1
|
Dunker JC, St. John ME, Martin CH. Phenotypic covariation predicts diversification in an adaptive radiation of pupfishes. Ecol Evol 2024; 14:e11642. [PMID: 39114171 PMCID: PMC11303982 DOI: 10.1002/ece3.11642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Phenotypic covariation among suites of traits may constrain or promote diversification both within and between species, yet few studies have empirically tested this relationship. In this study, we investigate whether phenotypic covariation of craniofacial traits is associated with diversification in an adaptive radiation of pupfishes found only on San Salvador Island, Bahamas (SSI). The radiation includes generalist, durophagous, and lepidophagous species. We compared phenotypic variation and covariation (i.e., the P matrix) between (1) allopatric populations of generalist pupfish from neighboring islands and estuaries in the Caribbean, (2) SSI pupfish allopatric lake populations with only generalist pupfish, and (3) SSI lake populations containing the full radiation in sympatry. Additionally, we examine patterns observed in the P matrices of two independent lab-reared F2 hybrid crosses of the two most morphologically distinct members of the radiation to make inferences about the underlying mechanisms contributing to the variation in craniofacial traits in SSI pupfishes. We found that the P matrix of SSI allopatric generalist populations exhibited higher levels of mean trait correlation, constraints, and integration with simultaneously lower levels of flexibility compared to allopatric generalist populations on other Caribbean islands and sympatric populations of all three species on SSI. We also document that while many craniofacial traits appear to result from additive genetic effects, variation in key traits such as head depth, maxilla length, and lower jaw length may be produced via non-additive genetic mechanisms. Ultimately, this study suggests that differences in phenotypic covariation significantly contribute to producing and maintaining organismal diversity.
Collapse
Affiliation(s)
- Julia C. Dunker
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Michelle E. St. John
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Present address:
Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Christopher H. Martin
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Cao X, Deng S, Liu Q, Wu L, Zhuang X, Ding S. Important Role of the Ihh Signaling Pathway in Initiating Early Cranial Remodeling and Morphological Specialization in Cromileptes altivelis. Animals (Basel) 2023; 13:3840. [PMID: 38136878 PMCID: PMC10740873 DOI: 10.3390/ani13243840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we identified the important contribution of frontal bone remodeling in shaping the 'sunken head and humpback' appearance in C. altivelis. Our investigation identified a developmental milestone at a total length of 5-6 cm, making the onset of its morphologic specialization in this species. A comparative analysis with closely related species reveals heightened activity in the frontal osteoblasts of the humpback grouper, potentially providing a physiological basis for its remodeling. Furthermore, our findings highlight that a significant upregulation in the expression levels of Ihhb, Ptch1, and Gli2a genes was seen in C. altivelis within the specified developmental stage, indicating an important involvement of the Ihhb-Ptch1-Gli2a signaling pathway in initiating the morphological specialization. We hypothesized that Ihh signaling could be attributed to shifts in mechanical stress, resulting from muscle traction on the frontal bone due to changes in swimming patterns during development. This study not only offers significant insights into unraveling the molecular mechanisms that govern phenotypic specialization and ecological adaptations in the humpback grouper but also serves as a valuable reference for studies on fishes with a controversial morphology and molecular phylogeny.
Collapse
Affiliation(s)
- Xiaoying Cao
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Shunyun Deng
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Quanyin Liu
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lisheng Wu
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Palominos MF, Muhl V, Richards EJ, Miller CT, Martin CH. Jaw size variation is associated with a novel craniofacial function for galanin receptor 2 in an adaptive radiation of pupfishes. Proc Biol Sci 2023; 290:20231686. [PMID: 37876194 PMCID: PMC10598438 DOI: 10.1098/rspb.2023.1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel role for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a circulating Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.
Collapse
Affiliation(s)
- M. Fernanda Palominos
- Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Vanessa Muhl
- Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Emilie J. Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Craig T. Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Palominos MF, Muhl V, Richards EJ, Miller CT, Martin CH. Jaw size variation is associated with a novel craniofacial function for galanin receptor 2 in an adaptive radiation of pupfishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543513. [PMID: 37333213 PMCID: PMC10274624 DOI: 10.1101/2023.06.02.543513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology that also provides an opportunity to uncover new genes and regulatory networks with potential clinical relevance. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island in the Bahamas. We confirmed the loss of a putative Sry transcription factor binding site in the upstream region of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage and premaxilla using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel function for Galr2 in craniofacial development and jaw elongation by exposing embryos to drugs that inhibit Galr2 activity. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a postulated Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.
Collapse
Affiliation(s)
- M Fernanda Palominos
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | - Vanessa Muhl
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | - Emilie J Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota
| | - Craig T Miller
- Department of Molecular & Cell Biology, University of California, Berkeley
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| |
Collapse
|
5
|
Abril SIM, Pin AO, Schonemann AM, Bellot M, Gómez-Canela C, Beiras R. Evaluating the alterations of the estrogen-responsive genes in Cyprinodon variegatus larvae for biomonitoring the impacts of estrogenic endocrine disruptors (EEDs). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104042. [PMID: 36549414 DOI: 10.1016/j.etap.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Currently, endocrine disruptors (EDs) can be found in all the environmental compartments. To understand the effects of estrogenic EDs (EEDs), adults of Cyprinodon variegatus have been classically used as a marine model. However, it is during development that exposure to contaminants may generate permanent consequences. Thus, the aim of this study was to verify the effects produced by acute exposure to 17α-ethinylestradiol (EE2) in C. variegatus larvae. Quantitative PCR (qPCR) results revealed the induction of vtg and zp gene expression on exposure to 1000 ng/L EE2 and the induction of vtgc, zp2, zp3 and cyp19a2, and inhibition of vtgab, wap and cyp1a1 on exposure to 100 ng/L EE2. Lower concentrations inhibited the gene expression of vtgab and wap (50 ng/L), cyp1a1 (25 ng/L) and zp2 (12.5 ng/L). These alterations in gene expression allow us to affirm that larvae of C. variegatus are an efficient and sensitive model for biomonitoring EEDs.
Collapse
Affiliation(s)
- Sandra Isabel Moreno Abril
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Galicia, Spain.
| | - Ana Olmos Pin
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Galicia, Spain
| | - Alexandre M Schonemann
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Galicia, Spain
| | - Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Ricardo Beiras
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Galicia, Spain
| |
Collapse
|
6
|
Li J, Sun K, Dai W, Leng H, Feng J. Divergence in interspecific and intersubspecific gene expression between two closely related horseshoe bats ( Rhinolophus). J Mammal 2022. [DOI: 10.1093/jmammal/gyac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Closely related species have been used as representative systems to investigate the genetic mechanisms involved in the early stages of species differentiation. Previous studies have indicated that variation in gene expression might be a sensitive indicator of initial species divergence, although the role of expression divergence, and especially that associated with phenotypic variation remained relatively undefined. For three organs (cochlea, brain, and liver) from two closely related bat species (Rhinolophus siamensis and R. episcopus), the interspecific and intersubspecific gene expression profiles were compared using transcriptomics in this study. Striking organ specificity of expression was observed, and expression profiles exhibited similarities between cochlea and brain tissues. Numerous differentially expressed genes (DEGs) were identified for each organ in the interspecific comparison (cochlea/brain/liver: 1,069/647/692) and intersubspecific comparison (608/528/368). Functional enrichment analysis indicated vital variation in expression related to the immune system, ion activities, neuronal function, and multisensory system regulation in both comparisons. DEGs relevant to the variation in echolocation calls (RF) were found, and some of them were involved in the pivotal patterns of expression variation. The regulation of immune, ion channel, neural activity, and sophisticated sensory functions at the expression level might be key mechanisms in the early species divergence of bats, and the expression variation related to acoustical signal could have played a crucial part. This study expands our knowledge of gene expression and patterns of variation for three key organs to echolocation at both the interspecific and intersubspecific levels. Further, the framework described here provides insight into the genetic basis of phenotypic variation during the incipient stage of species differentiation.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- College of Life Science, Jilin Agricultural University , Changchun 130118 , China
| |
Collapse
|
7
|
Li J, Sun K, Dai W, Leng H, Li A, Feng J. Extensive Adaptive Variation in Gene Expression within and between Closely Related Horseshoe Bats (Chiroptera, Rhinolophus) Revealed by Three Organs. Animals (Basel) 2022; 12:ani12233432. [PMID: 36496954 PMCID: PMC9741297 DOI: 10.3390/ani12233432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In the process of species differentiation and adaption, the relative influence of natural selection on gene expression variation often remains unclear (especially its impact on phenotypic divergence). In this study, we used differentially expressed genes from brain, cochlea, and liver samples collected from two species of bats to determine the gene expression variation forced by natural selection when comparing at the interspecific (Rhinolophus siamensis and R. episcopus episcopus) and the intraspecific (R. e. episcopus and R. episcopus spp.) levels. In both cases, gene expression variation was extensively adaptive (>66.0%) and mainly governed by directional selection, followed by stabilizing selection, and finally balancing selection. The expression variation related to acoustic signals (resting frequency, RF) and body size (forearm length, FA) was also widely governed by natural selection (>69.1%). Different functional patterns of RF- or FA-related adaptive expression variation were found between the two comparisons, which manifested as abundant immune-related regulations between subspecies (indicating a relationship between immune response and phenotypic adaption). Our study verifies the extensive adaptive expression variation between both species and subspecies and provides insight into the effects of natural selection on species differentiation and adaptation as well as phenotypic divergence at the expression level.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
- Correspondence: (K.S.); (J.F.)
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.S.); (J.F.)
| |
Collapse
|
8
|
Black AN, Willoughby JR, Brüniche-Olsen A, Pierce BL, DeWoody JA. The endangered White Sands pupfish (Cyprinodon tularosa) genome reveals low diversity and heterogenous patterns of differentiation. Mol Ecol Resour 2021; 21:2520-2532. [PMID: 34137170 DOI: 10.1111/1755-0998.13447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
The White Sands pupfish (Cyprinodon tularosa), endemic to New Mexico in Southwestern North America, is of conservation concern due in part to invasive species, chemical pollution, and groundwater withdrawal. Herein, we developed a draft reference genome and use it to provide biological insights into the evolution and conservation of C. tularosa. We used our assembly to localize microsatellite markers previously used to demarcate evolutionary significant units (ESU), quantified genomic divergence and transposable element profiles between species, and compared C. tularosa genomic diversity related species. Our de novo assembly of PacBio Sequel II error-corrected reads resulted in a 1.08 Gb draft genome with a contig N50 of 1.4 Mb and 25,260 annotated protein coding genes, including 95% of the expected Actinopterygii conserved complete single-copy orthologues. Many of the C. tularosa microsatellite markers used for conservation assessments fell within, or near, genes and exhibited a pattern of increased heterozygosity near genic areas compared to those in intergenic regions. Nuclear alignments between these two species revealed 193 genes contained in rapidly diverging tracts; transposable element profiles were largely concordant and suggest a shared, rapid expansion of LINE and Gypsy elements. Genome-wide heterozygosity was markedly lower in C. tularosa compared to estimates from other related species, probably because of smaller long-term effective population sizes constrained by their isolated and limited habitat. Overall, these inferences provide new insights into C. tularosa that should help inform future management efforts.
Collapse
Affiliation(s)
- Andrew N Black
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Janna R Willoughby
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA.,School of Forestry and Wildlife Sciences, Auburn University, Auburn, USA
| | - Anna Brüniche-Olsen
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Brian L Pierce
- Natural Resources Institute, Texas A&M University, College Station, Texas, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
9
|
Lencer E, McCune AR. Differences in Cell Proliferation and Craniofacial Phenotype of Closely Related Species in the Pupfish Genus Cyprinodon. J Hered 2021; 111:237-247. [PMID: 31811714 DOI: 10.1093/jhered/esz074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/04/2019] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis for phenotypic differences is fundamental to the study of macroevolutionary patterns of biological diversity. While technological advances in DNA sequencing have made researching genetic variation in wild taxa routine, fully understanding how these variants affect phenotype requires taking the next step to investigate how genetic changes alter cell and tissue interactions that ultimately produce phenotypes. In this article, we investigate a role for cell proliferation as a developmental source of craniofacial diversity in a radiation of 3 species of Cyprinodon from San Salvador Island, Bahamas. Patterns of cell proliferation in the heads of hatching-age fish differ among species of Cyprinodon, and correlate with differences in allometric growth rate among the jaws of 3 distinct species. Regional patterns of cell proliferation in the head are complex, resulting in an unintuitive result in which lower levels of cell proliferation in the posterior head region are associated with the development of relatively larger jaws in one species. We combine these data with previously published morphological and genomic data to show how studying the mechanisms generating phenotype at the cellular and tissue levels of biological organization can help mechanistically link genomic studies with classic morphological studies.
Collapse
Affiliation(s)
- Ezra Lencer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY.,Department of Craniofacial Biology, University of Denver-Anschutz, RC, Aurora, CO
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| |
Collapse
|
10
|
McGirr JA, Martin CH. Few Fixed Variants between Trophic Specialist Pupfish Species Reveal Candidate Cis-Regulatory Alleles Underlying Rapid Craniofacial Divergence. Mol Biol Evol 2021; 38:405-423. [PMID: 32877534 PMCID: PMC7826174 DOI: 10.1093/molbev/msaa218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists-a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species-only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.
Collapse
Affiliation(s)
- Joseph A McGirr
- Environmental Toxicology Department, University of California, Davis, CA
| | - Christopher H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
11
|
McGirr JA, Martin CH. Ecological divergence in sympatry causes gene misexpression in hybrids. Mol Ecol 2020; 29:2707-2721. [PMID: 32557903 PMCID: PMC8209238 DOI: 10.1111/mec.15512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Ecological speciation occurs when reproductive isolation evolves as a byproduct of adaptive divergence between populations. Selection favouring gene regulatory divergence between species could result in transgressive levels of gene expression in F1 hybrids that may lower hybrid fitness. We combined 58 resequenced genomes with 124 transcriptomes to identify patterns of hybrid gene misexpression that may be driven by adaptive regulatory divergence within a young radiation of Cyprinodon pupfishes, which consists of a dietary generalist and two trophic specialists-a molluscivore and a scale-eater. We found more differential gene expression between closely related sympatric specialists than between allopatric generalist populations separated by 1,000 km. Intriguingly, 9.6% of genes that were differentially expressed between sympatric species were also misexpressed in F1 hybrids. A subset of these genes were in highly differentiated genomic regions and enriched for functions important for trophic specialization, including head, muscle and brain development. These regions also included genes that showed evidence of hard selective sweeps and were significantly associated with oral jaw length-the most rapidly diversifying skeletal trait in this radiation. Our results indicate that divergent ecological selection in sympatry can contribute to hybrid gene misexpression which may act as a reproductive barrier between nascent species.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina, Chapel
Hill, NC 27514
| | - Christopher H. Martin
- Department of Biology, University of North Carolina, Chapel
Hill, NC 27514
- Department of Integrative Biology and Museum of Vertebrate
Zoology, University of California, Berkeley, CA 94720
| |
Collapse
|
12
|
St. John ME, Dixon K, Martin CH. Oral shelling within an adaptive radiation of pupfishes: Testing the adaptive function of a novel nasal protrusion and behavioural preference. JOURNAL OF FISH BIOLOGY 2020; 97:163-171. [PMID: 32278332 PMCID: PMC8183458 DOI: 10.1111/jfb.14344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Dietary specialization on hard prey items, such as mollusks and crustaceans, is commonly observed in a diverse array of fish species. Many fish consume these types of prey by crushing the shell to consume the soft tissue within, but a few fishes extricate the soft tissue without breaking the shell using a method known as oral shelling. Oral shelling involves pulling a mollusc from its shell and it may be a way to subvert an otherwise insurmountable shell defence. However, the biomechanical requirements and potential adaptations for oral shelling are unknown. Here, we test the hypothesis that a novel nasal protrusion is an adaptation for oral shelling in the durophagous pupfish (Cyprinodon brontotheroides). We first demonstrate oral shelling in this species and then predict that a larger nasal protrusion would allow pupfish to consume larger snails. Durophagous pupfish are found within an endemic radiation of pupfish on San Salvador Island, Bahamas. We took advantage of closely related sympatric species and outgroups to test: (a) whether durophagous pupfish shell and consume more snails than other species, (b) if F1 and F2 durophagous hybrids consume similar amounts of snails as purebred durophagous pupfish, and (c) if nasal protrusion size in parental and hybrid populations increases the maximum size of consumed snails. We found that durophagous pupfish and their hybrids consumed the most snails, but did not find a strong association between nasal protrusion size and maximum snail size consumed within the parental or F2 hybrid population, suggesting that the size of their novel nasal protrusion does not provide a major benefit in oral shelling. Instead, we suggest that the nasal protrusion may increase feeding efficiency, act as a sensory organ, or is a sexually selected trait, and that a strong feeding preference may be most important for oral shelling.
Collapse
Affiliation(s)
- Michelle E. St. John
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Kristi Dixon
- Department of Biology, University of North Carolina at Chapel Hill, 120 South Rd., NC 27599, USA
| | - Christopher H. Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
St John ME, Holzman R, Martin CH. Rapid adaptive evolution of scale-eating kinematics to a novel ecological niche. J Exp Biol 2020; 223:jeb217570. [PMID: 32029459 PMCID: PMC7097200 DOI: 10.1242/jeb.217570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2020] [Indexed: 01/08/2023]
Abstract
The origins of novel trophic specialization, in which organisms begin to exploit resources for the first time, may be explained by shifts in behavior such as foraging preferences or feeding kinematics. One way to investigate behavioral mechanisms underlying ecological novelty is by comparing prey capture kinematics among species. We investigated the contribution of kinematics to the origins of a novel ecological niche for scale-eating within a microendemic adaptive radiation of pupfishes on San Salvador Island, Bahamas. We compared prey capture kinematics across three species of pupfish while they consumed shrimp and scales in the lab, and found that scale-eating pupfish exhibited peak gape sizes twice as large as in other species, but also attacked prey with a more obtuse angle between their lower jaw and suspensorium. We then investigated how this variation in feeding kinematics could explain scale-biting performance by measuring bite size (surface area removed) from standardized gelatin cubes. We found that a combination of larger peak gape and more obtuse lower jaw and suspensorium angles resulted in approximately 40% more surface area removed per strike, indicating that scale-eaters may reside on a performance optimum for scale biting. To test whether feeding performance could contribute to reproductive isolation between species, we also measured F1 hybrids and found that their kinematics and performance more closely resembled generalists, suggesting that F1 hybrids may have low fitness in the scale-eating niche. Ultimately, our results suggest that the evolution of strike kinematics in this radiation is an adaptation to the novel niche of scale eating.
Collapse
Affiliation(s)
- Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roi Holzman
- School of Zoology, Tel Aviv University, Eilat 6997801, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Martin CH, McGirr JA, Richards EJ, St. John ME. How to Investigate the Origins of Novelty: Insights Gained from Genetic, Behavioral, and Fitness Perspectives. Integr Org Biol 2019; 1:obz018. [PMID: 33791533 PMCID: PMC7671130 DOI: 10.1093/iob/obz018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biologists are drawn to the most extraordinary adaptations in the natural world, often referred to as evolutionary novelties, yet rarely do we understand the microevolutionary context underlying the origins of novel traits, behaviors, or ecological niches. Here we discuss insights gained into the origins of novelty from a research program spanning biological levels of organization from genotype to fitness in Caribbean pupfishes. We focus on a case study of the origins of novel trophic specialists on San Salvador Island, Bahamas and place this radiation in the context of other rapid radiations. We highlight questions that can be addressed about the origins of novelty at different biological levels, such as measuring the isolation of novel phenotypes on the fitness landscape, locating the spatial and temporal origins of adaptive variation contributing to novelty, detecting dysfunctional gene regulation due to adaptive divergence, and connecting behaviors with novel traits. Evolutionary novelties are rare, almost by definition, and we conclude that integrative case studies can provide insights into this rarity relative to the dynamics of adaptation to more common ecological niches and repeated parallel speciation, such as the relative isolation of novel phenotypes on fitness landscapes and the transient availability of ecological, genetic, and behavioral opportunities.
Collapse
Affiliation(s)
- C H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - J A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - E J Richards
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - M E St. John
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
McGirr JA, Martin CH. Hybrid gene misregulation in multiple developing tissues within a recent adaptive radiation of Cyprinodon pupfishes. PLoS One 2019; 14:e0218899. [PMID: 31291291 PMCID: PMC6619667 DOI: 10.1371/journal.pone.0218899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic incompatibilities constitute the final stages of reproductive isolation and speciation, but little is known about incompatibilities that occur within recent adaptive radiations among closely related diverging populations. Crossing divergent species to form hybrids can break up coadapted variation, resulting in genetic incompatibilities within developmental networks shaping divergent adaptive traits. We crossed two closely related sympatric Cyprinodon pupfish species–a dietary generalist and a specialized molluscivore–and measured expression levels in their F1 hybrids to identify regulatory variation underlying the novel craniofacial morphology found in this recent microendemic adaptive radiation. We extracted mRNA from eight day old whole-larvae tissue and from craniofacial tissues dissected from 17–20 day old larvae to compare gene expression between a total of seven F1 hybrids and 24 individuals from parental species populations. We found 3.9% of genes differentially expressed between generalists and molluscivores in whole-larvae tissues and 0.6% of genes differentially expressed in craniofacial tissue. We found that 2.1% of genes were misregulated in whole-larvae hybrids whereas 19.1% of genes were misregulated in hybrid craniofacial tissues, after correcting for sequencing biases. We also measured allele specific expression across 15,429 heterozygous sites to identify putative compensatory regulatory mechanisms underlying differential expression between generalists and molluscivores. Together, our results highlight the importance of considering misregulation as an early indicator of genetic incompatibilities in the context of rapidly diverging adaptive radiations and suggests that compensatory regulatory divergence drives hybrid gene misregulation in developing tissues that give rise to novel craniofacial traits.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
16
|
St. John ME, McGirr JA, Martin CH. The behavioral origins of novelty: did increased aggression lead to scale-eating in pupfishes? Behav Ecol 2019; 30:557-569. [PMID: 30971862 PMCID: PMC6450202 DOI: 10.1093/beheco/ary196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Behavioral changes in a new environment are often assumed to precede the origins of evolutionary novelties. Here, we examined whether an increase in aggression is associated with a novel scale-eating trophic niche within a recent radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. We measured aggression using multiple behavioral assays and used transcriptomic analyses to identify differentially expressed genes in aggression and other behavioral pathways across 3 sympatric species in the San Salvador radiation (generalist, snail-eating specialist, and scale-eating specialist) and 2 generalist outgroups. Surprisingly, we found increased behavioral aggression and differential expression of aggression-related pathways in both the scale-eating and snail-eating specialists, despite their independent evolutionary origins. Increased behavioral aggression varied across both sex and stimulus context in both species. Our results indicate that aggression is not unique to scale-eating specialists. Instead, selection may increase aggression in other contexts such as niche specialization in general or mate competition. Alternatively, increased aggression may result from indirect selection on craniofacial traits, pigmentation, or metabolism-all traits which are highly divergent, exhibit signs of selective sweeps, and are affected by aggression-related genetic pathways which are differentially expressed in this system. In conclusion, the evolution of a novel predatory trophic niche within a recent adaptive radiation does not have clear-cut behavioral origins as previously assumed, highlighting the multivariate nature of adaptation and the complex integration of behavior with other phenotypic traits.
Collapse
Affiliation(s)
| | - Joseph A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
17
|
Ahi EP, Singh P, Lecaudey LA, Gessl W, Sturmbauer C. Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization. EvoDevo 2018; 9:23. [PMID: 30519389 PMCID: PMC6271631 DOI: 10.1186/s13227-018-0112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. RESULTS We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). CONCLUSIONS These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
18
|
Zhang C, Su S, Li X, Li B, Yang B, Zhu J, Wang W. Comparative transcriptomics identifies genes differentially expressed in the intestine of a new fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. PLoS One 2018; 13:e0206615. [PMID: 30395585 PMCID: PMC6218049 DOI: 10.1371/journal.pone.0206615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
We have created a new, fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. To better understand the impacts of gene regulation in intestinal tissue on growth and unsaturated fatty acid content, we conducted a comparative RNA-Seq transcriptome analysis between intestine samples of Selected and Control groups (and corroborated selected results by PCR). After eight weeks of cage culture, weight gain of the Selected group was 20.84% higher. In muscles of the control group, monounsaturated fatty acids (FAs) were more abundant, whereas polyunsaturated FAs were more abundant in muscles of the Selected group. In total, we found 106 differentially expressed genes (DEGs) between the two groups. Only the endocytosis pathway was significantly enriched in DEGs, with two upregulated genes: il2rb and ehd1. The latter is involved in the growth hormone/insulin-like growth factor (Gh/Igf) axis, which plays a key role in the regulation of growth in animals. tll2, which is known to be associated with intestinal regeneration, was extremely highly upregulated in both transcriptomic (infinite) and qPCR (610.70) analyses. Two of the upregulated genes are associated with the fatty acid metabolism, several genes are likely to be indicators of heightened transcription levels, several are associated with metabolic and developmental roles, several with neuronal functions (including two with vision), several with the immune system, and two downregulated genes with the development of vasculature. The higher growth rate of the Selected group is likely to be at least partially attributed to increased endocytosis efficiency and genetically-driven behavioural differences (higher aggression levels). There are some indications that this new strain might have slightly impaired immune responses, and a higher propensity for inherited diseases leading to sight impairment, as well for neurodegenerative diseases in general, but these indications still need to be confirmed.
Collapse
Affiliation(s)
- Chengfeng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Bing Li
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Baojuan Yang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail: (JZ); (WW)
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (JZ); (WW)
| |
Collapse
|
19
|
Lencer ES, McCune AR. An embryonic staging series up to hatching for Cyprinodon variegatus: An emerging fish model for developmental, evolutionary, and ecological research. J Morphol 2018; 279:1559-1578. [PMID: 30368863 DOI: 10.1002/jmor.20870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 11/08/2022]
Abstract
Using multiple taxa to research development is necessary for making general conclusions about developmental patterns and mechanisms. We present a staging series for Cyprinodon variegatus as a basis for further study of the developmental biology of fishes in the genus Cyprinodon and for comparative work on teleost fishes beyond the standard models. Cyprinodon are small, euryhaline fishes, widely distributed in fresh, brackish, and hypersaline waters of southern and eastern North America. Cyprinodontids are closely related to fundulids, providing a comparative reference point to the embryological model, Fundulus heteroclitus. Ecologists and evolutionary biologists commonly study Cyprinodon, and we have been using Cyprinodon to study skull variation and its genetic basis among closely related species. We divided embryonic development of C. variegatus into 34 morphologically identifiable stages. We reference our staging series to that already defined for a related model species, Oryzias latipes (medaka) that is studied by a large community of researchers. We provide a description of the early chondrogenesis and ossification of skull and caudal fin bones during the latter stages of embryonic development. We show that Cyprinodon are tractable for studying development. Eggs can be obtained easily from breeding pairs and our study provides a staging system to facilitate future developmental studies.
Collapse
Affiliation(s)
- Ezra S Lencer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| |
Collapse
|
20
|
McGirr JA, Martin CH. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol Lett 2018; 2:62-75. [PMID: 30283665 PMCID: PMC6089502 DOI: 10.1002/evl3.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Parallel evolution of gene expression commonly underlies convergent niche specialization, but parallel changes in expression could also underlie divergent specialization. We investigated divergence in gene expression and whole-genome genetic variation across three sympatric Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist and two derived specialists adapted to novel niches: a scale-eating and a snail-eating pupfish. We sampled total mRNA from all three species at two early developmental stages and compared gene expression with whole-genome genetic differentiation among all three species in 42 resequenced genomes. Eighty percent of genes that were differentially expressed between snail-eaters and generalists were up or down regulated in the same direction between scale-eaters and generalists; however, there were no fixed variants shared between species underlying these parallel changes in expression. Genes showing parallel evolution of expression were enriched for effects on metabolic processes, whereas genes showing divergent expression were enriched for effects on cranial skeleton development and pigment biosynthesis, reflecting the most divergent phenotypes observed between specialist species. Our findings reveal that even divergent niche specialists may exhibit convergent adaptation to higher trophic levels through shared genetic pathways. This counterintuitive result suggests that parallel evolution in gene expression can accompany divergent ecological speciation during adaptive radiation.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| | - Christopher H. Martin
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| |
Collapse
|
21
|
Su S, Dong Z. Comparative expression analyses of bone morphogenetic protein 4 ( BMP4 ) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner. Gene Expr Patterns 2018; 27:106-113. [DOI: 10.1016/j.gep.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023]
|
22
|
Hernandez LP, Adriaens D, Martin CH, Wainwright PC, Masschaele B, Dierick M. Building trophic specializations that result in substantial niche partitioning within a young adaptive radiation. J Anat 2017; 232:173-185. [PMID: 29161774 DOI: 10.1111/joa.12742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
Dietary partitioning often accompanies the increased morphological diversity seen during adaptive radiations within aquatic systems. While such niche partitioning would be expected in older radiations, it is unclear how significant morphological divergence occurs within a shorter time period. Here we show how differential growth in key elements of the feeding mechanism can bring about pronounced functional differences among closely related species. An incredibly young adaptive radiation of three Cyprinodon species residing within hypersaline lakes in San Salvador Island, Bahamas, has recently been described. Characterized by distinct head shapes, gut content analyses revealed three discrete feeding modes in these species: basal detritivory as well as derived durophagy and lepidophagy (scale-feeding). We dissected, cleared and stained, and micro-CT scanned species to assess functionally relevant differences in craniofacial musculoskeletal elements. The widespread feeding mode previously described for cyprinodontiforms, in which the force of the bite may be secondary to the requisite dexterity needed to pick at food items, is modified within both the scale specialist and the durophagous species. While the scale specialist has greatly emphasized maxillary retraction, using it to overcome the poor mechanical advantage associated with scale-eating, the durophage has instead stabilized the maxilla. In all species the bulk of the adductor musculature is composed of AM A1. However, the combined masses of both adductor mandibulae (AM) A1 and A3 in the scale specialist were five times that of the other species, showing the importance of growth in functional divergence. The scale specialist combines plesiomorphic jaw mechanisms with both a hypertrophied AM A1 and a slightly modified maxillary anatomy (with substantial functional implications) to generate a bite that is both strong and allows a wide range of motion in the upper jaw, two attributes that normally tradeoff mechanically. Thus, a significant feeding innovation (scale-eating, rarely seen in fishes) may evolve based largely on allometric changes in ancestral structures. Alternatively, the durophage shows reduced growth with foreshortened jaws that are stabilized by an immobile maxilla. Overall, scale specialists showed the most divergent morphology, suggesting that selection for scale-biting might be stronger or act on a greater number of traits than selection for either detritivory or durophagy. The scale specialist has colonized an adaptive peak that few lineages have climbed. Thus, heterochronic changes in growth can quickly produce functionally relevant change among closely related species.
Collapse
Affiliation(s)
- Luz Patricia Hernandez
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Dominique Adriaens
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Christopher H Martin
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, Davis, CA, USA
| | - Bert Masschaele
- Department of Subatomic and Radiation Physics, Ghent University, Ghent, Belgium
| | - Manuel Dierick
- Department of Subatomic and Radiation Physics, Ghent University, Ghent, Belgium
| |
Collapse
|