1
|
Fiore D, Cappelli LV, Zhaoqi L, Kotlov N, Sorokina M, Phillip J, Zumbo P, Yoffe L, Ghione P, Wang A, Han X, Taylor A, Chiu W, Fragliasso V, Tabbo F, Zamponi N, Di Siervi N, Kayembe C, Medico G, Patel RP, Gaudiano M, Machiorlatti R, Astone G, Cacciapuoti MT, Zanetti G, Pignataro C, Eric RA, Patel S, Zammarchi F, Zanettini C, Queiroz L, Nikitina A, Kudryashova O, Karelin A, Nikitin D, Tychinin D, Postovalova E, Bagaev A, Svekolkin V, Belova E, Tikhonova K, Degryse S, Xu C, Novero D, Ponzoni M, Tiacci E, Falini B, Song J, Khodos I, De Stanchina E, Macari G, Cafforio L, Gardini S, Piva R, Medico E, Ng SY, Moskowitz A, Epstein Z, Intlekofer A, Ahmed D, Chan WC, Martin P, Ruan J, Bertoni F, Foà R, Brody JD, Weinstock DM, Osan J, Santambrogio L, Elemento O, Betel D, Tam W, Ruella M, Cerchietti L, Rabadan R, Horwitz S, Inghirami G. A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related therapeutic vulnerabilities. Cell Rep Med 2025; 6:102029. [PMID: 40147445 PMCID: PMC12047492 DOI: 10.1016/j.xcrm.2025.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/24/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Peripheral T cell lymphomas (PTCLs) comprise heterogeneous malignancies with limited therapeutic options. To uncover targetable vulnerabilities, we generate a collection of PTCL patient-derived tumor xenografts (PDXs) retaining histomorphology and molecular donor-tumor features over serial xenografting. PDX demonstrates remarkable heterogeneity, complex intratumor architecture, and stepwise trajectories mimicking primary evolutions. Combining functional transcriptional stratification and multiparametric imaging, we identify four distinct PTCL microenvironment subtypes with prognostic value. Mechanistically, we discover a subset of PTCLs expressing Epstein-Barr virus-specific T cell receptors and uncover the capacity of cancer-associated fibroblasts of counteracting treatments. PDXs' pre-clinical testing captures individual vulnerabilities, mirrors donor patients' clinical responses, and defines effective patient-tailored treatments. Ultimately, we assess the efficacy of CD5KO- and CD30- Chimeric Antigen Receptor T Cells (CD5KO-CART and CD30_CART, respectively), demonstrating their therapeutic potential and the synergistic role of immune checkpoint inhibitors for PTCL treatment. This repository represents a resource for discovering and validating intrinsic and extrinsic factors and improving the selection of drugs/combinations and immune-based therapies.
Collapse
Affiliation(s)
- Danilo Fiore
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute for Experimental Endocrinology and Oncology, "G.Salvatore" IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Luca Vincenzo Cappelli
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Liu Zhaoqi
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Jude Phillip
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Chemical and Biomolecular Engineering, Oncology, Sidney Kimmel Comprehensive Cancer Center, Core Member, Institute for Nanobiotechnology (INBT), Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Liron Yoffe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paola Ghione
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Xueshuai Han
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Abigail Taylor
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - William Chiu
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valentina Fragliasso
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Laboratory of translational research, Azienda USL - IRCCS di Reggio Emilia, 42122 Reggio Emila, Italy
| | - Fabrizio Tabbo
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; SC Oncologia ASL CN2 Alba Bra Ospedale Michele e Pietro Ferrero, 12060 Verduno, (CN), Italy
| | - Nahuel Zamponi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Nicolás Di Siervi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Clarisse Kayembe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giovanni Medico
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcello Gaudiano
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rodolfo Machiorlatti
- Department of Pathology, Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Giuseppina Astone
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maria Teresa Cacciapuoti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgia Zanetti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Ruiz Arvin Eric
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sanjay Patel
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Claudio Zanettini
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucio Queiroz
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Chengqi Xu
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Domenico Novero
- Division of Pathological Anatomy, Quality and Safety of Diagnosis and Treatment, Città della Salute e della Scienza, 10126 Turin, Italy
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Enrico Tiacci
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Brunangelo Falini
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Joo Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | | | | | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; National Cancer Institute, Bethesda, MD 20892, USA
| | - Allison Moskowitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Epstein
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Intlekofer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dogan Ahmed
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Peter Martin
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Jia Ruan
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Francesco Bertoni
- Lymphoma Genomics, Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, EOC,6500 Bellinzona, Switzerland
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, US; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jaspreet Osan
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Oliver Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Wayne Tam
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematopathology, Northwell Health, New York, NY 11740, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Steven Horwitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Blomain ES, Soudi S, Wang Z, Somani A, Subramanian A, Nouth SCL, Oladipo E, New C, Kenney DE, Nemat-Gorgani N, Kindler T, Avedian RS, Steffner RJ, Mohler DG, Hiniker SM, Chin AL, Kalbasi A, Binkley MS, Fried M, Gaida MM, van de Rijn M, Moding EJ. Evolutionary Pressures Shape Undifferentiated Pleomorphic Sarcoma Development and Radiotherapy Response. Cancer Res 2025; 85:1162-1174. [PMID: 39808162 DOI: 10.1158/0008-5472.can-24-3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/19/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Radiotherapy is an integral component in the treatment of many types of cancer, with approximately half of patients with cancer receiving radiotherapy. Systemic therapy applies pressure that can select for resistant tumor subpopulations, underscoring the importance of understanding how radiation impacts tumor evolution to improve treatment outcomes. We integrated temporal genomic profiling of 120 spatially distinct tumor regions from 20 patients with undifferentiated pleomorphic sarcomas (UPS), longitudinal circulating tumor DNA analysis, and evolutionary biology computational pipelines to study UPS evolution during tumorigenesis and in response to radiotherapy. Most unirradiated UPSs displayed initial linear evolution, followed by subsequent branching evolution with distinct mutational processes during early and late development. Metrics of genetic divergence between regions provided evidence of strong selection pressures during UPS development that further increased during radiotherapy. Subclone abundance changed after radiotherapy with subclone contraction tied to alterations in calcium signaling, and inhibiting calcium transporters radiosensitized sarcoma cells. Finally, circulating tumor DNA analysis accurately measured subclone abundance and enabled noninvasive monitoring of subclonal changes. These results demonstrate that radiation exerts selective pressures on UPSs and suggest that targeting radioresistant subclonal populations could improve outcomes after radiotherapy. Significance: Radiotherapy mediates tumor evolution by leading to the expansion of resistant subclonal cancer cell populations, indicating that developing approaches to target resistant subclones will be crucial to improve radiotherapy response.
Collapse
Affiliation(s)
- Erik S Blomain
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shaghayegh Soudi
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Ziwei Wang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Anish Somani
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Serey C L Nouth
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Eniola Oladipo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Christin New
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Deborah E Kenney
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Neda Nemat-Gorgani
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Thomas Kindler
- Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- TRON, Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Raffi S Avedian
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Robert J Steffner
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - David G Mohler
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Alexander L Chin
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Marius Fried
- Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias M Gaida
- TRON, Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Pathology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matt van de Rijn
- Department of Pathology, Stanford University, Stanford, California
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, California
- Stanford Cancer Institute, Stanford University, Stanford, California
| |
Collapse
|
3
|
Lavikka K, Maarala AI, Oikkonen J, Hautaniemi S. Jellyfish: integrative visualization of spatio-temporal tumor evolution and clonal dynamics. Bioinformatics 2025; 41:btaf091. [PMID: 39999015 PMCID: PMC11897425 DOI: 10.1093/bioinformatics/btaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025] Open
Abstract
SUMMARY Spatial and temporal intra-tumor heterogeneity drives tumor evolution and therapy resistance. Existing visualization tools often fail to capture both dimensions simultaneously. To address this, we developed Jellyfish, a tool that integrates phylogenetic and sample trees into a single plot, providing a holistic view of tumor evolution and capturing both spatial and temporal evolution. Available as a JavaScript library and R package, Jellyfish generates interactive visualizations from tumor phylogeny and clonal composition data. We demonstrate its ability to visualize complex subclonal dynamics using data from ovarian high-grade serous carcinoma. AVAILABILITY AND IMPLEMENTATION Jellyfish is freely available with MIT license at https://github.com/HautaniemiLab/jellyfish (JavaScript library) and https://github.com/HautaniemiLab/jellyfisher (R package).
Collapse
Affiliation(s)
- Kari Lavikka
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Altti Ilari Maarala
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
4
|
Sammut R, Fenwarth L, Pelissier A, Marceau A, Duployez N, Benachour S, Dadone B, Cluzeau T, Loschi M. Clonal Evolution of Myeloid Malignancies Treated With Microtransplantation: A Single-Centre Experience. J Cell Mol Med 2025; 29:e70520. [PMID: 40126789 PMCID: PMC11932058 DOI: 10.1111/jcmm.70520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Microtransplantation is a cellular therapy used in acute myeloid leukaemia and myelodysplastic syndromes as a maintenance therapy in patients ineligible for a regular allogeneic stem cell transplantation. We performed a monocentric retrospective study of acute myeloid leukaemia, myelodysplastic syndromes, and chronic myelomonocytic leukaemia patients who underwent microtransplantations at Nice University Hospital. We analysed the evolution of the disease mutational status after microtransplantation. We report 18 patients who underwent microtransplantation courses, with a total of 47 microtransplantations performed between February 2020 and June 2022. We observed long-term remissions even in high-risk patients. Founder mutations persisted throughout the follow-up, whereas it was more variable for other nonfounder mutations, with most of the nonfounder mutations variant allele frequency decreasing over time. Safety data were reassuring; no graft versus host disease was recorded, and cytokine release syndromes were manageable. Relapses or progressions were associated with the emergence or increase of a TP53 mutated clone. Microtransplantation is a promising therapy for patients ineligible for regular allogeneic stem transplantation. Further larger and randomised studies are required to establish its place as a maintenance therapy in myeloid malignancies.
Collapse
MESH Headings
- Humans
- Male
- Clonal Evolution/genetics
- Female
- Middle Aged
- Aged
- Mutation
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Retrospective Studies
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Adult
- Hematopoietic Stem Cell Transplantation/methods
- Tumor Suppressor Protein p53/genetics
- Transplantation, Homologous
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/pathology
Collapse
Affiliation(s)
- R. Sammut
- Département d'HématologieCentre Hospitalier Universitaire de NiceNiceFrance
| | - L. Fenwarth
- Laboratoire d'HématologieCentre Hospitalier Universitaire de LilleFrance
| | - A. Pelissier
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | - A. Marceau
- Laboratoire d'HématologieCentre Hospitalier Universitaire de LilleFrance
| | - N. Duployez
- Laboratoire d'HématologieCentre Hospitalier Universitaire de LilleFrance
| | - S. Benachour
- Département d'HématologieCentre Hospitalier Universitaire de NiceNiceFrance
| | - B. Dadone
- Laboratoire Central d'anatomie et de Cytologie PathologiqueCentre Hospitalier Universitaire de NiceNiceFrance
| | - T. Cluzeau
- Département d'HématologieCentre Hospitalier Universitaire de NiceNiceFrance
- INSERM U1065, Centre de Médecine Moléculaire MéditerranéenUniversité Nice Cote d'AzurNiceFrance
- Université Cote d'AzurNiceFrance
| | - M. Loschi
- Département d'HématologieCentre Hospitalier Universitaire de NiceNiceFrance
- INSERM U1065, Centre de Médecine Moléculaire MéditerranéenUniversité Nice Cote d'AzurNiceFrance
- Université Cote d'AzurNiceFrance
| |
Collapse
|
5
|
Rǎdulescu A, Longbotham A, Collier A. Effects of local mutations in quadratic iterations. CHAOS (WOODBURY, N.Y.) 2025; 35:013144. [PMID: 39820462 DOI: 10.1063/5.0233478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
We introduce mutations in the process of discrete iterations of complex quadratic maps in the family fc(z)=z2+c. More specifically, we consider a "correct" function fc1 acting on the complex plane. A "mutation" fc0 is a different ("erroneous") map acting on a locus of given radius r around a mutation focal point ξ∗. The effect of the mutation is interpolated radially to eventually recover the original map fc1 when reaching an outer radius R. We call the resulting map a "mutated" map. In the theoretical framework of mutated iterations, we study how a mutation affects the temporal evolution of the system and the asymptotic behavior of its orbits. We use the prisoner set of the system to quantify simultaneously the long-term behavior of the entire space under mutated maps. We analyze how the position, timing, and size of the mutation can alter the system's long-term evolution (as encoded in the topology of its prisoner set). The framework is then discussed as a metaphoric model for studying the impact of copying errors in natural replication systems.
Collapse
Affiliation(s)
- Anca Rǎdulescu
- Department of Mathematics, SUNY New Paltz, New Paltz, New York 12561, USA
| | | | - Ashelee Collier
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
6
|
Weng Z, Mai Z, Yuan J, Liu Q, Deng F, Yang H, Ling Y, Xie X, Lin X, Lin T, Chen J, Wei X, Luo K, Fu J, Wen J. Evolution of genome and immunogenome in esophageal squamous cell carcinomas driven by neoadjuvant chemoradiotherapy. Int J Cancer 2024; 155:2021-2035. [PMID: 39081132 DOI: 10.1002/ijc.35118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery is a standard treatment for locally advanced esophageal squamous cell carcinomas (ESCCs). However, the evolution of genome and immunogenome in ESCCs driven by NCRT remains incompletely elucidated. We performed whole-exome sequencing of 51 ESCC tumors collected before and after NCRT, 36 of which were subjected to transcriptome sequencing. Clonal analysis identified clonal extinction in 13 ESCC patients wherein all pre-NCRT clones disappeared after NCRT, and clonal persistence in 9 patients wherein clones endured following NCRT. The clone-persistent patients showed higher pre-NCRT genomic intratumoral heterogeneity and worse prognosis than the clone-extinct ones. In contrast to the clone-extinct patients, the clone-persistent patients demonstrated a high proportion of subclonal neoantigens within pre-treatment specimens. Transcriptome analysis revealed increased immune infiltrations and up-regulated immune-related pathways after NCRT, especially in the clone-extinct patients. The number of T cell receptor-neoantigen interactions was higher in the clone-extinct patients than in the clone-persistent ones. The decrease in T cell repertoire evenness positively correlated to the decreased number of clonal neoantigens after NCRT, especially in the clone-extinct patients. In conclusion, we identified two prognosis-related clonal dynamic modes driven by NCRT in ESCCs. This study extended our knowledge of the ESCC genome and immunogenome evolutions driven by NCRT.
Collapse
Affiliation(s)
- Zelin Weng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zihang Mai
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianye Yuan
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Qianwen Liu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangqi Deng
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuying Xie
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaodan Lin
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Lin
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiyang Chen
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoli Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kongjia Luo
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Kreten F, Büttner R, Peifer M, Harder C, Hillmer AM, Abedpour N, Bovier A, Tolkach Y. Tumor architecture and emergence of strong genetic alterations are bottlenecks for clonal evolution in primary prostate cancer. Cell Syst 2024; 15:1061-1074.e7. [PMID: 39541986 DOI: 10.1016/j.cels.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Prostate cancer (PCA) exhibits high levels of intratumoral heterogeneity. In this study, we developed a mathematical model to study the growth and genetic evolution of PCA. We explored the possible evolutionary patterns and demonstrated that tumor architecture represents a major bottleneck for divergent clonal evolution. Early consecutive acquisition of strong genetic alterations serves as a proxy for the formation of aggressive tumors. A limited number of clonal hierarchy patterns were identified. A biopsy study of synthetic tumors shows complex spatial intermixing of clones and delineates the importance of biopsy extent. Deep whole-exome multiregional next-generation DNA sequencing of the primary tumors from five patients was performed to validate the results, supporting our main findings from mathematical modeling. In conclusion, our model provides qualitatively realistic predictions of PCA genomic evolution, closely aligned with the evidence available from patient samples. We share the code of the model for further studies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Florian Kreten
- Institute for Applied Mathematics, University of Bonn, Bonn 53115, Germany; Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany.
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Martin Peifer
- University of Cologne, Medical Faculty, Cologne 50937, Germany
| | - Christian Harder
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Axel M Hillmer
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Nima Abedpour
- University of Cologne, Medical Faculty, Cologne 50937, Germany
| | - Anton Bovier
- Institute for Applied Mathematics, University of Bonn, Bonn 53115, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Cologne, Cologne 50937, Germany.
| |
Collapse
|
8
|
Karlsson J, Yasui H, Mañas A, Andersson N, Hansson K, Aaltonen K, Jansson C, Durand G, Ravi N, Ferro M, Yang M, Chattopadhyay S, Paulsson K, Spierings D, Foijer F, Valind A, Bexell D, Gisselsson D. Early evolutionary branching across spatial domains predisposes to clonal replacement under chemotherapy in neuroblastoma. Nat Commun 2024; 15:8992. [PMID: 39419962 PMCID: PMC11486966 DOI: 10.1038/s41467-024-53334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the most lethal childhood cancers due to its propensity to become treatment resistant. By spatial mapping of subclone geographies before and after chemotherapy across 89 tumor regions from 12 NBs, we find that densely packed territories of closely related subclones present at diagnosis are replaced under effective treatment by islands of distantly related survivor subclones, originating from a different most recent ancestor compared to lineages dominating before treatment. Conversely, in tumors that progressed under treatment, ancestors of subclones dominating later in disease are present already at diagnosis. Chemotherapy treated xenografts and cell culture models replicate these two contrasting scenarios and show branching evolution to be a constant feature of proliferating NB cells. Phylogenies based on whole genome sequencing of 505 individual NB cells indicate that a rich repertoire of parallel subclones emerges already with the first oncogenic mutations and lays the foundation for clonal replacement under treatment.
Collapse
Affiliation(s)
- Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hiroaki Yasui
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Natalie Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Hansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Caroline Jansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Geoffroy Durand
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Naveen Ravi
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Michele Ferro
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Minjun Yang
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Subhayan Chattopadhyay
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Diana Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anders Valind
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Pathology, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
9
|
Kurucova T, Reblova K, Janovska P, Porc JP, Navrkalova V, Pavlova S, Malcikova J, Plevova K, Tichy B, Doubek M, Bryja V, Kotaskova J, Pospisilova S. Unveiling the dynamics and molecular landscape of a rare chronic lymphocytic leukemia subpopulation driving refractoriness: insights from single-cell RNA sequencing. Mol Oncol 2024; 18:2541-2553. [PMID: 38770541 PMCID: PMC11459043 DOI: 10.1002/1878-0261.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.
Collapse
Affiliation(s)
- Terezia Kurucova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kamila Reblova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Pavlina Janovska
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jakub Pawel Porc
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Veronika Navrkalova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pavlova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Karla Plevova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Boris Tichy
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Michael Doubek
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jana Kotaskova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Center of Molecular MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
- Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| |
Collapse
|
10
|
Tau S, Chamberlin MD, Yang H, Marotti JD, Roberts AM, Carmichael MM, Cressey L, Dragnev C, Demidenko E, Hampsch RA, Soucy SM, Kolling F, Samkoe KS, Alvarez JV, Kettenbach AN, Miller TW. Endocrine persistence in ER+ breast cancer is accompanied by metabolic vulnerability in oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615177. [PMID: 39386444 PMCID: PMC11463551 DOI: 10.1101/2024.09.26.615177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease. Using CRISPR-Cas9 genome-wide knockout screening in ER+ breast cancer cells, we identified a survival mechanism involving metabolic reprogramming with reliance upon mitochondrial respiration in endocrine-tolerant persister cells. Quantitative proteomic profiling showed reduced levels of glycolytic proteins in persisters. Metabolic tracing of glucose revealed an energy-depleted state in persisters where oxidative phosphorylation was required to generate ATP. A phase II clinical trial was conducted to evaluate changes in mitochondrial markers in primary ER+/HER2-breast tumors induced by neoadjuvant endocrine therapy ( NCT04568616 ). In an analysis of tumor specimens from 32 patients, tumors exhibiting residual cell proliferation after aromatase inhibitor-induced estrogen deprivation with letrozole showed increased mitochondrial content. Genetic profiling and barcode lineage tracing showed that endocrine-tolerant persistence occurred stochastically without genetic predisposition. Mice bearing cell line- and patient-derived xenografts were used to measure the anti-tumor effects of mitochondrial complex I inhibition in the context of endocrine therapy. Pharmacological inhibition of complex I suppressed the tumor-forming potential of persisters and synergized with the anti-estrogen fulvestrant to induce regression of patient-derived xenografts. These findings indicate that mitochondrial metabolism is essential in endocrine-tolerant persister ER+ breast cancer cells and warrant the development of treatment strategies to leverage this vulnerability in the context of endocrine-sensitive disease. Statement of Significance Endocrine-tolerant persister cancer cells that survive endocrine therapy can cause recurrent disease. Persister cells exhibit increased energetic dependence upon mitochondria for survival and tumor re-growth potential.
Collapse
|
11
|
Kutz O, Drukewitz S, Krüger A, Aust D, William D, Oster S, Schröck E, Baretton G, Link T, Wimberger P, Kuhlmann JD. Exploring evolutionary trajectories in ovarian cancer patients by longitudinal analysis of ctDNA. Clin Chem Lab Med 2024; 62:2070-2081. [PMID: 38577791 DOI: 10.1515/cclm-2023-1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES We analysed whether temporal heterogeneity of ctDNA encodes evolutionary patterns in ovarian cancer. METHODS Targeted sequencing of 275 cancer-associated genes was performed in a primary tumor biopsy and in ctDNA of six longitudinal plasma samples from 15 patients, using the Illumina platform. RESULTS While there was low overall concordance between the mutational spectrum of the primary tumor biopsies vs. ctDNA, TP53 variants were the most commonly shared somatic alterations. Up to three variant clusters were detected in each tumor biopsy, likely representing predominant clones of the primary tumor, most of them harbouring a TP53 variant. By tracing these clusters in ctDNA, we propose that liquid biopsy may allow to assess the contribution of ancestral clones of the tumor to relapsed abdominal masses, revealing two evolutionary patterns. In pattern#1, clusters detected in the primary tumor biopsy were likely relapse seeding clones, as they contributed a major share to ctDNA at relapse. In pattern#2, similar clusters were present in tumors and ctDNA; however, they were entirely cleared from liquid biopsy after chemotherapy and were undetectable at relapse. ctDNA private variants were present among both patterns, with some of them mirroring subclonal expansions after chemotherapy. CONCLUSIONS We demonstrate that tracing the temporal heterogeneity of ctDNA, even below exome scale resolution, deciphers evolutionary trajectories in ovarian cancer. Furthermore, we describe two evolutionary patterns that may help to identify relapse seeding clones for targeted therapy.
Collapse
Affiliation(s)
- Oliver Kutz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
| | - Stephan Drukewitz
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
| | - Alexander Krüger
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
| | - Daniela Aust
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- Institute for Pathology, 9169 University Hospital Carl Gustav Carus at the TU Dresden , Dresden, Germany
- 9169 Tumor- and Normal Tissue Bank of the NCT/UCC Dresden , Dresden, Germany
| | - Doreen William
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Sandra Oster
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Evelin Schröck
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Gustavo Baretton
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- Institute for Pathology, 9169 University Hospital Carl Gustav Carus at the TU Dresden , Dresden, Germany
- 9169 Tumor- and Normal Tissue Bank of the NCT/UCC Dresden , Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| |
Collapse
|
12
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey ALW, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A Pan-Cancer Gene Panel for Childhood Malignancies to Enhance Cancer Monitoring and Early Detection. Clin Cancer Res 2024; 30:4100-4114. [PMID: 39047169 PMCID: PMC11393547 DOI: 10.1158/1078-0432.ccr-24-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The purpose of the study was to design a pan-cancer gene panel for childhood malignancies and validate it using clinically characterized patient samples. EXPERIMENTAL DESIGN In addition to 5,275 coding exons, SJPedPanel also covers 297 introns for fusions/structural variations and 7,590 polymorphic sites for copy-number alterations. Capture uniformity and limit of detection are determined by targeted sequencing of cell lines using dilution experiment. We validate its coverage by in silico analysis of an established real-time clinical genomics (RTCG) cohort of 253 patients. We further validate its performance by targeted resequencing of 113 patient samples from the RTCG cohort. We demonstrate its power in analyzing low tumor burden specimens using morphologic remission and monitoring samples. RESULTS Among the 485 pathogenic variants reported in RTCG cohort, SJPedPanel covered 86% of variants, including 82% of 90 rearrangements responsible for fusion oncoproteins. In our targeted resequencing cohort, 91% of 389 pathogenic variants are detected. The gene panel enabled us to detect ∼95% of variants at allele fraction (AF) 0.5%, whereas the detection rate is ∼80% at AF 0.2%. The panel detected low-frequency driver alterations from morphologic leukemia remission samples and relapse-enriched alterations from monitoring samples, demonstrating its power for cancer monitoring and early detection. CONCLUSIONS SJPedPanel enables the cost-effective detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions by targeted sequencing of ∼0.15% of human genome for childhood malignancies. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
Affiliation(s)
- Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vidya Balagopal
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna L W Huskey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhikai Liang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joy Nakitandwe
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maria Namwanje
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Saradhi Mallampati
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
13
|
Yao G, Zhu Y, Liu C, Man Y, Liu K, Zhang Q, Tan Y, Duan Q, Chen D, Du Z, Fan Y. Comparative analysis of the mutational landscape and evolutionary patterns of pancreatic ductal adenocarcinoma metastases in the liver or peritoneum. Heliyon 2024; 10:e35428. [PMID: 39170579 PMCID: PMC11336646 DOI: 10.1016/j.heliyon.2024.e35428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) often presents with liver or peritoneal metastases at diagnosis. Despite similar treatment approaches, patient outcomes vary between these metastatic sites. To improve targeted therapies for metastatic PDAC, a comprehensive analysis of the genetic profiles and evolutionary patterns at these distinct metastatic locations is essential. Methods We performed whole exome sequencing on 44 tissue samples from 27 PDAC patients, including primary tumours and matched liver or peritoneal metastases. We analysed somatic mutation profiles, signatures, and affected pathways for each group, and examined clonal evolution using subclonal architectures and phylogenetic trees. Results KRAS mutations remained the predominant driver alteration, with a prevalence of 89 % across all tumours. Notably, we observed site-specific differences in mutation frequencies, with KRAS alterations detected in 77.8 % (7/9) of peritoneal metastases and 87.5 % (7/8) of liver metastases. TP53 mutations exhibited a similar pattern, occurring in 55.6 % (5/9) of peritoneal and 37.5 % (3/8) of liver metastases. Intriguingly, we identified site-specific alterations in DNA repair pathway genes, including ATM and BRCA1, with distinct mutational profiles in liver versus peritoneal metastases. Furthermore, liver metastases demonstrated a significantly higher tumor mutational burden (TMB) compared to peritoneal metastases (median [IQR]: 2.14 [1.77-2.71] vs. 1.29 [1.21-1.69] mutations/Mb; P = 0.048). Conclusions In conclusion, metastasis of pancreatic cancer may be influenced by variables other than KRAS mutations, such as TP53. PDAC peritoneal and liver metastases may differ in potential therapeutic biomarkers. Further inquiry is needed on the biological mechanisms underlying metastasis and the treatment of diverse metastases.
Collapse
Affiliation(s)
- Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanfeng Zhu
- Department of Nursing, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shangha, China
| | - Chunhui Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanwen Man
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Kefeng Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Qin Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Yuan Tan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Qianqian Duan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shanghai, China
| | - Yonggang Fan
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| |
Collapse
|
14
|
Foltz SM, Li Y, Yao L, Terekhanova NV, Weerasinghe A, Gao Q, Dong G, Schindler M, Cao S, Sun H, Jayasinghe RG, Fulton RS, Fronick CC, King J, Kohnen DR, Fiala MA, Chen K, DiPersio JF, Vij R, Ding L. Somatic mutation phasing and haplotype extension using linked-reads in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607342. [PMID: 39149342 PMCID: PMC11326269 DOI: 10.1101/2024.08.09.607342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Somatic mutation phasing informs our understanding of cancer-related events, like driver mutations. We generated linked-read whole genome sequencing data for 23 samples across disease stages from 14 multiple myeloma (MM) patients and systematically assigned somatic mutations to haplotypes using linked-reads. Here, we report the reconstructed cancer haplotypes and phase blocks from several MM samples and show how phase block length can be extended by integrating samples from the same individual. We also uncover phasing information in genes frequently mutated in MM, including DIS3, HIST1H1E, KRAS, NRAS, and TP53, phasing 79.4% of 20,705 high-confidence somatic mutations. In some cases, this enabled us to interpret clonal evolution models at higher resolution using pairs of phased somatic mutations. For example, our analysis of one patient suggested that two NRAS hotspot mutations occurred on the same haplotype but were independent events in different subclones. Given sufficient tumor purity and data quality, our framework illustrates how haplotype-aware analysis of somatic mutations in cancer can be beneficial for some cancer cases.
Collapse
Affiliation(s)
- Steven M. Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nadezhda V. Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Amila Weerasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Qingsong Gao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Guanlan Dong
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Moses Schindler
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G. Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Catrina C. Fronick
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Justin King
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Daniel R. Kohnen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mark A. Fiala
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John F. DiPersio
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Ravi Vij
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
15
|
Bobin C, Iddir Y, Butterworth C, Masliah-Planchon J, Saint-Charles A, Bellini A, Bhalshankar J, Pierron G, Combaret V, Attignon V, André N, Corradini N, Dumont B, Mansuy L, Khanfar C, Klein S, Briandet C, Plantaz D, Millot F, Thouvenin S, Aerts I, Ndounga-Diakou LA, Laghouati S, Abbou S, Jehanno N, Tissot H, Renault S, Baulande S, Raynal V, Bozec L, Bieche I, Delattre O, Berlanga P, Schleiermacher G. Sequential Analysis of cfDNA Reveals Clonal Evolution in Patients with Neuroblastoma Receiving ALK-Targeted Therapy. Clin Cancer Res 2024; 30:3316-3328. [PMID: 38787533 PMCID: PMC11292203 DOI: 10.1158/1078-0432.ccr-24-0753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.
Collapse
Affiliation(s)
- Charles Bobin
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Yasmine Iddir
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Charlotte Butterworth
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Alexandra Saint-Charles
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Angela Bellini
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Jaydutt Bhalshankar
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
| | | | - Valérie Combaret
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Valéry Attignon
- Laboratoire de Recherche Translationnelle, Centre Léon-Bérard, Lyon, France.
| | - Nicolas André
- Marseille-La Timone University Hospital, Oncologie Pédiatrique, Marseille, France.
- CRCM INSERM U1068 REMAP4KIDS, Aix Marseille University, Marseille, France.
| | - Nadège Corradini
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Benoit Dumont
- Department of Pediatric Oncology, Institute for Paediatric Haematology and Oncology, Léon Bérard Center, Lyon, France.
| | - Ludovic Mansuy
- Service d’oncologie Pédiatrique du CHRU de Nancy, Hôpital d’enfants, Vandoeuvre, France.
| | - Camille Khanfar
- Department of Pediatric Oncology, CHU Amiens Picardie, Amiens, France.
| | - Sebastien Klein
- Pediatric Oncology and Hematology, CHU Jean-Minjoz, Besançon, France.
| | | | - Dominique Plantaz
- Department of Pediatric Onco-Immuno-Hematology, Grenoble Alpes University Hospital, Grenoble, France.
| | - Frederic Millot
- Department of Paediatric Haematology and Oncology, Centre Hospitalo-Universitaire de Poitiers, Poitiers, France.
| | - Sandrine Thouvenin
- Department of Pediatric Hematology-Oncology, University Hospital St Etienne, St Etienne, France.
| | - Isabelle Aerts
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| | - Lee Aymar Ndounga-Diakou
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Salim Laghouati
- Pharmacovigilance Unit, Clinical Research Direction, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Hubert Tissot
- Department of Nuclear Medicine, Institut Curie, Paris, France.
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, Inserm CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France.
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France.
| | - Laurence Bozec
- Department of Medical Oncology, Institut Curie, Saint-Cloud, France.
| | - Ivan Bieche
- Pharmacogenomics Unit, Institut Curie, Paris, France.
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- Somatic Genetics Unit, Institut Curie, Paris, France.
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pédiatrique), Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France.
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France.
- SIREDO Integrated Pediatric Oncology Center, Institut Curie, Paris, France.
| |
Collapse
|
16
|
Brosda S, Aoude LG, Bonazzi VF, Patel K, Lonie JM, Belle CJ, Newell F, Koufariotis LT, Addala V, Naeini MM, Pearson JV, Krause L, Waddell N, Barbour AP. Spatial intra-tumour heterogeneity and treatment-induced genomic evolution in oesophageal adenocarcinoma: implications for prognosis and therapy. Genome Med 2024; 16:90. [PMID: 39020404 PMCID: PMC11253399 DOI: 10.1186/s13073-024-01362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Oesophageal adenocarcinoma (OAC) is a highly heterogeneous cancer with poor survival. Standard curative treatment is chemotherapy with or without radiotherapy followed by oesophagectomy. Genomic heterogeneity is a feature of OAC and has been linked to treatment resistance. METHODS Whole-genome sequencing data from 59 treatment-naïve and 18 post-treatment samples from 29 OAC patients was analysed. Twenty-seven of these were enrolled in the DOCTOR trial, sponsored by the Australasian Gastro-Intestinal Trials Group. Two biopsies from each treatment-naïve tumour were assessed to define 'shared' (between both samples) and 'private' (present in one sample) mutations. RESULTS Mutational signatures SBS2/13 (APOBEC) and SBS3 (BRCA) were almost exclusively detected in private mutation populations of treatment-naïve tumours. Patients presenting these signatures had significantly worse disease specific survival. Furthermore, mutational signatures associated with platinum-based chemotherapy treatment as well as high platinum enrichment scores were only detected in post-treatment samples. Additionally, clones with high putative neoantigen binding scores were detected in some treatment-naïve samples suggesting immunoediting of clones. CONCLUSIONS This study demonstrates the high intra-tumour heterogeneity in OAC, as well as indicators for treatment-induced changes during tumour evolution. Intra-tumour heterogeneity remains a problem for successful treatment strategies in OAC.
Collapse
Affiliation(s)
- Sandra Brosda
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lauren G Aoude
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Vanessa F Bonazzi
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kalpana Patel
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James M Lonie
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Clemence J Belle
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Marjan M Naeini
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Lutz Krause
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Microba Life Sciences, Brisbane, QLD, 4000, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew P Barbour
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
17
|
Zhao Y, Short NJ, Kantarjian HM, Chang TC, Ghate PS, Qu C, Macaron W, Jain N, Thakral B, Phillips AH, Khoury J, Garcia-Manero G, Zhang W, Fan Y, Yang H, Garris RS, Nasr LF, Kriwacki RW, Roberts KG, Konopleva M, Jabbour EJ, Mullighan CG. Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL. Blood 2024; 144:61-73. [PMID: 38551807 PMCID: PMC11251222 DOI: 10.1182/blood.2024023930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
ABSTRACT Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO-treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of the response and resistance to InO. Pre- and post-InO-treated patient samples were analyzed by whole genome, exome, and/or transcriptome sequencing. Acquired CD22 mutations were observed in 11% (3/27) of post-InO-relapsed tumor samples, but not in refractory samples (0/16). There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included epitope loss (protein truncation and destabilization) and epitope alteration. Two CD22 mutant cases were post-InO hyper-mutators resulting from error-prone DNA damage repair (nonhomologous/alternative end-joining repair, or mismatch repair deficiency), suggesting that hypermutation drove escape from CD22-directed therapy. CD22-mutant relapses occurred after InO and subsequent hematopoietic stem cell transplantation (HSCT), suggesting that InO eliminated the predominant clones, leaving subclones with acquired CD22 mutations that conferred resistance to InO and subsequently expanded. Acquired loss-of-function mutations in TP53, ATM, and CDKN2A were observed, consistent with a compromise of the G1/S DNA damage checkpoint as a mechanism for evading InO-induced apoptosis. Genome-wide CRISPR/Cas9 screening of cell lines identified DNTT (terminal deoxynucleotidyl transferase) loss as a marker of InO resistance. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. Our findings highlight the importance of defining the basis of CD22 escape and eradication of residual disease before HSCT. The identified mechanisms of escape from CD22-targeted therapy extend beyond antigen loss and provide opportunities to improve therapeutic approaches and overcome resistance. These trials were registered at www.ClinicalTrials.gov as NCT01134575, NCT01371630, and NCT03441061.
Collapse
Affiliation(s)
- Yaqi Zhao
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pankaj S. Ghate
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Walid Macaron
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Beenu Thakral
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joseph Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | | | - Wenchao Zhang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hui Yang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | | | - Lewis F. Nasr
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marina Konopleva
- Department of Oncology and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
18
|
Hu A, Ojwang' AME, Olumoyin KD, Rejniak KA. LinG3D: visualizing the spatio-temporal dynamics of clonal evolution. BMC Bioinformatics 2024; 25:201. [PMID: 38802748 PMCID: PMC11131251 DOI: 10.1186/s12859-024-05813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Cancers are spatially heterogenous, thus their clonal evolution, especially following anti-cancer treatments, depends on where the mutated cells are located within the tumor tissue. For example, cells exposed to different concentrations of drugs, such as cells located near the vessels in contrast to those residing far from the vasculature, can undergo a different evolutionary path. However, classical representations of cell lineage trees do not account for this spatial component of emerging cancer clones. Here, we propose routines to trace spatial and temporal clonal evolution in computer simulations of the tumor evolution models. RESULTS The LinG3D (Lineage Graphs in 3D) is an open-source collection of routines (in MATLAB, Python, and R) that enables spatio-temporal visualization of clonal evolution in a two-dimensional tumor slice from computer simulations of the tumor evolution models. These routines draw traces of tumor clones in both time and space, and may include a projection of a selected microenvironmental factor, such as the drug or oxygen distribution within the tumor, if such a microenvironmental factor is used in the tumor evolution model. The utility of LinG3D has been demonstrated through examples of simulated tumors with different number of clones and, additionally, in experimental colony growth assay. CONCLUSIONS This routine package extends the classical lineage trees, that show cellular clone relationships in time, by adding the space component to show the locations of cellular clones within the 2D tumor tissue patch from computer simulations of tumor evolution models.
Collapse
Affiliation(s)
- Anjun Hu
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, 33612, USA
| | - Awino Maureiq E Ojwang'
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kayode D Olumoyin
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
19
|
Wang Y, Flowers CR, Wang M, Huang X, Li Z. CASi: A framework for cross-timepoint analysis of single-cell RNA sequencing data. Sci Rep 2024; 14:10633. [PMID: 38724550 PMCID: PMC11082156 DOI: 10.1038/s41598-024-58566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has been widely used to study the differences in gene expression at the single cell level, providing insights into the research of cell development, differentiation, and functional heterogeneity. Various pipelines and workflows of scRNA-seq analysis have been developed but few considered multi-timepoint data specifically. In this study, we develop CASi, a comprehensive framework for analyzing multiple timepoints' scRNA-seq data, which provides users with: (1) cross-timepoint cell annotation, (2) detection of potentially novel cell types emerged over time, (3) visualization of cell population evolution, and (4) identification of temporal differentially expressed genes (tDEGs). Through comprehensive simulation studies and applications to a real multi-timepoint single cell dataset, we demonstrate the robust and favorable performance of the proposal versus existing methods serving similar purposes.
Collapse
Affiliation(s)
- Yizhuo Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Christopher R Flowers
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Michael Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| |
Collapse
|
20
|
Köhnke T, Nuno KA, Alder CC, Gars EJ, Phan P, Fan AC, Majeti R. Human ASXL1-Mutant Hematopoiesis Is Driven by a Truncated Protein Associated with Aberrant Deubiquitination of H2AK119. Blood Cancer Discov 2024; 5:202-223. [PMID: 38359087 PMCID: PMC11061584 DOI: 10.1158/2643-3230.bcd-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.
Collapse
Affiliation(s)
- Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Kevin A. Nuno
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | | | - Eric J. Gars
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| |
Collapse
|
21
|
Streuer A, Jann JC, Boch T, Mossner M, Riabov V, Schmitt N, Altrock E, Xu Q, Demmerle M, Nowak V, Oblaender J, Palme I, Weimer N, Rapp F, Metzgeroth G, Hecht A, Höger T, Merz C, Hofmann WK, Nolte F, Nowak D. Treatment with the apoptosis inhibitor Asunercept reduces clone sizes in patients with lower risk Myelodysplastic Neoplasms. Ann Hematol 2024; 103:1221-1233. [PMID: 38413410 PMCID: PMC10940491 DOI: 10.1007/s00277-024-05664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
In low-risk Myelodysplastic Neoplasms (MDS), increased activity of apoptosis-promoting factors such as tumor necrosis factor (TNFα) and pro-apoptotic Fas ligand (CD95L) have been described as possible pathomechanisms leading to impaired erythropoiesis. Asunercept (APG101) is a novel therapeutic fusion protein blocking CD95, which has previously shown partial efficacy in reducing transfusion requirement in a clinical phase I trial for low-risk MDS patients (NCT01736436; 2012-11-26). In the current study we aimed to evaluate the effect of Asunercept therapy on the clonal bone marrow composition to identify potential biomarkers to predict response. Bone marrow samples of n = 12 low-risk MDS patients from the above referenced clinical trial were analyzed by serial deep whole exome sequencing in a total of n = 58 time points. We could distinguish a mean of 3.5 molecularly defined subclones per patient (range 2-6). We observed a molecular response defined as reductions of dominant clone sizes by a variant allele frequency (VAF) decrease of at least 10% (mean 20%, range: 10.5-39.2%) in dependency of Asunercept treatment in 9 of 12 (75%) patients. Most of this decline in clonal populations was observed after completion of 12 weeks treatment. Particularly early and pronounced reductions of clone sizes were found in subclones driven by mutations in genes involved in regulation of methylation (n = 1 DNMT3A, n = 1 IDH2, n = 1 TET2). Our results suggest that APG101 could be efficacious in reducing clone sizes of mutated hematopoietic cells in the bone marrow of Myelodysplastic Neoplasms, which warrants further investigation.
Collapse
Affiliation(s)
- Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany.
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Maximilian Mossner
- Centre for Genomics and Computational Biology, Barts Cancer Institute, London, UK
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Marie Demmerle
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Julia Oblaender
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Anna Hecht
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | | | | | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Pettenkoferstr. 22, 68169, Mannheim, Germany
| |
Collapse
|
22
|
Hu A, Ojwang' AME, Olumoyin KD, Rejniak KA. Visualizing the Spatio-Temporal Dynamics of Clonal Evolution with LinG3D software. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583631. [PMID: 38496472 PMCID: PMC10942425 DOI: 10.1101/2024.03.05.583631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cancer clonal evolution, especially following anti-cancer treatments, depends on the locations of the mutated cells within the tumor tissue. Cells near the vessels, exposed to higher concentrations of drugs, will undergo a different evolutionary path than cells residing far from the vasculature in the areas of lower drug levels. However, classical representations of cell lineage trees do not account for this spatial component of emerging cancer clones. Here, we propose the LinG3D (Lineage Graphs in 3D) algorithms to trace clonal evolution in space and time. These are an open-source collection of routines (in MATLAB, Python, and R) that enables spatio-temporal visualization of clonal evolution in a two-dimensional tumor slice from computer simulations of the tumor evolution models. These routines draw traces of tumor clones in both time and space, with an option to include a projection of a selected microenvironmental factor, such as the drug or oxygen distribution within the tumor. The utility of LinG3D has been demonstrated through examples of simulated tumors with different number of clones and, additionally, in experimental colony growth assay. This routine package extends the classical lineage trees, that show cellular clone relationships in time, by adding the space component to show the locations of cellular clones within the 2D tumor tissue patch from computer simulations of tumor evolution models.
Collapse
Affiliation(s)
- Anjun Hu
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL 33612, USA
| | - Awino Maureiq E Ojwang'
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL 33612, USA
| | - Kayode D Olumoyin
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL 33612, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL 33612, USA
| |
Collapse
|
23
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey AL, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A pan-cancer gene panel for childhood malignancies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.27.23299068. [PMID: 38076942 PMCID: PMC10705664 DOI: 10.1101/2023.11.27.23299068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background Large scale genomics projects have identified driver alterations for most childhood cancers that provide reliable biomarkers for clinical diagnosis and disease monitoring using targeted sequencing. However, there is lack of a comprehensive panel that matches the list of known driver genes. Here we fill this gap by developing SJPedPanel for childhood cancers. Results SJPedPanel covers 5,275 coding exons of 357 driver genes, 297 introns frequently involved in rearrangements that generate fusion oncoproteins, commonly amplified/deleted regions (e.g., MYCN for neuroblastoma, CDKN2A and PAX5 for B-/T-ALL, and SMARCB1 for AT/RT), and 7,590 polymorphism sites for interrogating tumors with aneuploidy, such as hyperdiploid and hypodiploid B-ALL or 17q gain neuroblastoma. We used driver alterations reported from an established real-time clinical genomics cohort (n=253) to validate this gene panel. Among the 485 pathogenic variants reported, our panel covered 417 variants (86%). For 90 rearrangements responsible for oncogenic fusions, our panel covered 74 events (82%). We re-sequenced 113 previously characterized clinical specimens at an average depth of 2,500X using SJPedPanel and recovered 354 (91%) of the 389 reported pathogenic variants. We then investigated the power of this panel in detecting mutations from specimens with low tumor purity (as low as 0.1%) using cell line-based dilution experiments and discovered that this gene panel enabled us to detect ∼80% variants with allele fraction of 0.2%, while the detection rate decreases to ∼50% when the allele fraction is 0.1%. We finally demonstrate its utility in disease monitoring on clinical specimens collected from AML patients in morphologic remission. Conclusions SJPedPanel enables the detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions for childhood cancers by targeted sequencing of ∼0.15% of human genome. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
|
24
|
Sveen A, Johannessen B, Klokkerud SM, Kraggerud SM, Meza-Zepeda LA, Bjørnslett M, Bischof K, Myklebost O, Taskén K, Skotheim RI, Dørum A, Davidson B, Lothe RA. Evolutionary mode and timing of dissemination of high-grade serous carcinomas. JCI Insight 2024; 9:e170423. [PMID: 38175731 PMCID: PMC11143962 DOI: 10.1172/jci.insight.170423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Dissemination within the peritoneal cavity is a main determinant of poor patient outcomes from high-grade serous carcinomas (HGSCs). The dissemination process is poorly understood from a cancer evolutionary perspective. We reconstructed the evolutionary trajectories across a median of 5 tumor sites and regions from each of 23 patients based on deep whole-exome sequencing. Polyclonal cancer origin was detected in 1 patient. Ovarian tumors had more complex subclonal architectures than other intraperitoneal tumors in each patient, which indicated that tumors developed earlier in the ovaries. Three common modes of dissemination were identified, including monoclonal or polyclonal dissemination of monophyletic (linear) or polyphyletic (branched) subclones. Mutation profiles of initial or disseminated clones varied greatly among cancers, but recurrent mutations were found in 7 cancer-critical genes, including TP53, BRCA1, BRCA2, and DNMT3A, and in the PI3K/AKT1 pathway. Disseminated clones developed late in the evolutionary trajectory models of most cancers, in particular in cancers with DNA damage repair deficiency. Polyclonal dissemination was predicted to occur predominantly as a single and rapid wave, but chemotherapy exposure was associated with higher genomic diversity of disseminated clones. In conclusion, we described three common evolutionary dissemination modes across HGSCs and proposed factors associated with dissemination diversity.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Solveig M.K. Klokkerud
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sigrid M. Kraggerud
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research
| | - Merete Bjørnslett
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Katharina Bischof
- Department of Gynecological Oncology, The Norwegian Radium Hospital, and
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kjetil Taskén
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Anne Dørum
- Department of Gynecological Oncology, The Norwegian Radium Hospital, and
| | - Ben Davidson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
26
|
Zhao Y, Short NJ, Kantarjian HM, Chang TC, Ghate PS, Qu C, Macaron W, Jain N, Thakral B, Phillips AH, Khoury J, Garcia-Manero G, Zhang W, Fan Y, Yang H, Garris RS, Nasr LF, Kriwacki RW, Roberts KG, Konopleva M, Jabbour EJ, Mullighan CG. Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299616. [PMID: 38106221 PMCID: PMC10723521 DOI: 10.1101/2023.12.06.23299616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of response to InO. Acquired CD22 mutations were observed in 11% (3/27) of post-InO relapsed tumor samples. There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included protein truncation, protein destabilization, and epitope alteration. Hypermutation by error-prone DNA damage repair (alternative end-joining, mismatch repair deficiency) drove CD22 escape. Acquired loss-of-function mutations in TP53 , ATM and CDKN2A were observed, suggesting compromise of the G1/S DNA damage checkpoint as a mechanism of evading InO-induced apoptosis. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. The escape strategies within and beyond antigen loss to CD22-targeted therapy elucidated in this study provide insights into improving therapeutic approaches and overcoming resistance. KEY POINTS We identified multiple mechanisms of CD22 antigen escape from inotuzumab ozogamicin, including protein truncation, protein destabilization, and epitope alteration.Hypermutation caused by error-prone DNA damage repair was a driver of CD22 mutation and escape. VISUAL ABSTRACT
Collapse
|
27
|
Djerbi N, Zimmermann K, Roncador M, Becker MO, Manz MG, Balabanov S. Intrapatient competition of VEXAS syndrome and CML clones. Blood Adv 2023; 7:6815-6818. [PMID: 37738165 PMCID: PMC10679802 DOI: 10.1182/bloodadvances.2023010814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Affiliation(s)
- Nadia Djerbi
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kathrin Zimmermann
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco Roncador
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, Eidgenössische technische Hochschule Zurich, Basel, Switzerland
| | - Mike Oliver Becker
- Department of Rheumatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stefan Balabanov
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Derrien J, Gastineau S, Frigout A, Giordano N, Cherkaoui M, Gaborit V, Boinon R, Douillard E, Devic M, Magrangeas F, Moreau P, Minvielle S, Touzeau C, Letouzé E. Acquired resistance to a GPRC5D-directed T-cell engager in multiple myeloma is mediated by genetic or epigenetic target inactivation. NATURE CANCER 2023; 4:1536-1543. [PMID: 37653140 DOI: 10.1038/s43018-023-00625-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Bispecific antibodies targeting GPRC5D demonstrated promising efficacy in multiple myeloma, but acquired resistance usually occurs within a few months. Using a single-nucleus multi-omic strategy in three patients from the MYRACLE cohort (ClinicalTrials.gov registration: NCT03807128 ), we identified two resistance mechanisms, by bi-allelic genetic inactivation of GPRC5D or by long-range epigenetic silencing of its promoter and enhancer regions. Molecular profiling of target genes may help to guide the choice of immunotherapy and early detection of resistance in multiple myeloma.
Collapse
Affiliation(s)
- Jennifer Derrien
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Sarah Gastineau
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Antoine Frigout
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Nils Giordano
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Mia Cherkaoui
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Victor Gaborit
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- University Hospital Hôtel-Dieu, Nantes, France
| | - Rémi Boinon
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Elise Douillard
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- University Hospital Hôtel-Dieu, Nantes, France
| | - Magali Devic
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- University Hospital Hôtel-Dieu, Nantes, France
| | - Florence Magrangeas
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- University Hospital Hôtel-Dieu, Nantes, France
| | - Philippe Moreau
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- Hematology Department, University Hospital Hôtel-Dieu, Nantes, France
| | - Stéphane Minvielle
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- University Hospital Hôtel-Dieu, Nantes, France
| | - Cyrille Touzeau
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- Hematology Department, University Hospital Hôtel-Dieu, Nantes, France
| | - Eric Letouzé
- Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France.
- University Hospital Hôtel-Dieu, Nantes, France.
| |
Collapse
|
29
|
Eadie LN, Rehn JA, Schutz CE, Heatley SL, Kutyna MM, Hiwase DK, White DL, Yeung DT. Case report: Rare case of donor cell-derived T-cell acute lymphoblastic leukaemia in a female patient after receiving an allo-transplant from her male sibling. Br J Haematol 2023; 203:282-287. [PMID: 37519213 PMCID: PMC10953359 DOI: 10.1111/bjh.19008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Donor-derived haematological neoplasms, in which recipients present with haematological malignancies that have evolved from transplant donor stem cells, have previously been described for myelodysplastic syndrome, myeloproliferative neoplasms, acute myeloid leukaemia and less often, leukaemias of lymphoid origin. Here we describe a rare and complex case of donor-derived T-cell acute lymphoblastic leukaemia with a relatively short disease latency of less than 4 years. Through genomic and in vitro analyses, we identified novel mutations in NOTCH1 as well as a novel activating mutation in STAT5B; the latter targetable with the clinically available drugs, venetoclax and ruxolitinib.
Collapse
Affiliation(s)
- Laura N. Eadie
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Jacqueline A. Rehn
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Caitlin E. Schutz
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Susan L. Heatley
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Monika M. Kutyna
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Devendra K. Hiwase
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of HaematologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Deborah L. White
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australasian Leukaemia & Lymphoma Group (ALLG)MelbourneVictoriaAustralia
| | - David T. Yeung
- Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of HaematologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
- Australasian Leukaemia & Lymphoma Group (ALLG)MelbourneVictoriaAustralia
| |
Collapse
|
30
|
van Eck van der Sluijs J, van Ens D, Brummelman J, Heister D, Sareen A, Truijen L, van Ingen Schenau DS, Heemskerk MHM, Griffioen M, Kester MGD, Schaap NPM, Jansen JH, van der Waart AB, Dolstra H, Hobo W. Human CD34 +-derived complete plasmacytoid and conventional dendritic cell vaccine effectively induces antigen-specific CD8 + T cell and NK cell responses in vitro and in vivo. Cell Mol Life Sci 2023; 80:298. [PMID: 37728691 PMCID: PMC10511603 DOI: 10.1007/s00018-023-04923-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) can be curative for hemato-oncology patients due to effective graft-versus-tumor immunity. However, relapse remains the major cause of treatment failure, emphasizing the need for adjuvant immunotherapies. In this regard, post-transplantation dendritic cell (DC) vaccination is a highly interesting strategy to boost graft-versus-tumor responses. Previously, we developed a clinically applicable protocol for simultaneous large-scale generation of end-stage blood DC subsets from donor-derived CD34+ stem cells, including conventional type 1 and 2 DCs (cDC1s and cDC2s), and plasmacytoid DCs (pDCs). In addition, the total cultured end-product (DC-complete vaccine), also contains non-end-stage-DCs (i.e. non-DCs). In this study, we aimed to dissect the phenotypic identity of these non-DCs and their potential immune modulatory functions on the potency of cDCs and pDCs in stimulating tumor-reactive CD8+ T and NK cell responses, in order to obtain rationale for clinical translation of our DC-complete vaccine. The non-DC compartment was heterogeneous and comprised of myeloid progenitors and (immature) granulocyte- and monocyte-like cells. Importantly, non-DCs potentiated toll-like receptor-induced DC maturation, as reflected by increased expression of co-stimulatory molecules and enhanced cDC-derived IL-12 and pDC-derived IFN-α production. Additionally, antigen-specific CD8+ T cells effectively expanded upon DC-complete vaccination in vitro and in vivo. This effect was strongly augmented by non-DCs in an antigen-independent manner. Moreover, non-DCs did not impair in vitro DC-mediated NK cell activation, degranulation nor cytotoxicity. Notably, in vivo i.p. DC-complete vaccination activated i.v. injected NK cells. Together, these data demonstrate that the non-DC compartment potentiates DC-mediated activation and expansion of antigen-specific CD8+ T cells and do not impair NK cell responses in vitro and in vivo. This underscores the rationale for further clinical translation of our CD34+-derived DC-complete vaccine in hemato-oncology patients post alloSCT.
Collapse
Affiliation(s)
- Jesper van Eck van der Sluijs
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diede van Ens
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jolanda Brummelman
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Daan Heister
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Aastha Sareen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Lisa Truijen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anniek B van der Waart
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Wollenzien H, Tecleab YA, Szczepaniak-Sloane R, Restaino A, Kareta MS. Single-Cell Evolutionary Analysis Reveals Drivers of Plasticity and Mediators of Chemoresistance in Small Cell Lung Cancer. Mol Cancer Res 2023; 21:892-907. [PMID: 37256926 PMCID: PMC10527088 DOI: 10.1158/1541-7786.mcr-22-0881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/11/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Small cell lung cancer (SCLC) is often a heterogeneous tumor, where dynamic regulation of key transcription factors can drive multiple populations of phenotypically different cells which contribute differentially to tumor dynamics. This tumor is characterized by a very low 2-year survival rate, high rates of metastasis, and rapid acquisition of chemoresistance. The heterogeneous nature of this tumor makes it difficult to study and to treat, as it is not clear how or when this heterogeneity arises. Here we describe temporal, single-cell analysis of SCLC to investigate tumor initiation and chemoresistance in both SCLC xenografts and an autochthonous SCLC model. We identify an early population of tumor cells with high expression of AP-1 network genes that are critical for tumor growth. Furthermore, we have identified and validated the cancer testis antigens (CTA) PAGE5 and GAGE2A as mediators of chemoresistance in human SCLC. CTAs have been successfully targeted in other tumor types and may be a promising avenue for targeted therapy in SCLC. IMPLICATIONS Understanding the evolutionary dynamics of SCLC can shed light on key mechanisms such as cellular plasticity, heterogeneity, and chemoresistance.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, USA
| | | | - Robert Szczepaniak-Sloane
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Anthony Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Pediatrics, Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Michael S. Kareta
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, USA
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, Sioux Falls, South Dakota, USA
- Department of Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
32
|
Hirt CK, Padmanabha N, Michaels PD. Cohesin complex mutations in myeloid neoplasms are enriched for SRSF2, RUNX1, TET2, and NRAS co-mutations and morphologic dysplasia. Leuk Res 2023; 132:107357. [PMID: 37481994 DOI: 10.1016/j.leukres.2023.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Christian K Hirt
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nandan Padmanabha
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Phillip D Michaels
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Qin H, Cai R, Wang Y, Deng X, Chen J, Xing J. Intensive management facilitates bacterial invasion on soil microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117963. [PMID: 37105104 DOI: 10.1016/j.jenvman.2023.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023]
Abstract
Intensive management has greatly altered natural forests, especially forests around the world are increasingly being converted into economic plantations. Soil microbiota are critical for community functions in all ecosystems, but the effects of microbial disturbance during economic plantation remain unclear. Here, we used Escherichia coli O157:H7, a model pathogenic species for bacterial invasion, to assess the invasion impacts on the soil microbial community under intensive management. The E. coli invasion was tracked for 135 days to explore the instant and legacy impacts on the resident community. Our results showed that bamboo economic plantations altered soil abiotic and biotic properties, especially increasing pH and community diversity. Higher pH in bamboo soils resulted in longer pathogen survivals than in natural hardwood soils, indicating that pathogen suppression during intensive management should arouse our attention. A longer invasion legacy effect on the resident community (P < 0.05) were found in bamboo soils underlines the need to quantify the soil resilience even when the invasion was unsuccessful. Deterministic processes drove community assembly in bamboo plantations, and this selection acted more strongly during by E. coli invasion than in hardwood soils. We also showed more associated co-occurrence patterns in bamboo plantations, suggesting more complex potential interactions within the microbial community. Apart from community structure, community functions are also strongly related to the resident species associated with invaders. These findings provide new perspectives to understand intensive management facilitates the bacterial invasion, and the impacts would leave potential risks on environmental and human health.
Collapse
Affiliation(s)
- Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruihang Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Yanan Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiajia Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
34
|
Xing J, Ma C, Deng X, Chen J, Jiang P, Qin H. Organic pulses and bacterial invasion alleviated by the resilience of soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115050. [PMID: 37235897 DOI: 10.1016/j.ecoenv.2023.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Biogas slurry is a nutrient-rich secondary product of livestock feces digestion which is recycled as a crop plantation fertilizer and provides exogenous microbes to the soil. However, the effects of biogas slurry microbes on the soil resident community remain unknown. In this study, we examined the ecological consequences of long-term biogas slurry pulse on the soil resident community and found that it promoted crop yield and altered soil characteristics. The soil microbial ecosystem was altered as a result of organic amendments due to the exogenous input of microbes and nutrients. Nevertheless, the soil resident communities were highly resilient to long-term organic pulses, as evidenced by community diversity and composition. The two dominant bacterial species in biogas slurry were Sterolibacterium and Clostridium. Notably, the abundance of Clostridium in biogas slurry increased following long-term amendments, while other species such as GP1 and Subdivision3_genera_incertae_sedis decreased; which was consistent with the results of module-eigengene analysis. Long-term organic pulses shifted the balance of microbial community assembly from stochastic to deterministic processes. Overall, our findings indicated that organic pulses accompanied with bacterial invasion could be alleviated by the resilience of soil microbial communities, thereby emphasizing the importance of microbiota assemblage and network architecture.
Collapse
Affiliation(s)
- Jiajia Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengwei Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Peikun Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
35
|
Lahtinen A, Lavikka K, Virtanen A, Li Y, Jamalzadeh S, Skorda A, Lauridsen AR, Zhang K, Marchi G, Isoviita VM, Ariotta V, Lehtonen O, Muranen TA, Huhtinen K, Carpén O, Hietanen S, Senkowski W, Kallunki T, Häkkinen A, Hynninen J, Oikkonen J, Hautaniemi S. Evolutionary states and trajectories characterized by distinct pathways stratify patients with ovarian high grade serous carcinoma. Cancer Cell 2023:S1535-6108(23)00143-5. [PMID: 37207655 DOI: 10.1016/j.ccell.2023.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) is typically diagnosed at an advanced stage, with multiple genetically heterogeneous clones existing in the tumors long before therapeutic intervention. Herein we integrate clonal composition and topology using whole-genome sequencing data from 510 samples of 148 patients with HGSC in the prospective, longitudinal, multiregion DECIDER study. Our results reveal three evolutionary states, which have distinct features in genomics, pathways, and morphological phenotypes, and significant association with treatment response. Nested pathway analysis suggests two evolutionary trajectories between the states. Experiments with five tumor organoids and three PI3K inhibitors support targeting tumors with enriched PI3K/AKT pathway with alpelisib. Heterogeneity analysis of samples from multiple anatomical sites shows that site-of-origin samples have 70% more unique clones than metastatic tumors or ascites. In conclusion, these analysis and visualization methods enable integrative tumor evolution analysis to identify patient subtypes using data from longitudinal, multiregion cohorts.
Collapse
Affiliation(s)
- Alexandra Lahtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Lavikka
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sanaz Jamalzadeh
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Aikaterini Skorda
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Anna Røssberg Lauridsen
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanni Marchi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Veli-Matti Isoviita
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Valeria Ariotta
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Oskari Lehtonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Taru A Muranen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Cancer Research Unit, Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20014 Turku, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, 200521 Turku, Finland
| | - Wojciech Senkowski
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tuula Kallunki
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Antti Häkkinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, 200521 Turku, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
36
|
Duployez N, Vasseur L, Kim R, Largeaud L, Passet M, L'Haridon A, Lemaire P, Fenwarth L, Geffroy S, Helevaut N, Celli-Lebras K, Adès L, Lebon D, Berthon C, Marceau-Renaut A, Cheok M, Lambert J, Récher C, Raffoux E, Micol JB, Pigneux A, Gardin C, Delabesse E, Soulier J, Hunault M, Dombret H, Itzykson R, Clappier E, Preudhomme C. UBTF tandem duplications define a distinct subtype of adult de novo acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01906-z. [PMID: 37085611 DOI: 10.1038/s41375-023-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Collapse
Affiliation(s)
- Nicolas Duployez
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France.
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France.
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France.
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie Passet
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anaïs L'Haridon
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
| | - Pierre Lemaire
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurène Fenwarth
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sandrine Geffroy
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Nathalie Helevaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | | | - Lionel Adès
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Delphine Lebon
- Hematology Department, CHU Amiens-Picardie, Amiens, France
| | - Céline Berthon
- Hematology Department, Claude Huriez Hospital, CHU Lille, Lille, France
| | - Alice Marceau-Renaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Meyling Cheok
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Juliette Lambert
- Hematology Department, Versailles Hospital, University Versailles-Saint-Quentin-en-Yvelines, Le Chesnay, France
| | - Christian Récher
- Service d'Hématologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Emmanuel Raffoux
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | | | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean Soulier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- Hematology Department, Université d'Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F‑49000, Angers, France
- Fédération Hospitalo-Universitaire, Grand-Ouest Acute Leukemia, Angers, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claude Preudhomme
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| |
Collapse
|
37
|
Abbosh C, Frankell AM, Harrison T, Kisistok J, Garnett A, Johnson L, Veeriah S, Moreau M, Chesh A, Chaunzwa TL, Weiss J, Schroeder MR, Ward S, Grigoriadis K, Shahpurwalla A, Litchfield K, Puttick C, Biswas D, Karasaki T, Black JRM, Martínez-Ruiz C, Bakir MA, Pich O, Watkins TBK, Lim EL, Huebner A, Moore DA, Godin-Heymann N, L'Hernault A, Bye H, Odell A, Kalavakur P, Gomes F, Patel AJ, Manzano E, Hiley CT, Carey N, Riley J, Cook DE, Hodgson D, Stetson D, Barrett JC, Kortlever RM, Evan GI, Hackshaw A, Daber RD, Shaw JA, Aerts HJWL, Licon A, Stahl J, Jamal-Hanjani M, Birkbak NJ, McGranahan N, Swanton C. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 2023; 616:553-562. [PMID: 37055640 PMCID: PMC7614605 DOI: 10.1038/s41586-023-05776-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/30/2023] [Indexed: 04/15/2023]
Abstract
Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.
Collapse
Affiliation(s)
- Christopher Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Judit Kisistok
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | | | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | | | - Tafadzwa L Chaunzwa
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jakob Weiss
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Freiburg University Hospital, Freiburg, Germany
| | | | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Kristiana Grigoriadis
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Clare Puttick
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | | | | | | | | | | | - Fabio Gomes
- The Christie NHS Foundation Trust, Manchester, UK
| | - Akshay J Patel
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Elizabeth Manzano
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nicolas Carey
- Cancer Research Centre, University of Leicester, Leicester, UK
| | - Joan Riley
- Cancer Research Centre, University of Leicester, Leicester, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | | | | | | | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Allan Hackshaw
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | | | - Jacqui A Shaw
- Cancer Research Centre, University of Leicester, Leicester, UK
| | - Hugo J W L Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | | | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Nicolai J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
38
|
Lannes R, Samur M, Perrot A, Mazzotti C, Divoux M, Cazaubiel T, Leleu X, Schavgoulidze A, Chretien ML, Manier S, Adiko D, Orsini-Piocelle F, Lifermann F, Brechignac S, Gastaud L, Bouscary D, Macro M, Cleynen A, Mohty M, Munshi N, Corre J, Avet-Loiseau H. In Multiple Myeloma, High-Risk Secondary Genetic Events Observed at Relapse Are Present From Diagnosis in Tiny, Undetectable Subclonal Populations. J Clin Oncol 2023; 41:1695-1702. [PMID: 36343306 PMCID: PMC10043564 DOI: 10.1200/jco.21.01987] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Multiple myeloma (MM) is characterized by copy number abnormalities (CNAs), some of which influence patient outcomes and are sometimes observed only at relapse(s), suggesting their acquisition during tumor evolution. However, the presence of micro-subclones may be missed in bulk analyses. Here, we use single-cell genomics to determine how often these high-risk events are missed at diagnosis and selected at relapse. MATERIALS AND METHODS We analyzed 81 patients with plasma cell dyscrasias using single-cell CNA sequencing. Sixty-six patients were selected at diagnosis, nine at first relapse, and six in presymptomatic stages. A total of 956 newly diagnosed patients with MM and patients with first relapse MM have been identified retrospectively with required cytogenetic data to evaluate enrichment of CNA risk events and survival impact. RESULTS A total of 52,176 MM cells were analyzed. Seventy-four patients (91%) had 2-16 subclones. Among these patients, 28.7% had a subclone with high-risk features (del(17p), del(1p32), and 1q gain) at diagnosis. In a patient with a subclonal 1q gain at diagnosis, we analyzed the diagnosis, postinduction, and first relapse samples, which showed a rise of the high-risk 1q gain subclone (16%, 70%, and 92%, respectively). In our clinical database, we found that the 1q gain frequency increased from 30.2% at diagnosis to 43.6% at relapse (odds ratio, 1.78; 95% CI, 1.58 to 2.00). We subsequently performed survival analyses, which showed that the progression-free and overall survival curves were superimposable between patients who had the 1q gain from diagnosis and those who seemingly acquired it at relapse. This strongly suggests that many patients had 1q gains at diagnosis in microclones that were missed by bulk analyses. CONCLUSION These data suggest that identifying these scarce aggressive cells may necessitate more aggressive treatment as early as diagnosis to prevent them from becoming the dominant clone.
Collapse
Affiliation(s)
- Romain Lannes
- Myeloma Oncogenesis Lab, IUC-Oncopole, Toulouse, France
- CRCT, INSERM U1037, Toulouse, France
| | - Mehmet Samur
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Aurore Perrot
- CRCT, INSERM U1037, Toulouse, France
- Hematology Department, IUC-Oncopole, Toulouse, France
| | - Celine Mazzotti
- Myeloma Oncogenesis Lab, IUC-Oncopole, Toulouse, France
- CRCT, INSERM U1037, Toulouse, France
| | - Marion Divoux
- Hematology Department, University Hospital, Nancy, France
| | | | - Xavier Leleu
- Hematology Department, University Hospital, Poitiers, France
| | - Anaïs Schavgoulidze
- Myeloma Oncogenesis Lab, IUC-Oncopole, Toulouse, France
- CRCT, INSERM U1037, Toulouse, France
| | | | - Salomon Manier
- Hematology Department, University Hospital, Lille, France
| | - Didier Adiko
- Hematology Department, General Hospital, Libourne, France
| | | | | | | | | | - Didier Bouscary
- Hematology Department, Cochin University Hospital, Paris, France
| | - Margaret Macro
- Hematology Department, University Hospital, Caen, France
| | - Alice Cleynen
- Institut Montpellierain Alexander Grothendieck, CNRS, Montpellier University, Montpellier, France
| | - Mohamad Mohty
- Hematology Department, Saint-Antoine University Hospital, Paris, France
| | - Nikhil Munshi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jill Corre
- Myeloma Oncogenesis Lab, IUC-Oncopole, Toulouse, France
- CRCT, INSERM U1037, Toulouse, France
| | - Hervé Avet-Loiseau
- Myeloma Oncogenesis Lab, IUC-Oncopole, Toulouse, France
- CRCT, INSERM U1037, Toulouse, France
| |
Collapse
|
39
|
Locher M, Jukic E, Vogi V, Keller MA, Kröll T, Schwendinger S, Oberhuber K, Verdorfer I, Mühlegger BE, Witsch-Baumgartner M, Nachbaur D, Willenbacher W, Gunsilius E, Wolf D, Zschocke J, Steiner N. Amp(1q) and tetraploidy are commonly acquired chromosomal abnormalities in relapsed multiple myeloma. Eur J Haematol 2023; 110:296-304. [PMID: 36433728 PMCID: PMC10107198 DOI: 10.1111/ejh.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022]
Abstract
Long-term disease control in multiple myeloma (MM) is typically an unmet medical need, and most patients experience multiple relapses. Fluorescence in situ hybridization (FISH) is the standard technique to detect chromosomal abnormalities (CAs), which are important to estimate the prognosis of MM and the allocation of risk adapted therapies. In advanced stages, the importance of CAs needs further investigation. From 148 MM patients, two or more paired samples, at least one of which was collected at relapse, were analyzed by FISH. Using targeted next-generation sequencing, we molecularly investigated samples harboring relapse-associated CAs. Sixty-one percent of the patients showed a change in the cytogenetic profile during the disease course, including 10% who acquired high-risk cytogenetics. Amp(1q) (≥4 copies of 1q21), driven by an additional increase in copy number in patients who already had 3 copies of 1q21, was the most common acquired CA with 16% affected patients. Tetraploidy, found in 10% of the samples collected at the last time-point, was unstable over the course of the disease and was associated with TP53 lesions. Our results indicate that cytogenetic progression is common in relapsed patients. The relatively high frequency of amp(1q) suggests an active role for this CA in disease progression.
Collapse
Affiliation(s)
- Maurus Locher
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emina Jukic
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Vogi
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Kröll
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Schwendinger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Oberhuber
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Irmgard Verdorfer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Beatrix E Mühlegger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - David Nachbaur
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria.,syndena GmbH, connect to cure, Innsbruck, Austria
| | - Eberhard Gunsilius
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Medical Clinic 3, Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Normann Steiner
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Gao T, Soldatov R, Sarkar H, Kurkiewicz A, Biederstedt E, Loh PR, Kharchenko PV. Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes. Nat Biotechnol 2023; 41:417-426. [PMID: 36163550 PMCID: PMC10289836 DOI: 10.1038/s41587-022-01468-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Genome instability and aberrant alterations of transcriptional programs both play important roles in cancer. Single-cell RNA sequencing (scRNA-seq) has the potential to investigate both genetic and nongenetic sources of tumor heterogeneity in a single assay. Here we present a computational method, Numbat, that integrates haplotype information obtained from population-based phasing with allele and expression signals to enhance detection of copy number variations from scRNA-seq. Numbat exploits the evolutionary relationships between subclones to iteratively infer single-cell copy number profiles and tumor clonal phylogeny. Analysis of 22 tumor samples, including multiple myeloma, gastric, breast and thyroid cancers, shows that Numbat can reconstruct the tumor copy number profile and precisely identify malignant cells in the tumor microenvironment. We identify genetic subpopulations with transcriptional signatures relevant to tumor progression and therapy resistance. Numbat requires neither sample-matched DNA data nor a priori genotyping, and is applicable to a wide range of experimental settings and cancer types.
Collapse
Affiliation(s)
- Teng Gao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ruslan Soldatov
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Adam Kurkiewicz
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Evan Biederstedt
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
41
|
Allegretti M, Barberi V, Ercolani C, Vidiri A, Giordani E, Ciliberto G, Giacomini P, Fabi A. Unusual phylogenetic tree and circulating actionable ESR1 mutations in an aggressive luminal/HER2-low breast cancer: Case report. Front Oncol 2023; 12:1050452. [PMID: 36713585 PMCID: PMC9874630 DOI: 10.3389/fonc.2022.1050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Under therapeutic pressure aggressive tumors evolve rapidly. Herein, a luminal B/HER2-low breast cancer was tracked for >3 years during a total of 6 largely unsuccessful therapy lines, from adjuvant to advanced settings. Targeted next generation sequencing (NGS) of the primary lesion, two metastases and 14 blood drawings suggested a striking, unprecedented coexistence of three evolution modes: punctuated, branched and convergent. Punctuated evolution of the trunk was supported by en bloc inheritance of a large set (19 distinct genes) of copy number alterations. Branched evolution was supported by the distribution of site-specific SNVs. Convergent evolution was characterized by a unique asynchronous expansion of three actionable (OncoKB level 3A) mutations at two consecutive ESR1 codons. Low or undetectable in all the sampled tumor tissues, ESR1 mutations expanded rapidly in blood during HER2/hormone double-blockade, and predicted life-threatening local progression at lung and liver metastatic foci. Dramatic clinical response to Fulvestrant (assigned off-label exclusively based on liquid biopsy) was associated with clearance of all 3 subclones and was in stark contrast to the poor therapeutic efficacy reported in large liquid biopsy-informed interventional trials. Altogether, deconvolution of the tumor phylogenetic tree, as shown herein, may help to customize treatment in breast cancers that rapidly develop refractoriness to multiple drugs.
Collapse
Affiliation(s)
- Matteo Allegretti
- Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Vittoria Barberi
- Medical Oncology 1, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Antonello Vidiri
- Radiology and Diagnostic Imaging, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Elena Giordani
- Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizio Giacomini
- Clinical Trial Center, IRCSS Regina Elena National Cancer Institute, Rome, Italy,*Correspondence: Patrizio Giacomini,
| | - Alessandra Fabi
- Precision Medicine in Senology, Scientific Directorate - Department of Women and Child Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
42
|
Yaeger R, Mezzadra R, Sinopoli J, Bian Y, Marasco M, Kaplun E, Gao Y, Zhao H, Paula ADC, Zhu Y, Perez AC, Chadalavada K, Tse E, Chowdhry S, Bowker S, Chang Q, Qeriqi B, Weigelt B, Nanjangud GJ, Berger MF, Der-Torossian H, Anderes K, Socci ND, Shia J, Riely GJ, Murciano-Goroff YR, Li BT, Christensen JG, Reis-Filho JS, Solit DB, de Stanchina E, Lowe SW, Rosen N, Misale S. Molecular Characterization of Acquired Resistance to KRASG12C-EGFR Inhibition in Colorectal Cancer. Cancer Discov 2023; 13:41-55. [PMID: 36355783 PMCID: PMC9827113 DOI: 10.1158/2159-8290.cd-22-0405] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
With the combination of KRASG12C and EGFR inhibitors, KRAS is becoming a druggable target in colorectal cancer. However, secondary resistance limits its efficacy. Using cell lines, patient-derived xenografts, and patient samples, we detected a heterogeneous pattern of putative resistance alterations expected primarily to prevent inhibition of ERK signaling by drugs at progression. Serial analysis of patient blood samples on treatment demonstrates that most of these alterations are detected at a low frequency except for KRASG12C amplification, a recurrent resistance mechanism that rises in step with clinical progression. Upon drug withdrawal, resistant cells with KRASG12C amplification undergo oncogene-induced senescence, and progressing patients experience a rapid fall in levels of this alteration in circulating DNA. In this new state, drug resumption is ineffective as mTOR signaling is elevated. However, our work exposes a potential therapeutic vulnerability, whereby therapies that target the senescence response may overcome acquired resistance. SIGNIFICANCE Clinical resistance to KRASG12C-EGFR inhibition primarily prevents suppression of ERK signaling. Most resistance mechanisms are subclonal, whereas KRASG12C amplification rises over time to drive a higher portion of resistance. This recurrent resistance mechanism leads to oncogene-induced senescence upon drug withdrawal and creates a potential vulnerability to senolytic approaches. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jenna Sinopoli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Bian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Esther Kaplun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yijun Gao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - HuiYong Zhao
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arnaud Da Cruz Paula
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yingjie Zhu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Almudena Chaves Perez
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edison Tse
- Boundless Bio, Inc., San Diego, California
| | | | - Sydney Bowker
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qing Chang
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Besnik Qeriqi
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gouri J. Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F. Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Nicholas D. Socci
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gregory J. Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Bob T. Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | | | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B. Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Molecular-Based Therapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
43
|
Seillier L, Peifer M. Reconstructing Phylogenetic Relationship in Bladder Cancer: A Methodological Overview. Methods Mol Biol 2023; 2684:113-132. [PMID: 37410230 DOI: 10.1007/978-1-0716-3291-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bladder cancer (BC) expresses itself as a highly heterogeneous disease both at the histological and molecular level, often occurring as synchronous or metachronous multifocal disease with high risk of recurrence and potential to metastasize. Multiple sequencing studies focusing on both non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) gave insights into the extent of both inter- and intrapatient heterogeneity, but many questions on clonal evolution in BC remain unanswered. In this review article, we provide an overview over the technical and theoretical concepts linked to reconstructing evolutionary trajectories in BC and propose a set of tools and established software for phylogenetic analysis.
Collapse
Affiliation(s)
| | - Martin Peifer
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Huo L, Xie J, Wang Q, Shen H, Ding Z, Wen L, Zeng Z, Xu Y, Ruan C, Chen S, Xue M. Insights from a rare myeloproliferative neoplasm with coexisting BCR-ABL1 fusion gene, CALR, and TET2 mutations treated with nilotinib and ruxolitinib. Clin Case Rep 2023; 11:e6801. [PMID: 36703773 PMCID: PMC9871410 DOI: 10.1002/ccr3.6801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) with concurrent BCR-ABL1 fusion gene and CALR mutation are especially rare. We report a patient with coexisting BCR-ABL1 fusion gene, CALR, and TET2 mutations who was treated with the combination of the second-generation TKI nilotinib and JAK1/JAK2 inhibitor ruxolitinib.
Collapse
Affiliation(s)
- Li Huo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jundan Xie
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qian Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongjie Shen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zixuan Ding
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lijun Wen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhao Zeng
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yi Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Suning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Mengxing Xue
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
45
|
Sandmann S, Inserte C, Varghese J. clevRvis: visualization techniques for clonal evolution. Gigascience 2022; 12:giad020. [PMID: 37039116 PMCID: PMC10087014 DOI: 10.1093/gigascience/giad020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND A thorough analysis of clonal evolution commonly requires integration of diverse sources of data (e.g., karyotyping, next-generation sequencing, and clinical information). Subsequent to actual reconstruction of clonal evolution, detailed analysis and interpretation of the results are essential. Often, however, only few tumor samples per patient are available. Thus, information on clonal development and therapy effect may be incomplete. Furthermore, analysis of biallelic events-considered of high relevance with respect to disease course-can commonly only be realized by time-consuming analysis of the raw results and even raw sequencing data. RESULTS We developed clevRvis, an R/Bioconductor package providing an extensive set of visualization techniques for clonal evolution. In addition to common approaches for visualization, clevRvis offers a unique option for allele-aware representation: plaice plots. Biallelic events may be visualized and inspected at a glance. Analyzing 4 public datasets, we show that plaice plots help to gain new insights into tumor development and investigate hypotheses on disease progression and therapy resistance. In addition to a graphical user interface, automatic phylogeny-aware color coding of the plots, and an approach to explore alternative trees, clevRvis provides 2 algorithms for fully automatic time point interpolation and therapy effect estimation. Analyzing 2 public datasets, we show that both approaches allow for valid approximation of a tumor's development in between measured time points. CONCLUSIONS clevRvis represents a novel option for user-friendly analysis of clonal evolution, contributing to gaining new insights into tumor development.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster 48149, Germany
| | - Clara Inserte
- Institute of Medical Informatics, University of Münster, Münster 48149, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster 48149, Germany
| |
Collapse
|
46
|
Post-irradiation intratumoral heterogeneity modulates response to immune checkpoint inhibition therapy in a murine melanoma model. Neoplasia 2022; 36:100864. [PMID: 36571944 PMCID: PMC9800194 DOI: 10.1016/j.neo.2022.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The underlying mechanism for radiation as a potentiator of immune checkpoint inhibition (ICI) is unclear. We developed a novel murine model to investigate the effects of post-irradiation intratumoral heterogeneity (ITH) on response to ICI. EXPERIMENTAL DESIGN Parental mouse melanoma B16F10 cells were irradiated in vitro (5Gy x 3 fractions), then an a priori determined number of resulting colonies were implanted in C57BL/6J immunocompetent mice creating syngeneic models of unirradiated (parental) and irradiated tumors with low (irradiated-L) and high (irradiated-H) ITH. Mice were treated with placebo, α-PD-L1, α-CTLA-4 or dual ICI. Murine tumors underwent whole exome sequencing (WES). Clinically correlated paired pre- and post-irradiation patient rectal adenocarcinoma samples underwent WES. RESULTS Irradiated-L tumors showed increased tumor mutational burden (TMB) and a sustained decrease in ITH. Irradiated-L tumors were predicted to express five neoantigens with high variant allele frequency/clonal distribution. Mice with irradiated-L and irradiated-H versus parental B16F10 tumors demonstrated longer overall survival with dual ICI. Only mice with irradiated-L tumors experienced an overall survival benefit with single agent ICI. Clinically correlated rectal adenocarcinoma samples showed similarly increased TMB and decreased ITH following irradiation. CONCLUSIONS Post-irradiation ITH modulates ICI response in a murine melanoma model. Irradiation may offer a mechanism to widen the therapeutic window of ICI.
Collapse
|
47
|
Xu H, Zhang A, Fang C, Zhu Q, Wang W, Liu Y, Zhang Z, Wang X, Yuan L, Xu Y, Shao A, Lou M. SLC11A1 as a stratification indicator for immunotherapy or chemotherapy in patients with glioma. Front Immunol 2022; 13:980378. [PMID: 36531992 PMCID: PMC9748290 DOI: 10.3389/fimmu.2022.980378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Glioma is a fatal tumor originating from the brain, which accounts for most intracranial malignancies. Currently, Immunotherapy has turned into a novel and promising treatment in glioma patients. however, there are still few effective biomarkers to mirror the reaction to immunotherapy in patients with glioma. Therefore, we intended to elucidate the evaluable efficacy of SLC11A1 in glioma patients. Methods In this study, samples from Shanghai General Hospital and data from TCGA, GEO, CGGA datasets were used to investigate and validate the relationship between SLC11A1 and the progression of glioma. We evaluated the predictive value of SLC11A1 on the prognosis of glioma with cox regression analysis. Then the relationship between immune infiltration and SLC11A1 was also analyzed. Ultimately, we performed the prediction on the immunotherapeutic response and therapeutic drugs according to the expression of SLC11A1. Results Expression of SLC11A1 increased with progression and predicted unfavorable prognosis for glioma patients. The hazard ratio for SLC11A1 expression was 2.33 with 95% CI (1.92-2.58) (P < 0.001) in cox analysis. And based on expression, we found SLC11A1 stratified glioma patients into subgroups with different immune activation statuses. Moreover, we observed that patients with higher SLC11A1 levels companied with better immunotherapeutic response, while those with lower SLC11A1 levels may respond better to temozolomide. Conclusion This study provided evidence that SLC11A1 was a novel prognostic marker and immunotherapy response indicator for gliomas. In some cases, SLC11A1 could be an effective marker for identifying patients who might benefit from immunotherapy or chemotherapy.
Collapse
Affiliation(s)
- Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| |
Collapse
|
48
|
Wang H, Chan KYY, Cheng CK, Ng MH, Lee PY, Cheng FWT, Lam GKS, Chow TW, Ha SY, Chiang AK, Leung WH, Leung AY, Wang CC, Zhang T, Zhang XB, So CC, Yuen YP, Sun Q, Zhang C, Xu Y, Cheung JTK, Ng WH, Tang PMK, Kang W, To KF, Lee WYW, Wong RS, Poon ENY, Zhao Q, Huang J, Chen C, Yuen PMP, Li CK, Leung AWK, Leung KT. Pharmacogenomic Profiling of Pediatric Acute Myeloid Leukemia to Identify Therapeutic Vulnerabilities and Inform Functional Precision Medicine. Blood Cancer Discov 2022; 3:516-535. [PMID: 35960210 PMCID: PMC9894568 DOI: 10.1158/2643-3230.bcd-22-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the expanding portfolio of targeted therapies for adults with acute myeloid leukemia (AML), direct implementation in children is challenging due to inherent differences in underlying genetics. Here we established the pharmacologic profile of pediatric AML by screening myeloblast sensitivity to approved and investigational agents, revealing candidates of immediate clinical relevance. Drug responses ex vivo correlated with patient characteristics, exhibited age-specific alterations, and concorded with activities in xenograft models. Integration with genomic data uncovered new gene-drug associations, suggesting actionable therapeutic vulnerabilities. Transcriptome profiling further identified gene-expression signatures associated with on- and off-target drug responses. We also demonstrated the feasibility of drug screening-guided treatment for children with high-risk AML, with two evaluable cases achieving remission. Collectively, this study offers a high-dimensional gene-drug clinical data set that could be leveraged to research the unique biology of pediatric AML and sets the stage for realizing functional precision medicine for the clinical management of the disease. SIGNIFICANCE We conducted integrated drug and genomic profiling of patient biopsies to build the functional genomic landscape of pediatric AML. Age-specific differences in drug response and new gene-drug interactions were identified. The feasibility of functional precision medicine-guided management of children with high-risk AML was successfully demonstrated in two evaluable clinical cases. This article is highlighted in the In This Issue feature, p. 476.
Collapse
Affiliation(s)
- Han Wang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Keung Cheng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret H.L. Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Po Yi Lee
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Frankie Wai Tsoi Cheng
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Grace Kee See Lam
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Tin Wai Chow
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Shau Yin Ha
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Alan K.S. Chiang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anskar Y.H. Leung
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, California
| | - Chi Chiu So
- Department of Pathology, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Yuet Ping Yuen
- Department of Pathology, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Qiwei Sun
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yaqun Xu
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - John Tak Kit Cheung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing Hei Ng
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Raymond S.M. Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qi Zhao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Patrick Man Pan Yuen
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi-kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| |
Collapse
|
49
|
Mañas A, Aaltonen K, Andersson N, Hansson K, Adamska A, Seger A, Yasui H, van den Bos H, Radke K, Esfandyari J, Bhave MS, Karlsson J, Spierings D, Foijer F, Gisselsson D, Bexell D. Clinically relevant treatment of PDX models reveals patterns of neuroblastoma chemoresistance. SCIENCE ADVANCES 2022; 8:eabq4617. [PMID: 36306349 PMCID: PMC9616506 DOI: 10.1126/sciadv.abq4617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Chemotherapy resistance and relapses are common in high-risk neuroblastoma (NB). Here, we developed a clinically relevant in vivo treatment protocol mimicking the first-line five-chemotherapy treatment regimen of high-risk NB and applied this protocol to mice with MYCN-amplified NB patient-derived xenografts (PDXs). Genomic and transcriptomic analyses were used to reveal NB chemoresistance mechanisms. Intrinsic resistance was associated with high genetic diversity and an embryonic phenotype. Relapsed NB with acquired resistance showed a decreased adrenergic phenotype and an enhanced immature mesenchymal-like phenotype, resembling multipotent Schwann cell precursors. NBs with a favorable treatment response presented a lineage-committed adrenergic phenotype similar to normal neuroblasts. Novel integrated phenotypic gene signatures reflected treatment response and patient prognosis. NB organoids established from relapsed PDX tumors retained drug resistance, tumorigenicity, and transcriptional cell states. This work sheds light on the mechanisms of NB chemotherapy response and emphasizes the importance of transcriptional cell states in chemoresistance.
Collapse
Affiliation(s)
- Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Natalie Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
| | - Karin Hansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Aleksandra Adamska
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Alexandra Seger
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Hiroaki Yasui
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
- Department of Gynecologic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, AV, Groningen 9713, Netherlands
| | - Katarzyna Radke
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Javanshir Esfandyari
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Madhura Satish Bhave
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
| | - Diana Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, AV, Groningen 9713, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, AV, Groningen 9713, Netherlands
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 22185, Sweden
- Department of Pathology, Laboratory Medicine, Skane University Hospital, Lund 22184, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| |
Collapse
|
50
|
Wiedemann C, Kazdal D, Cvetkovic J, Kunz J, Fisch D, Kirchner M, Kriegsmann M, Sültmann H, Heussel CP, Bischoff H, Thomas M, Stenzinger A, Christopoulos P. Lorlatinib and compound mutations in ALK+ large-cell neuroendocrine lung carcinoma: a case report. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006234. [PMID: 36207130 PMCID: PMC9632356 DOI: 10.1101/mcs.a006234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/05/2022] [Indexed: 01/31/2023] Open
Abstract
Large-cell neuroendocrine lung carcinoma (LCNEC) is a high-grade neoplasm with median survival of 1 year and limited therapeutic options. Here, we report the unusual case of a 47-yr-old female smoker with stage IV LCNEC featuring EML4-ALK variant 2 (E20:A20), wild-type TP53/RB1, and low tumor mutational burden of 3.91 mut/Mb. Despite early progression within 3 mo under crizotinib, a durable response was achieved with alectinib. Oligoprogression in the left breast 10 mo later was treated by surgery, followed by a switch to ceritinib upon multifocal progression and detection of ALK:p.V1180L in the mastectomy specimen, but without success. Another rebiopsy revealed ALK:p.L1196M, but the tumor did not respond to brigatinib or carboplatin/pemetrexed, before stabilization under lorlatinib. Diffuse progression 8 mo later with detection of ALK :p.L1196M/p.G1202R and p.L1196M/ p.D1203N evolving from the previous p.L1196M did not respond to chemoimmunotherapy, and the patient succumbed with an overall survival (OS) of 37 mo. This case illustrates the importance of molecular profiling for LCNEC regardless of smoking status, and the superiority of next-generation ALK inhibitors compared to crizotinib for ALK+ cases. Lorlatinib retained efficacy in the heavily pretreated setting, whereas its upfront use could possibly have prevented the stepwise emergence of compound ALK mutations. Furthermore, the disease course was more aggressive and OS shorter compared to the V2/TP53wt ALK+ lung adenocarcinoma, whereas crizotinib, ceritinib, and brigatinib did not confer the benefit expected according to next-generation sequencing results, which also underline the need for more potent drugs against ALK in the high-risk setting of neuroendocrine histology.
Collapse
Affiliation(s)
- Christiane Wiedemann
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, 69126 Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, 69120 Germany;,Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, 69120 Germany
| | - Jelena Cvetkovic
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, 69126 Germany
| | - Julia Kunz
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, 69126 Germany
| | - David Fisch
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, 69126 Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, 69120 Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, 69120 Germany;,Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, 69120 Germany
| | - Holger Sültmann
- Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, 69120 Germany;,Division of Cancer Genome Research, German Cancer Research Center (DKFZ), Heidelberg, 69120 Germany
| | - Claus-Peter Heussel
- Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, 69120 Germany;,Department of Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, 69126 Germany
| | - Helge Bischoff
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, 69126 Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, 69126 Germany;,Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, 69120 Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, 69120 Germany;,Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, 69120 Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, 69126 Germany;,Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, 69120 Germany
| |
Collapse
|