1
|
Chen K, Yang H, Wu D, Peng Y, Lian L, Bai L, Wang L. Weed biology and management in the multi-omics era: Progress and perspectives. PLANT COMMUNICATIONS 2024; 5:100816. [PMID: 38219012 PMCID: PMC11009161 DOI: 10.1016/j.xplc.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Weeds pose a significant threat to crop production, resulting in substantial yield reduction. In addition, they possess robust weedy traits that enable them to survive in extreme environments and evade human control. In recent years, the application of multi-omics biotechnologies has helped to reveal the molecular mechanisms underlying these weedy traits. In this review, we systematically describe diverse applications of multi-omics platforms for characterizing key aspects of weed biology, including the origins of weed species, weed classification, and the underlying genetic and molecular bases of important weedy traits such as crop-weed interactions, adaptability to different environments, photoperiodic flowering responses, and herbicide resistance. In addition, we discuss limitations to the application of multi-omics techniques in weed science, particularly compared with their extensive use in model plants and crops. In this regard, we provide a forward-looking perspective on the future application of multi-omics technologies to weed science research. These powerful tools hold great promise for comprehensively and efficiently unraveling the intricate molecular genetic mechanisms that underlie weedy traits. The resulting advances will facilitate the development of sustainable and highly effective weed management strategies, promoting greener practices in agriculture.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Lianyang Bai
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lifeng Wang
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Chen W, Li S, Bai D, Li Z, Liu H, Bai L, Pan L. Detoxification mechanism of herbicide in Polypogon fugax and its influence on rhizosphere enzyme activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115263. [PMID: 37473705 DOI: 10.1016/j.ecoenv.2023.115263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The excessive use of chemical herbicides has resulted in evolution of herbicide-resistant weeds. Cytochrome P450 monooxygenases (P450s) are vital detoxification enzymes for herbicide-resistant weeds. Herein, we confirmed a resistant (R) Polypogon fugax population showing resistance to quizalofop-p-ethyl, acetolactate synthase (ALS)-inhibiting herbicide pyroxsulam, and several other ACCase (acetyl-CoA carboxylase)-inhibiting herbicides. Molecular analysis revealed no target-site gene mutations in the R population. Foliar spraying with malathion clearly reversed the quizalofop-p-ethyl phytotoxicity. Higher level of quizalofop-p-ethyl degradation was confirmed in the R population using HPLC analysis. Subsequently, RNA-Seq transcriptome analysis indicated that the overexpression of CYP89A2 gene appeared to be responsible for reducing quizalofop-p-ethyl phytotoxicity. The molecular docking results supported a metabolic effect of CYP89A2 protein on most herbicides tested. Furthermore, we found that low doses of herbicides stimulated the rhizosphere enzyme activities in P. fugax and the increase of rhizosphere dehydrogenase of R population may be related to its resistance mechanism. In summary, our research has shown that metabolic herbicide resistance mediated by CYP89A2, contributes to quizalofop-p-ethyl resistance in P. fugax.
Collapse
Affiliation(s)
- Wen Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Sifu Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China
| | - Dingyi Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zongfang Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Haozhe Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Wrzesińska-Krupa B, Szmatoła T, Praczyk T, Obrępalska-Stęplowska A. Transcriptome analysis indicates the involvement of herbicide-responsive and plant-pathogen interaction pathways in the development of resistance to ACCase inhibitors in Apera spica-venti. PEST MANAGEMENT SCIENCE 2023; 79:1944-1962. [PMID: 36655853 DOI: 10.1002/ps.7370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The continuous use of the herbicides contributes to the emergence of the resistant populations of numerous weed species that are tolerant to multiple herbicides with different modes of action (multiple resistance) which is provided by non-target-site resistance mechanisms. In this study, we addressed the question of rapid acquisition of herbicide resistance to pinoxaden (acetyl CoA carboxylase inhibitor) in Apera spica-venti, which endangers winter cereal crops and has high adaptation capabilities to inhabit many rural locations. To this end, de novo transcriptome of Apera spica-venti was assembled and RNA-sequencing analysis of plants resistant and susceptible to pinoxaden treated with this herbicide was performed. RESULTS The obtained data showed that the prime candidate genes responsible for herbicide resistance were those encoding 3-ketoacyl-CoA synthase 12-like, UDP-glycosyltransferases (UGT) including UGT75K6, UGT75E2, UGT83A1-like, and glutathione S-transferases (GSTs) such as GSTU1 and GSTU6. Also, such highly accelerated herbicide resistance emergence may result from the enhanced constitutive expression of a wide range of genes involved in detoxification already before herbicide treatment and may also influence response to biotic stresses, which was assumed by the detection of expression changes in genes encoding defence-related proteins, including receptor kinase-like Xa21. Moreover, alterations in the expression of genes associated with methylation in non-treated herbicide-resistant populations were identified. CONCLUSION The obtained results indicated genes that may be involved in herbicide resistance. Moreover, they provide valuable insight into the possible effect of resistance on the weed interaction with the other stresses by indicating pathways associated with both abiotic and biotic stresses. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Barbara Wrzesińska-Krupa
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Poznań, Poland
| | - Tomasz Szmatoła
- Centre for Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Tadeusz Praczyk
- Department of Weed Science and Plant Protection Techniques, Institute of Plant Protection - National Research Institute, Poznań, Poland
| | | |
Collapse
|
4
|
Tao F, Fan C, Liu Y, Sivakumar S, Kowalski KP, Golenberg EM. Optimization and application of non-native Phragmites australis transcriptome assemblies. PLoS One 2023; 18:e0280354. [PMID: 36689482 PMCID: PMC9870158 DOI: 10.1371/journal.pone.0280354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023] Open
Abstract
Phragmites australis (common reed) has a cosmopolitan distribution and has been suggested as a model organism for the study of invasive plant species. In North America, the non-native subspecies (ssp. australis) is widely distributed across the contiguous 48 states in the United States and large parts of Canada. Even though millions of dollars are spent annually on Phragmites management, insufficient knowledge of P. australis impeded the efficiency of management. To solve this problem, transcriptomic information generated from multiple types of tissue could be a valuable resource for future studies. Here, we constructed forty-nine P. australis transcriptomes assemblies via different assembly tools and multiple parameter settings. The optimal transcriptome assembly for functional annotation and downstream analyses was selected among these transcriptome assemblies by comprehensive assessments. For a total of 422,589 transcripts assembled in this transcriptome assembly, 319,046 transcripts (75.5%) have at least one functional annotation. Within the transcriptome assembly, we further identified 1,495 transcripts showing tissue-specific expression pattern, 10,828 putative transcription factors, and 72,165 candidates for simple sequence repeats markers. The identification and analyses of predicted transcripts related to herbicide- and salinity-resistant genes were shown as two applications of the transcriptomic information to facilitate further research on P. australis. Transcriptome assembly and selection would be important for the transcriptome annotation. With this optimal transcriptome assembly and all relative information from downstream analyses, we have helped to establish foundations for future studies on the mechanisms underlying the invasiveness of non-native P. australis subspecies.
Collapse
Affiliation(s)
- Feng Tao
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States of America
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States of America
| | - Yimin Liu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States of America
| | - Subashini Sivakumar
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States of America
| | - Kurt P. Kowalski
- U.S. Geological Survey-Great Lakes Science Center, Ann Arbor, MI, United States of America
| | - Edward M. Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States of America
| |
Collapse
|
5
|
Bejerman N, Dietzgen RG, Debat H. Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses. Pathogens 2022; 11:1127. [PMID: 36297184 PMCID: PMC9608074 DOI: 10.3390/pathogens11101127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 09/28/2023] Open
Abstract
The genus Varicosavirus is one of six genera of plant-infecting rhabdoviruses. Varicosaviruses have non-enveloped, flexuous, rod-shaped virions and a negative-sense, single-stranded RNA genome. A distinguishing feature of varicosaviruses, which is shared with dichorhaviruses, is a bi-segmented genome. Before 2017, a sole varicosavirus was known and characterized, and then two more varicosaviruses were identified through high-throughput sequencing in 2017 and 2018. More recently, the number of known varicosaviruses has substantially increased in concert with the extensive use of high-throughput sequencing platforms and data mining approaches. The novel varicosaviruses have revealed not only sequence diversity, but also plasticity in terms of genome architecture, including a virus with a tentatively unsegmented genome. Here, we report the discovery of 45 novel varicosavirus genomes which were identified in publicly available metatranscriptomic data. The identification, assembly, and curation of the raw Sequence Read Archive reads has resulted in 39 viral genome sequences with full-length coding regions and 6 with nearly complete coding regions. The highlights of the obtained sequences include eight varicosaviruses with unsegmented genomes, which are linked to a phylogenetic clade associated with gymnosperms. These findings have resulted in the most complete phylogeny of varicosaviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant rhabdoviruses. Thus, the extensive use of sequence data mining for virus discovery has allowed us to unlock of the hidden genetic diversity of varicosaviruses, the largely neglected plant rhabdoviruses.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
| |
Collapse
|
6
|
Zhan P, Wei X, Xiao Z, Wang X, Ma S, Lin S, Li F, Bu S, Liu Z, Zhu H, Liu G, Zhang G, Wang S. GW10, a member of P450 subfamily regulates grain size and grain number in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3941-3950. [PMID: 34420062 DOI: 10.1007/s00122-021-03939-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/11/2021] [Indexed: 05/02/2023]
Abstract
A quantitative trait locus GW10 is located on Chromosome 10 by map-based cloning, which encodes a P450 Subfamily protein. The GW10 regulates grain size and grain number in rice involved in the BR pathway. Grain size and grain number play extremely important roles in rice grain yield. Here, we identify GW10, which encodes a P450 subfamily protein and controls grain size and grain number by using Lemont (tropical japonica) as donor parent and HJX74 (indica) as recipient parent. The GW10 locus was mapped into a 14.6 kb region in HJX74 genomic on the long arm of chromosome 10. Lower expression of the gw10 in panicle is contributed to the shorter and narrower rice grain, and the increased number of grains per panicle. In contrast, overexpression of GW10 is contributed to longer and wider rice grain. Furthermore, the higher expression levels of some of the brassinosteroid (BR) biosynthesis and response genes are associated with the NIL-GW10. The sensitivity of the leaf angle to exogenous BR in NIL-GW10 is lower than that in NIL-gw10 and in the KO-GW10, which implied that the GW10 should involve in the brassinosteroid-mediated regulation of rice grain size and grain number.
Collapse
Affiliation(s)
- Penglin Zhan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wei
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhili Xiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoling Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shuaipeng Ma
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shaojun Lin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Wrzesińska B, Kościelniak K, Frąckowiak P, Praczyk T, Obrępalska-Stęplowska A. The analysis of reference genes expression stability in susceptible and resistant Apera spica-venti populations under herbicide treatment. Sci Rep 2021; 11:22145. [PMID: 34772993 PMCID: PMC8589970 DOI: 10.1038/s41598-021-01615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022] Open
Abstract
Weed resistance to herbicides constitutes a serious problem to world crop production. One of the weeds that are significantly threatening the crops’ yield and quality is Apera spica-venti. The target-site resistance (TSR) mechanism of A. spica-venti has been widely studied, though, little is known about its non-target-site resistance (NTSR) mechanisms at the molecular level. Molecular examination of NTSR is, to a great extent, based on the expression profiles of selected genes, e.g. those participating in detoxification. However, to obtain reliable results of gene expression analysis, the use of a normalizer is required. The aim of this study was to select the best reference genes in A. spica-venti plants of both populations, susceptible and resistant to ALS inhibitor, under treatment with herbicide. Eleven housekeeping genes were chosen for their expression stability assessment. The efficiency correction of raw quantification cycles (Cq) was included in the gene expression stability analyses, which resulted in indicating the TATA-box binding protein (TBP), glyceraldehyde-3-phosphate dehydrogenase, cytosolic (GAPC), and peptidyl-prolyl cis–trans isomerase CYP28 (CYP28) genes as the most stably expressed reference genes. The obtained results are of vital importance for future studies on the expression of genes associated with the non-target-site resistance mechanisms in the A. spica-venti populations susceptible and resistant to herbicides.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, 60-318, Poznan, Poland
| | - Karolina Kościelniak
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, 60-318, Poznan, Poland
| | - Patryk Frąckowiak
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, 60-318, Poznan, Poland
| | - Tadeusz Praczyk
- Department of Weed Science and Plant Protection Techniques, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, 60-318, Poznan, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, 60-318, Poznan, Poland.
| |
Collapse
|
8
|
Vilperte V, Lucaciu CR, Halbwirth H, Boehm R, Rattei T, Debener T. Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) bracts. BMC Genomics 2019; 20:900. [PMID: 31775622 PMCID: PMC6882326 DOI: 10.1186/s12864-019-6247-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Poinsettia is a popular and important ornamental crop, mostly during the Christmas season. Its bract coloration ranges from pink/red to creamy/white shades. Despite its ornamental value, there is a lack of knowledge about the genetics and molecular biology of poinsettia, especially on the mechanisms of color formation. We performed an RNA-Seq analysis in order to shed light on the transcriptome of poinsettia bracts. Moreover, we analyzed the transcriptome differences of red- and white-bracted poinsettia varieties during bract development and coloration. For the assembly of a bract transcriptome, two paired-end cDNA libraries from a red and white poinsettia pair were sequenced with the Illumina technology, and one library from a red-bracted variety was used for PacBio sequencing. Both short and long reads were assembled using a hybrid de novo strategy. Samples of red- and white-bracted poinsettias were sequenced and comparatively analyzed in three color developmental stages in order to understand the mechanisms of color formation and accumulation in the species. RESULTS The final transcriptome contains 288,524 contigs, with 33% showing confident protein annotation against the TAIR10 database. The BUSCO pipeline, which is based on near-universal orthologous gene groups, was applied to assess the transcriptome completeness. From a total of 1440 BUSCO groups searched, 77% were categorized as complete (41% as single-copy and 36% as duplicated), 10% as fragmented and 13% as missing BUSCOs. The gene expression comparison between red and white varieties of poinsettia showed a differential regulation of the flavonoid biosynthesis pathway only at particular stages of bract development. An initial impairment of the flavonoid pathway early in the color accumulation process for the white poinsettia variety was observed, but these differences were no longer present in the subsequent stages of bract development. Nonetheless, GSTF11 and UGT79B10 showed a lower expression in the last stage of bract development for the white variety and, therefore, are potential candidates for further studies on poinsettia coloration. CONCLUSIONS In summary, this transcriptome analysis provides a valuable foundation for further studies on poinsettia, such as plant breeding and genetics, and highlights crucial information on the molecular mechanism of color formation.
Collapse
Affiliation(s)
- Vinicius Vilperte
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.,Klemm + Sohn GmbH & Co., 70379, Stuttgart, KG, Germany
| | - Calin Rares Lucaciu
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Robert Boehm
- Klemm + Sohn GmbH & Co., 70379, Stuttgart, KG, Germany
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria.
| | - Thomas Debener
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.
| |
Collapse
|
9
|
Caverzan A, Piasecki C, Chavarria G, Stewart CN, Vargas L. Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. Int J Mol Sci 2019; 20:ijms20051086. [PMID: 30832379 PMCID: PMC6429093 DOI: 10.3390/ijms20051086] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/25/2019] [Indexed: 01/20/2023] Open
Abstract
The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds. Recently, the involvement of the antioxidant system in weed interference and herbicide treatment in crops and weeds has been the subject of investigation. In this review, we address ROS production and plant mechanisms of defense, alterations in the antioxidant system at transcriptional and enzymatic levels in crops induced by weed interference, and herbicide exposure in crops and weeds. We also describe the mechanisms of action in herbicides that lead to ROS generation in target plants. Lastly, we discuss the relations between antioxidant systems and weed biology and evolution, as well as the interactive effects of herbicide treatment on these factors.
Collapse
Affiliation(s)
- Andréia Caverzan
- Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil.
| | - Cristiano Piasecki
- Department of Crop Protection, Federal University of Pelotas, Pelotas 96160-000, Brazil.
| | - Geraldo Chavarria
- Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561, USA.
| | - Leandro Vargas
- Department of Weed Science, Brazilian Agricultural Research Corporation (EMBRAPA), Passo Fundo 99050-970, Brazil.
| |
Collapse
|
10
|
HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional features and support vector machine. Sci Rep 2019; 9:778. [PMID: 30692561 PMCID: PMC6349872 DOI: 10.1038/s41598-018-37309-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Herbicide resistance (HR) is a major concern for the agricultural producers as well as environmentalists. Resistance to commonly used herbicides are conferred due to mutation(s) in the genes encoding herbicide target sites/proteins (GETS). Identification of these genes through wet-lab experiments is time consuming and expensive. Thus, a supervised learning-based computational model has been proposed in this study, which is first of its kind for the prediction of seven classes of GETS. The cDNA sequences of the genes were initially transformed into numeric features based on the k-mer compositions and then supplied as input to the support vector machine. In the proposed SVM-based model, the prediction occurs in two stages, where a binary classifier in the first stage discriminates the genes involved in conferring the resistance to herbicides from other genes, followed by a multi-class classifier in the second stage that categorizes the predicted herbicide resistant genes in the first stage into any one of the seven resistant classes. Overall classification accuracies were observed to be ~89% and >97% for binary and multi-class classifications respectively. The proposed model confirmed higher accuracy than the homology-based algorithms viz., BLAST and Hidden Markov Model. Besides, the developed computational model achieved ~87% accuracy, while tested with an independent dataset. An online prediction server HRGPred (http://cabgrid.res.in:8080/hrgpred) has also been established to facilitate the prediction of GETS by the scientific community.
Collapse
|
11
|
Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk M, Lawton-Rauh A, Malone JM, McElroy JS, Merotto A, Westra P, Preston C, Vila-Aiub MM, Busi R, Tranel PJ, Reinhardt C, Saski C, Beffa R, Neve P, Gaines TA. The power and potential of genomics in weed biology and management. PEST MANAGEMENT SCIENCE 2018; 74:2216-2225. [PMID: 29687580 DOI: 10.1002/ps.5048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 05/11/2023]
Abstract
There have been previous calls for, and efforts focused on, realizing the power and potential of weed genomics for better understanding of weeds. Sustained advances in genome sequencing and assembly technologies now make it possible for individual research groups to generate reference genomes for multiple weed species at reasonable costs. Here, we present the outcomes from several meetings, discussions, and workshops focused on establishing an International Weed Genomics Consortium (IWGC) for a coordinated international effort in weed genomics. We review the 'state of the art' in genomics and weed genomics, including technologies, applications, and on-going weed genome projects. We also report the outcomes from a workshop and a global survey of the weed science community to identify priority species, key biological questions, and weed management applications that can be addressed through greater availability of, and access to, genomic resources. Major focus areas include the evolution of herbicide resistance and weedy traits, the development of molecular diagnostics, and the identification of novel targets and approaches for weed management. There is increasing interest in, and need for, weed genomics, and the establishment of the IWGC will provide the necessary global platform for communication and coordination of weed genomics research. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | | | - Kateřina Hamouzová
- Department of Agroecology and Biometeorology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Marie Jasieniuk
- Department of Plant Sciences, University of California-Davis, Davis, CA, USA
| | - Amy Lawton-Rauh
- Department of Genetics and Biochemistry, 316 Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Jenna M Malone
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Christopher Preston
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - Martin M Vila-Aiub
- Facultad de Agronomía, Departamento de Ecología, IFEVA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Carl Reinhardt
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Christopher Saski
- Clemson University Genomics and Computational Biology Laboratory, Clemson University, Clemson, SC, USA
| | - Roland Beffa
- Bayer AG, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Paul Neve
- Biointeractions & Crop Protection Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018; 19:ijms19092476. [PMID: 30134624 PMCID: PMC6163539 DOI: 10.3390/ijms19092476] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.
Collapse
Affiliation(s)
- Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongying Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
13
|
Haak M, Vinke S, Keller W, Droste J, Rückert C, Kalinowski J, Pucker B. High Quality de Novo Transcriptome Assembly of Croton tiglium. Front Mol Biosci 2018; 5:62. [PMID: 30027092 PMCID: PMC6041412 DOI: 10.3389/fmolb.2018.00062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Markus Haak
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Svenja Vinke
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Willy Keller
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Choudhary S, Thakur S, Najar RA, Majeed A, Singh A, Bhardwaj P. Transcriptome characterization and screening of molecular markers in ecologically important Himalayan species (Rhododendron arboreum). Genome 2018; 61:417-428. [DOI: 10.1139/gen-2017-0143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rhododendron arboreum is an ecologically prominent species, which also lends commercial and medicinal benefits in the form of palatable juices and useful herbal drugs. Local abundance and survival of the species under a highly fluctuating climate make it an ideal model for genetic structure and functional analysis. However, a lack of genomic data has hampered additional research. In the present study, cDNA libraries from floral and foliar tissues of the species were sequenced to provide a foundation for understanding the functional aspects of the genome and to construct an enriched repository that will promote genomics studies in the genera. Illumina’s platform facilitated the generation of ∼100 million high-quality paired-end reads. De novo assembly, clustering, and filtering out of shorter transcripts predicted 113 167 non-redundant transcripts with an average length of 1164.6 bases. Of these, 71 961 transcripts were categorized based on functional annotations in the Gene Ontology database, whereby 5710 were grouped into 141 pathways and 23 746 encoded for different transcription factors. Transcriptome screening further identified 35 419 microsatellite regions, of which, 43 polymorphic loci were characterized on 30 genotypes. Seven hundred and nineteen transcripts had 811 high-quality single-nucleotide polymorphic variants with a minimum coverage of 10, a total score of 20, and SNP% of 50.
Collapse
Affiliation(s)
- Shruti Choudhary
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
| | - Sapna Thakur
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
| | - Raoof Ahmad Najar
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
| | - Aasim Majeed
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
| | - Amandeep Singh
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
| | - Pankaj Bhardwaj
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
- Molecular Genetics Laboratory, Centre for Plant Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India
| |
Collapse
|
15
|
Babineau M, Mathiassen SK, Kristensen M, Kudsk P. Fitness of ALS-Inhibitors Herbicide Resistant Population of Loose Silky Bentgrass ( Apera spica-venti). FRONTIERS IN PLANT SCIENCE 2017; 8:1660. [PMID: 28993787 PMCID: PMC5622297 DOI: 10.3389/fpls.2017.01660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
Herbicide resistance is an example of plant evolution caused by an increased reliance on herbicides with few sites of action to manage weed populations. This micro-evolutionary process depends on fitness, therefore the assessment of fitness differences between susceptible and resistant populations are pivotal to establish management strategies. Loose silky bentgrass (Apera spica-venti) is a serious weed in Eastern, Northern, and Central Europe with an increasing number of herbicide resistant populations. This study examined the fitness and growth characteristics of an ALS resistant biotype. Fitness and growth characteristics were estimated by comparing seed germination, biomass, seed yield and time to key growth stages at four crop densities of winter wheat (0, 48, 96, and 192 plants m-2) in a target-neighborhood design. The resistant population germinated 9-20 growing degree days (GDD) earlier than the susceptible population at 10, 16, and 22°C. No differences were observed between resistant and susceptible populations in tiller number, biomass, time to stem elongation, time to first visible inflorescence and seed production. The resistant population reached the inflorescence emergence and flowering stages in less time by 383 and 196 GDD, respectively, at a crop density of 96 winter wheat plants m-2 with no differences registered at other densities. This study did not observe a fitness cost to herbicide resistance, as often hypothesized. Inversely, a correlation between non-target site resistance (NTSR), earlier germination and earlier flowering time which could be interpreted as fitness benefits as these plant characteristics could be exploited by modifying the timing and site of action of herbicide application to better control ALS NTSR populations of A. spica-venti.
Collapse
Affiliation(s)
| | | | | | - Per Kudsk
- *Correspondence: Per Kudsk, Marielle Babineau,
| |
Collapse
|