOI: 10.1080/21505594.2019.1707957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functions and profiles of lncRNAs during infectious bursal disease virus (IBDV) infection have not been determined, yet. The objectives of this study were to determine the antiviral action of loc107051710 lncRNA during IBDV infection by investigating the relationship between loc107051710 and IRF8, Type I IFN, STATs, and ISGs. DF-1 cells were either left untreated as non-infected controls (n = 1) or infected with IBDV (n = 3). RNA sequencing was applied for analysis of mRNAs and lncRNAs expression. Differentially expressed genes were verified by RT-qPCR. Then identification, of 230 significantly different expressed genes (182 mRNAs and 48 lncRNA) by pairwise comparison of the infected and control groups, was carried out. The functions of differentially expressed lncRNAs were investigated by selection of lncRNAs and mRNAs significantly enriched in the aforementioned biological processes and signaling pathways for construction of lncRNA-mRNA co-expression networks. The techniques of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways were applied. It was suggested that these differentially expressed genes were involved in the interaction between the host and IBDV. Loc107051710 was found to have potential antiviral effects. RT-qPCR and western blot were applied and revealed that loc107051710 was required for induction of IRF8, type I IFN, STAT, and ISG expression, and its knockdown promoted IBDV replication. By fluorescence in situ hybridization, it was found that loc107051710 was translocated from the nucleus to the cytoplasm after infection with IBDV. Overall, loc107051710 promoted the production of IFN-α and IFN-β by regulating IRF8, thereby promoting the antiviral activity of ISGs.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qingyu Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Weilong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Chunmei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Guangpeng Ma
- Agricultural High Technology Department, China Rural Technology Development Center, Beijing China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
10
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
11
|
Bai H, He Y, Ding Y, Chu Q, Lian L, Heifetz EM, Yang N, Cheng HH, Zhang H, Chen J, Song J. Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek's disease using next generation sequencing. BMC Genet 2020; 21:77. [PMID: 32677890 PMCID: PMC7364486 DOI: 10.1186/s12863-020-00884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/05/2020] [Indexed: 11/13/2022] Open
Abstract
Background Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such as resistance to infectious diseases. Two highly inbred chicken lines, 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD. Results In the present study, to unravel the potential genetic mechanisms underlying resistance to MD, we performed a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of CNVnator. As a result, a total of 1649 CNV regions (CNVRs) were successfully identified after merging all the nine datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1360 harbored genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line 63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication) involved in 10 disease-related genes were selected for validation by using quantitative real-time PCR (qPCR), all of which were successfully confirmed. Finally, qPCR was also used to validate two deletion events in line 72 that were definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene underlying resistance and susceptibility to MD in view of its function and overlaps with data from previous study. Conclusions Our findings provide valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.,Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanghua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yi Ding
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Qin Chu
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Eliyahu M Heifetz
- Faculty of Health Sciences, Jerusalem College of Technology, 9116001, Jerusalem, Israel
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hans H Cheng
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Yasmin AR, Omar AR, Farhanah MI, Hiscox AJ, Yeap SK. Quantitative Proteomics Analysis Revealed Compromised Chicken Dendritic Cells Function at Early Stage of Very Virulent Infectious Bursal Disease Virus Infection. Avian Dis 2020; 63:275-288. [PMID: 31251527 DOI: 10.1637/11936-072418-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/19/2018] [Indexed: 11/05/2022]
Abstract
Chicken dendritic cells (DCs) have been demonstrated to be susceptible to infectious bursal disease virus (IBDV), a causative agent of acute and immunosuppressed disease in young chicks known as infectious bursal disease. Further functional characterization of IBDV-infected DCs of chickens is required to provide a better understanding on the influence of the virus on chicken bone marrow-derived dendritic cells (BM-DCs) following very virulent (vv) IBDV infection. Membrane proteins of BM-DCs were extracted and the proteins were further denatured and reduced before performing labeling with isobaric tags for relative and absolute quantitation. The differential expression protein profiles were identified and quantified using liquid chromatography coupled with tandem mass spectrometry, and later validated using flow cytometry and real-time reverse transcriptase PCR. The analysis has identified 134 differentially regulated proteins from a total of 283 proteins (cutoff values of ≤0.67, ≥1.5, and ProtScore >1.3 at 95% confidence interval), which produced high-yield membrane fractions. The entry of vvIBDV into the plasma membrane of BM-DCs was observed at 3 hr postinfection by the disruption of several important protein molecule functions, namely apoptosis, RNA/DNA/protein synthesis, and transport and cellular organization, without the activation of proteins associated with signaling. At the later stage of infection, vvIBDV induced expression of several proteins, namely CD200 receptor 1-A, integrin alpha-5, HSP-90, cathepsin, lysosomal-associated membrane protein, and Ras-related proteins, which play crucial roles in signaling, apoptosis, stress response, and antigen processing as well as in secretion of danger-associated proteins. These findings collectively indicated that the chicken DCs are expressing various receptors regarded as potential targets for pathogen interaction during viral infection. Therefore, fundamental study of the interaction of DCs and IBDV will provide valuable information in understanding the role of professional antigen-presenting cells in chickens and their molecular interactions during IBDV infection and vaccination.
Collapse
Affiliation(s)
- A R Yasmin
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia,
| | - A R Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M I Farhanah
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - A J Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - S K Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|
14
|
Zmrhal V, Slama P. Current knowledge about interactions between avian dendritic cells and poultry pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103565. [PMID: 31830703 DOI: 10.1016/j.dci.2019.103565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In poultry production conditions today, birds are surrounded by viral, bacterial, and parasitic agents. DCs are the main antigen-presenting cells located in tissues of the body, and their role involves recognizing antigen structures, engulfing and processing them, and subsequently presenting antigen peptides on their surface by major histocompatibility complex, where T cells and B cells are stimulated and can begin appropriate cellular and antibody immune response. This unique function indicates that these cells can be used in producing vaccines, but first it is necessary to culture DCs in vitro to identify the principles of their interactions with pathogens. The following review summarizes our current knowledge about avian dendritic cells and their interactions with pathogens. It provides a basis for future studies of these unique cells and their use in vaccine development.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Duan X, Wang L, Sun G, Yan W, Yang Y. Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poult Sci 2020; 99:1838-1846. [PMID: 32241464 PMCID: PMC7587795 DOI: 10.1016/j.psj.2019.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
In poultry, viral infections (e.g., Marek's disease virus, avian leukosis virus, influenza A virus, and so on) can cause devastating mortality and economic losses. Because viruses are solely dependent on host cells to propagate, they alter the host intracellular microenvironment. Thus, understanding the virus-host interaction is important for antiviral immunity and drug development in the poultry industry. MicroRNAs are crucial posttranscriptional regulators of gene expression in a wide spectrum of biological processes, including viral infection. Recently, microRNAs have been identified as key players in virus-host interactions. In this review, we will discuss the intricacies involved in the virus-host cross-talk mediated by host and viral microRNAs in poultry (i.e., chicken and ducks), as well as recent trends and challenges in this field. These findings may provide some insights into the rapidly developing area of research regarding viral pathogenesis and antiviral immunity in poultry production.
Collapse
Affiliation(s)
- Xiujun Duan
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Lihua Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Guobo Sun
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Wenying Yan
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
16
|
Lin J, Yi X, Zhuang Y. Coupling metabolomics analysis and DOE optimization strategy towards enhanced IBDV production by chicken embryo fibroblast DF-1 cells. J Biotechnol 2019; 307:114-124. [PMID: 31697974 DOI: 10.1016/j.jbiotec.2019.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 11/25/2022]
Abstract
Infectious bursal disease (IBD) caused by IBD virus (IBDV) is highly contagious viral and vaccination in chicken embryo has been an effective mean to prevent acute infection. However, the current production of IBDV vaccine faces serious batch instability and external contamination. The chicken embryonic fibroblast cell line DF-1 is widely used for the proliferation of avian viruses and vaccine production. Thus, optimizing the production of IBDV by DF-1 cells has an important application value. Combining metabolomics analysis and a Design of Experiments (DOE) statistical strategy, this study successfully optimized the process of IBDV production by DF-1 cells. Differential analysis and time series analysis of metabolite data in both IBDV-infected and uninfected DF-1 cells were performed by multivariate statistical analysis. The results showed that the intracellular metabolite intensities of glycolysis, the pentose phosphate pathway, the nucleoside synthesis pathway, lipid metabolism, and glutathione metabolism were upregulated, and the TCA cycle underwent a slight downregulation after IBDV infection of DF-1 cells. Based on the metabolome results and DOE statistical optimization method, the additive components suitable for IBDV proliferation were determined. The IBDV titer increased by 20.7 times upon exogenous addition of cysteine, methionine, lysine and nucleosides in the control medium, which is consistent with the predicted result (20.0 times) by a multivariate quadratic equation. This study provides a strategy for the efficient production of IBDV vaccines and could potentially be utilized to improve the production of other viral vaccines and biologics.
Collapse
Affiliation(s)
- Jia Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| |
Collapse
|
17
|
Lin J, Wang Z, Wang J, Yang Q. Microarray analysis of infectious bronchitis virus infection of chicken primary dendritic cells. BMC Genomics 2019; 20:557. [PMID: 31286855 PMCID: PMC6615177 DOI: 10.1186/s12864-019-5940-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Avian infectious bronchitis virus (IBV) is a major respiratory disease-causing agent in birds that leads to significant losses. Dendritic cells (DCs) are specialised cells responsible for sampling antigens and presenting them to T cells, which also play an essential role in recognising and neutralising viruses. Recent studies have suggested that non-coding RNAs may regulate the functional program of DCs. Expression of host non-coding RNAs changes markedly during infectious bronchitis virus infection, but their role in regulating host immune function has not been explored. Here, microarrays of mRNAs, miRNAs, and lncRNAs were globally performed to analyse how avian DCs respond to IBV. Results First, we found that IBV stimulation did not enhance the maturation ability of avian DCs. Interestingly, inactivated IBV was better able than IBV to induce DC maturation and activate lymphocytes. We identified 1093 up-regulated and 845 down-regulated mRNAs in IBV-infected avian DCs. Gene Ontology analysis suggested that cellular macromolecule and protein location (GO-BP) and transcription factor binding (GO-MF) were abundant in IBV-stimulated avian DCs. Meanwhile, pathway analysis indicated that the oxidative phosphorylation and leukocyte transendothelial migration signalling pathways might be activated in the IBV group. Moreover, alteration of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) was detected in IBV-stimulated avian DCs. In total, 19 significantly altered (7 up and 12 down) miRNAs and 101 (75 up and 26 down) lncRNAs were identified in the IBV-treated group. Further analysis showed that the actin cytoskeleton and MAPK signal pathway were related to the target genes of IBV-stimulated miRNAs. Finally, our study identified 2 TF-microRNA and 53 TF–microRNA–mRNA interactions involving 1 TF, 2 miRNAs, and 53 mRNAs in IBV-stimulated avian DCs. Conclusions Our research suggests a new mechanism to explain why IBV actively blocks innate responses needed for inducing immune gene expression and also provides insight into the pathogenic mechanisms of avian IBV. Electronic supplementary material The online version of this article (10.1186/s12864-019-5940-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Lin
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Zhisheng Wang
- National Veterinary Product Engineering Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jialu Wang
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China. .,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
18
|
He SY, Xi WJ, Wang X, Xu CH, Cheng L, Liu SY, Meng QQ, Li B, Wang Y, Shi HB, Wang HJ, Wang ZZ. Identification of a Combined RNA Prognostic Signature in Adenocarcinoma of the Lung. Med Sci Monit 2019; 25:3941-3956. [PMID: 31132294 PMCID: PMC6556069 DOI: 10.12659/msm.913727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Adenocarcinoma of the lung is a type of non-small cell lung cancer (NSCLC). Clinical outcome is associated with tumor grade, stage, and subtype. This study aimed to identify RNA expression profiles, including long noncoding RNA (lncRNA), microRNA (miRNA), and mRNA, associated with clinical outcome in adenocarcinoma of the lung using bioinformatics data. Material/Methods The miRNA and mRNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database, and lncRNA expression profiles were downloaded from The Atlas of Noncoding RNAs in Cancer (TANRIC) database. The independent dataset, the Gene Expression Omnibus (GEO) accession dataset, GSE81089, was used. RNA expression profiles were used to identify comprehensive prognostic RNA signatures based on patient survival time. Results From 7,704 lncRNAs, 787 miRNAs, and 28,937 mRNAs of 449 patients, four joint RNA molecular signatures were identified, including RP11-909N17.2, RP11-14N7.2 (lncRNAs), MIR139 (miRNA), KLHDC8B (mRNA). The random forest (RF) classifier was used to test the prediction ability of patient survival risk and showed a good predictive accuracy of 71% and also showed a significant difference in overall survival (log-rank P=0.0002; HR, 3.54; 95% CI, 1.74–7.19). The combined RNA signature also showed good performance in the identification of patient survival in the validation and independent datasets. Conclusions This study identified four RNA sequences as a prognostic molecular signature in adenocarcinoma of the lung, which may also provide an increased understanding of the molecular mechanisms underlying the pathogenesis of this malignancy.
Collapse
Affiliation(s)
- Si-Yu He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wen-Jing Xi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xin Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Chao-Han Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Si-Yao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Qian-Qian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Boyan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Hong-Bo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Hong-Jiu Wang
- College of Science, Heilongjiang University of Science and Technology, Harbin, Heilongjiang, China (mainland)
| | - Zhen-Zhen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
19
|
Zhang Y, Wang L, Qiu L, Pan R, Bai H, Jiang Y, Wang Z, Bi Y, Chen G, Chang G. Expression patterns of novel circular RNAs in chicken cells after avian leukosis virus subgroup J infection. Gene 2019; 701:72-81. [PMID: 30898701 DOI: 10.1016/j.gene.2019.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/02/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that causes severe economic losses to the poultry industry worldwide. Circular RNAs (circRNAs) are a class of non-coding RNAs that has been described in various biological systems and pathogenic processes. However, the immune mechanisms in response to circRNAs remain unknown. In this study, high-throughput transcriptome sequencing was used to detect circRNAs present in chicken macrophage (HD11) and chick embryo fibroblast (CEF) cells infected with ALV-J. We identified 7684 circRNAs from diverse genomic locations in CEF and HD11 after ALV-J infection, these RNAs showed complex expression patterns that differed based on the cells type and infection time. In total, 302 differentially expressed (DE) circRNAs and 164 DE circRNAs were identified in CEF and HD11 after ALV-J infection, respectively. CircRNA7419-associated with KDM4C- and circRNA6679 and circRNA6680-associated with TNFAIP6- were involved in the immune response upon ALV-J infection in CEF. Host genes were analyzed through further bioinformatics analysis. The result confirmed that a large number of DE circRNAs corresponded to several immune-associated or tumor-associated terms and pathways, such as Mucin type O-Glycan biosynthesis, MAPK signaling pathway, B cell receptor signaling, and Wnt signaling pathway in CEF, as well as Jak-STAT signaling pathway, apoptosis, and MAPK signaling pathway in HD11. CircRNAs related to the B cell receptor signaling pathway in CEF, and the Jak-STAT signaling pathway in HD11, were selected for circRNA-miRNA interaction network analyses. Our study indicates that circRNAs expression was altered by ALV-J infection in both CEF and HD11, and may play a key role in the progression of ALV-J infection.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Laidi Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Rui Pan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
Dulwich KL, Asfor AS, Gray AG, Nair V, Broadbent AJ. An Ex Vivo Chicken Primary Bursal-cell Culture Model to Study Infectious Bursal Disease Virus Pathogenesis. J Vis Exp 2018. [PMID: 30346401 PMCID: PMC6235420 DOI: 10.3791/58489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a birnavirus of economic importance to the poultry industry. The virus infects B cells, causing morbidity, mortality, and immunosuppression in infected birds. In this study, we describe the isolation of chicken primary bursal cells from the bursa of Fabricius, the culture and infection of the cells with IBDV, and the quantification of viral replication. The addition of chicken CD40 ligand significantly increased cell proliferation fourfold over six days of culture and significantly enhanced cell viability. Two strains of IBDV, a cell-culture adapted strain, D78, and a very virulent strain, UK661, replicated well in the ex vivo cell cultures. This model will be of use in determining how cells respond to IBDV infection and will permit a reduction in the number of infected birds used in IBDV pathogenesis studies. The model can also be expanded to include other viruses and could be applied to different species of birds.
Collapse
|
21
|
Genome-wide profiling of microRNAs reveals novel insights into the interactions between H9N2 avian influenza virus and avian dendritic cells. Oncogene 2018; 37:4562-4580. [DOI: 10.1038/s41388-018-0279-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022]
|
22
|
Lin X, Gao Q, Zhu L, Zhou G, Ni S, Han H, Yue Z. Long noncoding RNAs regulate Wnt signaling during feather regeneration. Development 2018; 145:dev.162388. [DOI: 10.1242/dev.162388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/04/2018] [Indexed: 02/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are non-protein coding transcripts that are involved in a broad range of biological processes. Here, we examined the functional roles of lncRNAs in feather regeneration. RNA-seq profiling of the regenerating feather blastema revealed that the Wnt signaling is among the most active pathways during feather regeneration, with the Wnt ligands and their inhibitors showing distinct expression patterns. Co-expression analysis identified hundreds of lncRNAs with similar expression patterns to either the Wnt ligands (the Lwnt group) or their downstream target genes (the Twnt group). Among these, we randomly picked two lncRNAs in the Lwnt group, and three lncRNAs in the Twnt group to validate their expression and function. Members in the Twnt group regulated feather regeneration and axis formation, whereas members in the Lwnt group showed no obvious phenotype. Further analysis confirmed that the three Twnt group members inhibit Wnt signal transduction and at the same time are down-stream target genes of this pathway. Our results suggested that the feather regeneration model can be utilized to systematically annotate the functions of lncRNAs in the chicken genome.
Collapse
Affiliation(s)
- Xiang Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - LiYan Zhu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - ShiWei Ni
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Hao Han
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - ZhiCao Yue
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
23
|
Dulwich KL, Giotis ES, Gray A, Nair V, Skinner MA, Broadbent AJ. Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV). J Gen Virol 2017; 98:2918-2930. [PMID: 29154745 DOI: 10.1099/jgv.0.000979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.
Collapse
Affiliation(s)
- Katherine L Dulwich
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Efstathios S Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Alice Gray
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | | | - Michael A Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
24
|
Fan R, Cao C, Zhao X, Shi Q, Zhao J, Xu S. Downregulated long noncoding RNA ALDBGALG0000005049 induces inflammation in chicken muscle suffered from selenium deficiency by regulating stearoyl-CoA desaturase. Oncotarget 2017; 8:52761-52774. [PMID: 28881768 PMCID: PMC5581067 DOI: 10.18632/oncotarget.17187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/12/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to play a pivotal role in proliferation and differentiation of muscles. However, the study on the roles of lncRNAs in Selenium (Se) deficiency induced muscle injury is still unclear. In this study, deep sequencing was performed to profile lncRNAs and mRNAs of the muscles from the Se deficiency (-Se group) and control (C group) chickens. The results revealed that 38 lncRNAs (23 up-regulated and 15 down-regulated) and 687 mRNAs (285 up-regulated and 402 down-regulated) were significantly dysregulated expressed, and the significantly dysregulated pathway including Phagosome, Cardiac muscle contraction, and Peroxisome Proliferator-Activated Receptor (PPAR) in -Se group. The regulatory relationship between ALDBGALG0000005049 and stearoyl-CoA desaturase (SCD), which involved in PPAR pathway was verified. The results also showed that the decreased expressions of SCD, PPARα, PPARβ and PPARγ, and the increased expressions of interleukin (IL)-1β, IL-6, IL-8, and chemokine (C-C motif) ligand 4 (CCL4) along with silencing of ALDBGALG0000005049 in chicken myoblasts. Moreover, increased expressions of IL-1β, IL-6, IL-8, and CCL4 and inflammatory cell infiltration in microstructure of chicken muscles treated with Se deficiency were observed. This study displayed an overview of aberrantly expressed lncRNAs and mRNAs profiles and PPAR pathway, and revealed that downregulation of ALDBGALG0000005049 caused inflammation by regulating SCD in chicken muscle resulted from Se deficiency.
Collapse
Affiliation(s)
- Ruifeng Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Changyu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jinxin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
25
|
Yang X, Gao W, Liu H, Li J, Chen D, Yuan F, Zhang Z, Wang H. MicroRNA transcriptome analysis in chicken kidneys in response to differing virulent infectious bronchitis virus infections. Arch Virol 2017; 162:3397-3405. [PMID: 28779232 DOI: 10.1007/s00705-017-3502-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Infectious bronchitis virus (IBV) can cause a highly contagious and acute respiratory disease in poultry. MicroRNAs (miRNAs) have emerged as a class of crucial regulators for gene expression and are involved in the regulation of virus defence and immunological processes. To understand miRNA regulation in chickens in response to IBV infection, high-throughput sequencing was performed to compare the small RNA libraries from the kidneys of chicken infected with SCK2, SCDY2 and LDT3-A. By comparing these data to healthy chickens, a total of 58 differentially expressed (DE) miRNAs were identified. The DE miRNAs were further classified into five miRNA expression patterns (up or down regulation compared to control). Using Gene Ontology (GO) enrichment prediction, the DE miRNAs were shown to be mostly associated with metabolic processes, catalytic activities, gene expression, binding activities and immune responses. Seven highly expressed miRNAs (gga-miR-30d, gga-miR-1454, gga-miR-7b, gga-miR-215-5p, gga-miR-1a-3p, gga-miR-3538 and gga-miR-2954) were selected for miRNA-mRNA conjoint analysis. Furthermore, the miRNAs inversely correlated with the corresponding target gene mRNAs. These seven miRNAs were considered to play an important role in IBV-host interactions and the differing virulence of IBV strains. This is the first demonstration that infection with different virulent IBVs elicits different expression of miRNAs in chicken kidneys; this expression also seems to be associated with the virulence of IBV. These results are significant for the study of immune responses to infection with different virulent IBVs mediated by miRNAs as well as the interaction between the chicken host and IBV.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Wenqian Gao
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Hui Liu
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Jianan Li
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Danyu Chen
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Feng Yuan
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Zhikun Zhang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Hongning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China.
| |
Collapse
|