1
|
Zhang M, Liu X, Wu L, Zhou K, Yang J, Miao Y, Hao M, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Zhang L, Huang L, Liu D. Mapping of a Recessive Gene for All-Stage Resistance to Stripe Rust in a Wheat Line Derived from Cultivated Einkorn ( Triticum monococcum). PLANT DISEASE 2024; 108:1682-1687. [PMID: 38190359 DOI: 10.1094/pdis-11-23-2363-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive fungal diseases of wheat. Cultivated einkorn (Triticum monococcum L. ssp. monococcum, 2n = 2x = 14, AmAm), one of the founder crops of agriculture, harbors unexploited genetic sources for wheat improvement. An advanced wheat line, Z15-1949, with 42 chromosomes, selected from the hybrids of Pst-susceptible common wheat cultivar Crocus and resistant T. monococcum accession 10-1, exhibits high resistance to a mixture of the prevalent Chinese Pst races. Genetic analysis on F1, F2, and F2:3 generations of the cross between Z15-1949 and Pst-susceptible common wheat SY95-71 indicated that the resistance of Z15-1949 was conferred by a recessive gene, tentatively designated as YrZ15-1949. This gene was mapped to the short arm of chromosome 7D using the Wheat 55K single nucleotide polymorphism array, flanked by markers KASP-1949-2 and KASP-1949-10 within a 3.3-cM genetic interval corresponding to a 1.12-Mb physical region in the Chinese Spring reference genome V2.0. The gene differs from previously reported Yr genes on 7D based on their physical positions and is probably a novel gene. YrZ15-1949 would be a valuable resource for developing Pst-resistant wheat cultivars, and the linked markers could be used for marker-assisted selection.
Collapse
Affiliation(s)
- Minghu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaru Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongpiao Miao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Song Z, Zuo Y, Li W, Dai S, Liu G, Pu Z, Yan Z. Chromosome stability of synthetic Triticum turgidum-Aegilops umbellulata hybrids. BMC PLANT BIOLOGY 2024; 24:391. [PMID: 38735929 PMCID: PMC11089697 DOI: 10.1186/s12870-024-05110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.
Collapse
Affiliation(s)
- Zhongping Song
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Neijiang Normal University, Neijiang, 641000, P. R. China
| | - Yuanyuan Zuo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Wenjia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, 610066, P. R. China
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, P. R. China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
| |
Collapse
|
3
|
Badaeva ED, Kotseruba VV, Fisenko AV, Chikida NN, Belousova MK, Zhurbenko PM, Surzhikov SA, Dragovich AY. Intraspecific divergence of diploid grass Aegilopscomosa is associated with structural chromosome changes. COMPARATIVE CYTOGENETICS 2023; 17:75-112. [PMID: 37304148 PMCID: PMC10252141 DOI: 10.3897/compcytogen.17.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 06/13/2023]
Abstract
Aegilopscomosa Smith in Sibthorp et Smith, 1806 is diploid grass with MM genome constitution occurring mainly in Greece. Two morphologically distinct subspecies - Ae.c.comosa Chennaveeraiah, 1960 and Ae.c.heldreichii (Holzmann ex Boissier) Eig, 1929 are discriminated within Ae.comosa, however, genetic and karyotypic bases of their divergence are not fully understood. We used Fluorescence in situ hybridization (FISH) with repetitive DNA probes and electrophoretic analysis of gliadins to characterize the genome and karyotype of Ae.comosa to assess the level of their genetic diversity and uncover mechanisms leading to radiation of subspecies. We show that two subspecies differ in size and morphology of chromosomes 3M and 6M, which can be due to reciprocal translocation. Subspecies also differ in the amount and distribution of microsatellite and satellite DNA sequences, the number and position of minor NORs, especially on 3M and 6M, and gliadin spectra mainly in the a-zone. Frequent occurrence of hybrids can be caused by open pollination, which, along with genetic heterogeneity of accessions and, probably, the lack of geographic or genetic barrier between the subspecies, may contribute to extremely broad intraspecific variation of GAAn and gliadin patterns in Ae.comosa, which are usually not observed in endemic plant species.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119334, RussiaN.I.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Violetta V. Kotseruba
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova str. 2, Saint Petersburg 197376, RussiaKomarov Botanical Institute, Russian Academy of SciencesSaint PetersburgRussia
| | - Andnrey V. Fisenko
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| | - Nadezhda N. Chikida
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher Education, Bolshaya Morskaya str. 42-44, Saint Petersburg 190000, RussiaN.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher EducationSaint PetersburgRussia
| | - Maria Kh. Belousova
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher Education, Bolshaya Morskaya str. 42-44, Saint Petersburg 190000, RussiaN.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher EducationSaint PetersburgRussia
| | - Peter M. Zhurbenko
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova str. 2, Saint Petersburg 197376, RussiaKomarov Botanical Institute, Russian Academy of SciencesSaint PetersburgRussia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119334, RussiaN.I.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexandra Yu. Dragovich
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
4
|
Wang X, Yoo E, Lee S, Cho GT, Lee GA, Yi JY, Du X, Han S, Hyun DY, Ro N, Kim KM. Classification of 17 species Aegilops using DNA barcoding and SNPs, reveals gene flow among Aegilops biuncialis, Aegilops juvenalis, and Aegilops columnaris. FRONTIERS IN PLANT SCIENCE 2022; 13:984825. [PMID: 36275512 PMCID: PMC9583012 DOI: 10.3389/fpls.2022.984825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Rapid changes in agricultural environments caused by global warming pose a major challenge to food production and safety. Common wheat (Triticum aestivum) is a hexaploid plant (AABBDD) that shares large numbers of quantitative traits and resistance genes with B and D genomes of Aegilops species, which are responsible for several metabolic functions and biosynthetic processes, particularly in plant adaptation to biotic as well as abiotic stresses. Comparatively, the abundance of the Aegilops gene pool is much higher than that of Triticum. Therefore, we used four universal DNA barcodes for plants (ITS2, matK, rbcL, and psbM-petN) to construct a phylogenetic tree to classify the genus Aegilops. Fourteen species were distinguished among a total of 17 representative species. Aegilops biuncialis, Aegilops juvenalis, and Aegilops umbellulata could not be grouped into any of the clusters in the phylogenetic tree, indicating that these three species could not be distinguished by four DNA barcodes. Therefore, from 2408 SNPs obtained using genotyping by sequencing (GBS), we manually screened 30 SNPs that could be potentially used to classify these three species. The results of gene flow and genetic differentiation index (Fst) showed that the genetic differentiation among the three species was small, and there was bidirectional horizontal gene transfer between the three species, which was consistent with our results that the three species were difficult to classify by DNA barcode.
Collapse
Affiliation(s)
- Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Eunae Yoo
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Seungbum Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jung Yoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Xiaoxuan Du
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Seahee Han
- Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Do Yoon Hyun
- Korea National University of Agriculture and Fisheries, Jeonju, South Korea
| | - Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
5
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
6
|
Sun Y, Han H, Wang X, Han B, Zhou S, Zhang M, Liu W, Li X, Guo X, Lu Y, Yang X, Zhang J, Liu X, Li L. Development and application of universal ND-FISH probes for detecting P-genome chromosomes based on Agropyron cristatum transposable elements. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:48. [PMID: 37313513 PMCID: PMC10248659 DOI: 10.1007/s11032-022-01320-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a basic tool that is widely used in cytogenetic research. The detection efficiency of conventional FISH is limited due to its time-consuming nature. Oligonucleotide (oligo) probes with fluorescent labels have been applied in non-denaturing FISH (ND-FISH) assays, which greatly streamline experimental processes and save costs and time. Agropyron cristatum, which contains one basic genome, "P," is a vital wild relative for wheat improvement. However, oligo probes for detecting P-genome chromosomes based on ND-FISH assays have not been reported. In this study, according to the distribution of transposable elements (TEs) in Triticeae genomes, 94 oligo probes were designed based on three types of A. cristatum sequences. ND-FISH validation showed that 12 single oligo probes generated a stable and obvious hybridization signal on whole P chromosomes in the wheat background. To improve signal intensity, mixed probes (Oligo-pAc) were prepared by using the 12 successful probes and validated in the diploid accession A. cristatum Z1842, a small segmental translocation line and six allopolyploid wild relatives containing the P genome. The signals of Oligo-pAc covered the entire chromosomes of A. cristatum and were more intense than those of single probes. The results indicate that Oligo-pAc can replace conventional genomic in situ hybridization (GISH) probes to identify P chromosomes or segments in non-P-genome backgrounds. Finally, we provide a rapid and efficient method specifically for detecting P chromosomes in wheat backgrounds by combining the Oligo-pAc probe with the Oligo-pSc119.2-1 and Oligo-pTa535-1 probes, which can replace conventional sequential GISH/FISH assays. Altogether, we developed a set of oligo probes based on the ND-FISH assays to identify P-genome chromosomes, which can promote utilization of A. cristatum in wheat improvement programs.
Collapse
Affiliation(s)
- Yangyang Sun
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiming Han
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiao Wang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bohui Han
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shenghui Zhou
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Meng Zhang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weihui Liu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuquan Li
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaomin Guo
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yuqing Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinming Yang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinpeng Zhang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xu Liu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lihui Li
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
7
|
Hao M, Zhang L, Huang L, Ning S, Yuan Z, Jiang B, Yan Z, Wu B, Zheng Y, Liu D. 渗入杂交与小麦杂种优势. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Cao D, Wang D, Li S, Li Y, Hao M, Liu B. Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1705-1715. [PMID: 35244733 DOI: 10.1007/s00122-022-04064-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The genetic diversity and loci underlying agronomic traits were analyzed by the reads coverage and genome-wide association study based genotyping-by-sequencing in a diverse population consisting of 199 accessions. Triticale (× Triticosecale Wittmack) is an economically important grain forage and energy crop planted worldwide for its high biomass. Little is known about the genetic diversity and loci underlying agronomic traits in triticale. We performed genotyping-by-sequencing of 199 cultivars and mapped reads to the A, B, D, and R genomes for karyotype analysis. These cultivars could mostly be grouped into five types. Some chromosome abnormalities occurred with high frequency, such as 2D (2R) substitution, deletion of the long arm of chromosome 2D or the short arm of 5R, and translocation of the long arms of 7D/7A, the short arms of 6D/6A, or the long arms of 1D/1A. We chose only widely planted hexaploid triticale cultivars (153) for genome-wide association study. These cultivars could be divided into nine distinct groups, and the linkage disequilibrium decay was 25.4 kb in this population. We identified 253 significant marker-trait associations (MTAs) on 20 chromosomes, except 7R. Twenty-one reliable MTAs were identified repeatedly over two environments. We predicted 16 putative candidate genes involved in plant growth and development using the genome sequences of wheat and rye. These results provide a basis for understanding the genetic mechanisms of agronomic traits and will benefit the breeding of improved hexaploid triticale.
Collapse
Affiliation(s)
- Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dongxia Wang
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, Xining, 810016, People's Republic of China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
9
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Zhang S, Du P, Lu X, Fang J, Wang J, Chen X, Chen J, Wu H, Yang Y, Tsujimoto H, Chu C, Qi Z. Frequent numerical and structural chromosome changes in early generations of synthetic hexaploid wheat. Genome 2021; 65:205-217. [PMID: 34914567 DOI: 10.1139/gen-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modern hexaploid wheat (Triticum aestivum L.; AABBDD) evolved from a hybrid of tetraploid wheat (closely related to Triticum turgidum L. ssp. durum (Desf.) Husn., AABB) and goatgrass (Aegilops tauschii Coss., DD). Variations in chromosome structure and ploidy played important roles in wheat evolution. How these variations occurred and their role in expanding the genetic diversity in modern wheat is mostly unknown. Synthetic hexaploid wheat (SHW) can be used to investigate chromosome variation that occurs during the early generations of existence. SHW lines derived by crossing durum wheat 'Langdon' with twelve Ae. tauschii accessions were analyzed using oligonucelotide probe multiplex fluorescence in situ hybridization (FISH) to metaphase chromosomes and SNP markers. Cluster analysis based on SNP markers categorized them into three groups. Among 702 plants from the S8 and S9 generations, 415 (59.12%) carried chromosome variations involving all 21 chromosomes but with different frequencies for each chromosome and sub-genome. Total chromosome variation frequencies varied between lines, but there was no significant difference among the three groups. The non-random chromosome variations in SHW lines detected in this research may be an indication that similar variations occurred in the early stages of wheat polyploidization and played important roles in wheat evolution.
Collapse
Affiliation(s)
- Siyu Zhang
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Pei Du
- Henan Academy of Agricultural Sciences, 74728, Henan Academy of Crop Molecular Breeding, Zhengzhou, Henan, China;
| | - Xueying Lu
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jiaxin Fang
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jiaqi Wang
- Nanjing Agricultural University, 70578, Weigang No.1, Nanjing, Jiangsu, China, 210095;
| | - Xuejun Chen
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jianyong Chen
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Hao Wu
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Yang Yang
- Zaozhuang University, 372543, Zaozhuang, Shandong, China;
| | - Hisashi Tsujimoto
- Tottori University, 13114, Arid Land Research Center, Hamasaka, Tottori, Japan;
| | - Chenggen Chu
- USDA ARS, 17123, Fargo, North Dakota, United States;
| | - Zengjun Qi
- Nanjing Agricultural University, 70578, Weigang 1,Nanjing, Nanjing, China, 210095;
| |
Collapse
|
11
|
New insights into the dispersion history and adaptive evolution of taxon Aegilops tauschii in China. J Genet Genomics 2021; 49:185-194. [PMID: 34838726 DOI: 10.1016/j.jgg.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Aegilops tauschii, the wild progenitor of wheat D-genome and a valuable germplasm for wheat improvement, has a wide natural distribution from eastern Turkey to China. However, the phylogenetic relationship and dispersion history of Ae. tauschii in China has not been scientifically clarified. In this study, we genotyped 208 accessions (with 104 in China) using ddRAD sequencing and 55K SNP array, and classified the population into six sublineages. Three possible spreading routes or events were identified, resulting in specific distribution patterns, with four sublineages found in Xinjiang, one in Qinghai, two in Shaanxi and one in Henan. We also established the correlation of SNP-based, karyotype-based and spike-morphology-based techniques to demonstrate the internal classification of Ae. tauschii, and developed consensus dataset with 1245 putative accessions by merging data previously published. Our analysis suggested that eight inter-lineage accessions could be assigned to the putative Lineage 3 and these accessions would help to conserve the genetic diversity of the species. By developing the consensus phylogenetic relationships of Ae. tauschii, our work validated the hypothesis on the dispersal history of Ae. tauschii in China, and contributed to the efficient and comprehensive germplasm-mining of the species.
Collapse
|
12
|
Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. BIOLOGY 2021; 10:982. [PMID: 34681081 PMCID: PMC8533267 DOI: 10.3390/biology10100982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.
Collapse
Affiliation(s)
- Shivali Sharma
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco;
| | - Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey;
| | - Peter Werner
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| |
Collapse
|
13
|
Zhang M, Liu X, Peng T, Wang D, Liang D, Li H, Hao M, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Huang L, Zhang L, Liu D. Identification of a recessive gene YrZ15-1370 conferring adult plant resistance to stripe rust in wheat-Triticum boeoticum introgression line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2891-2900. [PMID: 34089337 DOI: 10.1007/s00122-021-03866-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
A novel recessive gene YrZ15-1370 derived from Triticum boeoticum confers adult-plant resistance to wheat stripe rust. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat globally and resistance is the effectively control strategy. Triticum boeoticum Boiss (T. monococcum L. ssp. aegilopoides, 2n = 2x = 14, AbAb) accession G52 confers a high level of adult-plant resistance against a mixture of the Chinese prevalent Pst races. To transfer the resistance to common wheat, a cross was made between G52 and susceptible common wheat genotype Crocus. A highly resistant wheat-T. boeoticum introgression line Z15-1370 (F5 generation) with 42 chromosomes was selected cytologically and by testing with Pst races. F1, F2, and F2:3 generations of the cross between Z15-1370 and stripe rust susceptible common wheat Mingxian169 were developed. Genetic analysis revealed that the resistance in Z15-1370 was controlled by a single recessive gene, tentatively designated YrZ15-1370. Using the bulked segregant RNA-Seq (BSR-Seq) analysis, YrZ15-1370 was mapped to chromosome 6AL and flanked by markers KASP1370-3 and KASP-1370-5 within a 4.3 cM genetic interval corresponding to 1.8 Mb physical region in the Chinese Spring genome, in which a number of disease resistance-related genes were annotated. YrZ15-1370 differed from previously Yr genes identified on chromosome 6A based on its position and/or origin. The YrZ15-1370 would be a valuable resource for wheat resistance improvement and the flanking markers developed here could be useful tools for marker-assisted selection (MAS) in breeding and further cloning the gene.
Collapse
Affiliation(s)
- Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Ting Peng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Dinghao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Dongyu Liang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Hongyu Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China.
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| |
Collapse
|
14
|
Ebrahimzadegan R, Orooji F, Ma P, Mirzaghaderi G. Differentially Amplified Repetitive Sequences Among Aegilops tauschii Subspecies and Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:716750. [PMID: 34490015 PMCID: PMC8417419 DOI: 10.3389/fpls.2021.716750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Genomic repetitive sequences commonly show species-specific sequence type, abundance, and distribution patterns, however, their intraspecific characteristics have been poorly described. We quantified the genomic repetitive sequences and performed single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and subspecies using publicly available raw genomic Illumina sequence reads and used fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The majority of the identified repetitive sequences had similar contents and proportions between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1, CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type) showed significantly lower abundances in subspecies strangulata compared with the subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S rDNA) abundances showed a high variation between genotypes but their abundances were not subspecies specific. Phylogenetic analysis using the repeat abundances of the aforementioned clusters placed the strangulata subsp. in a distinct clade but could not discriminate anathera and meyeri. A near complete differentiation of anathera and strangulata subspecies was observed using SNP analysis; however, var. meyeri showed higher genetic diversity. FISH using major tandem repeats couldn't detect differences between subspecies, although (GAA)10 signal patterns generated two different karyotype groups. Taken together, the different classes of repetitive DNA sequences have differentially accumulated between strangulata and the other two subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying that factors affecting repeatome evolution are variable even among highly closely related lineages.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Orooji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
15
|
Zhou Y, Bai S, Li H, Sun G, Zhang D, Ma F, Zhao X, Nie F, Li J, Chen L, Lv L, Zhu L, Fan R, Ge Y, Shaheen A, Guo G, Zhang Z, Ma J, Liang H, Qiu X, Hu J, Sun T, Hou J, Xu H, Xue S, Jiang W, Huang J, Li S, Zou C, Song CP. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. NATURE PLANTS 2021; 7:774-786. [PMID: 34045708 DOI: 10.1038/s41477-021-00934-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Increasing crop production is necessary to feed the world's expanding population, and crop breeders often utilize genetic variations to improve crop yield and quality. However, the narrow diversity of the wheat D genome seriously restricts its selective breeding. A practical solution is to exploit the genomic variations of Aegilops tauschii via introgression. Here, we established a rapid introgression platform for transferring the overall genetic variations of A. tauschii to elite wheats, thereby enriching the wheat germplasm pool. To accelerate the process, we assembled four new reference genomes, resequenced 278 accessions of A. tauschii and constructed the variation landscape of this wheat progenitor species. Genome comparisons highlighted diverse functional genes or novel haplotypes with potential applications in wheat improvement. We constructed the core germplasm of A. tauschii, including 85 accessions covering more than 99% of the species' overall genetic variations. This was crossed with elite wheat cultivars to generate an A. tauschii-wheat synthetic octoploid wheat (A-WSOW) pool. Laboratory and field analysis with two examples of the introgression lines confirmed its great potential for wheat breeding. Our high-quality reference genomes, genomic variation landscape of A. tauschii and the A-WSOW pool provide valuable resources to facilitate gene discovery and breeding in wheat.
Collapse
Affiliation(s)
- Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinpeng Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing, China
| | - Linlin Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Ge
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiamin Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ting Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyi Hou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Changsong Zou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
16
|
Wang Q, Yan N, Chen H, Li S, Hu H, Lin Y, Shi H, Zhou K, Jiang X, Yu S, Li C, Chen G, Yang Z, Liu Y. Genome-Wide Association Study of Kernel Traits in Aegilops tauschii. Front Genet 2021; 12:651785. [PMID: 34122506 PMCID: PMC8194309 DOI: 10.3389/fgene.2021.651785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Aegilops tauschii is the diploid progenitor of the D subgenome of hexaploid wheat (Triticum aestivum L.). Here, the phenotypic data of kernel length (KL), kernel width (KW), kernel volume (KV), kernel surface area (KSA), kernel width to length ratio (KWL), and hundred-kernel weight (HKW) for 223 A. tauschii accessions were gathered across three continuous years. Based on population structure analysis, 223 A. tauschii were divided into two subpopulations, namely T-group (mainly included A. tauschii ssp. tauschii accessions) and S-group (mainly included A. tauschii ssp. strangulata). Classifications based on cluster analysis were highly consistent with the population structure results. Meanwhile, the extent of linkage disequilibrium decay distance (r2 = 0.5) was about 110 kb and 290 kb for T-group and S-group, respectively. Furthermore, a genome-wide association analysis was performed on these kernel traits using 6,723 single nucleotide polymorphism (SNP) markers. Sixty-six significant markers, distributed on all seven chromosomes, were identified using a mixed linear model explaining 4.82–13.36% of the phenotypic variations. Among them, 15, 28, 22, 14, 21, and 13 SNPs were identified for KL, KW, KV, KSA, KWL, and HKW, respectively. Moreover, six candidate genes that may control kernel traits were identified (AET2Gv20774800, AET4Gv20799000, AET5Gv20005900, AET5Gv20084100, AET7Gv20644900, and AET5Gv21111700). The transfer of beneficial genes from A. tauschii to wheat using marker-assisted selection will broaden the wheat D subgenome improve the efficiency of breeding.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ning Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Sirui Li
- Chengdu Foreign Language School, Chengdu, China
| | - Haiyan Hu
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojun Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shifan Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zisong Yang
- College of Resources and Environment, Aba Teachers University, Wenchuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Zhao L, Xie D, Fan C, Zhang S, Huang L, Ning S, Jiang B, Zhang L, Yuan Z, Liu D, Hao M. Chromosome Stability of Synthetic-Natural Wheat Hybrids. FRONTIERS IN PLANT SCIENCE 2021; 12:654382. [PMID: 33815455 PMCID: PMC8010257 DOI: 10.3389/fpls.2021.654382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Primary allopolyploids are not only ideal materials to study species evolution, but also important bridges in incorporating genetic diversity of wild species into crops. Primary allopolyploids typically exhibit chromosome instability that a disadvantage trait in crop breeding. Newly synthesized hexaploid wheat has been widely used in wheat genetics and breeding studies. To better understand the cytological and genetic basis of chromosome instability, this study investigated the chromosomes of a large number of seeds derived from the synthetic wheat SHW-L1 and its hybrids with natural wheat. SHW-L1 exhibited persistent chromosome instability since we observed a high frequent chromosome variation de novo generated from euploid SHW-L1 plants at the 14th generation of selfing (F14). High frequent chromosome variations were also observed in the F2 hybrids and most of the analyzed recombinant inbred lines (RILs) at F14, derived from the cross of SHW-L1 with common wheat variety Chuanmai 32. Chromosome instability was associated with frequent univalency during meiotic metaphase I. The experiment on reciprocal crosses between SHW-L1 and Chuanmai 32 indicated that cytoplasm has not obvious effects on chromosome instability. An analysis on 48 F14 RILs revealed chromosome variation frequency was not associated with the Ph1 alleles from either SHW-L1 or Chuanmai 32, rejecting the hypothesis that chromosome instability was due to the Ph1 role of synthetic wheat. In the analyzed RILs, chromosome instability influences the phenotype uniformity, showing as obvious trait differences among plants within a RIL. However, the analyzed commercial varieties only containing ∼12.5% genomic components of synthetic wheat were chromosomally stable, indicating that chromosome instability caused by synthetic wheat can be effectively overcome by increasing the genetic background of common wheat.
Collapse
Affiliation(s)
- Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Wheat Center, Henan Institute of Science and Technology, Xinxiang, China
| | - Die Xie
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shujie Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Dai Y, Huang S, Sun G, Li H, Chen S, Gao Y, Chen J. Origins and chromosome differentiation of Thinopyrum elongatum revealed by PepC and Pgk1 genes and ND-FISH. Genome 2021; 64:901-913. [PMID: 33596125 DOI: 10.1139/gen-2019-0176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thinopyrum elongatum is an important gene pool for wheat genetic improvement. However, the origins of the Thinopyrum genomes and the nature of the genus' intraspecific relationships are still controversial. In this study, we used single-copy nuclear genes and non-denaturing fluorescence in situ hybridization (ND-FISH) to characterize genome constitution and chromosome differentiation in Th. elongatum. According to phylogenetic analyses based on PepC and Pgk1 genes, there was an E genome with three versions (Ee, Eb, Ex) and St genomes in the polyploid Th. elongatum. The ND-FISH results of pSc119.2 and pAs1 revealed that the karyotypes of diploid Th. elongatum and Th. bessarabicum were different, and the chromosome differentiation occurred among accessions of the diploid Th. elongatum. In addition, the tetraploid Th. elongatum has two groups of ND-FISH karyotype, indicating that the tetraploid Th. elongatum might be a segmental allotetraploid. In summary, our results suggested that the diploid Th. elongatum, Th. Bessarabicum, and Pseudoroegneria were the donors of the Ee, Eb, and St genomes to the polyploid Th. elongatum, respectively.
Collapse
Affiliation(s)
- Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.,Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shuai Huang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Haifeng Li
- Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Shiqiang Chen
- Institute of Agricultural Sciences, Lixia River Region, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Song Z, Dai S, Bao T, Zuo Y, Xiang Q, Li J, Liu G, Yan Z. Analysis of Structural Genomic Diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by Fluorescence In Situ Hybridization Karyotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:710. [PMID: 32655588 PMCID: PMC7325912 DOI: 10.3389/fpls.2020.00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/05/2020] [Indexed: 05/14/2023]
Abstract
Fluorescence in situ hybridization karyotypes have been widely used for evolutionary analysis on chromosome organization and genetic/genomic diversity in the wheat alliance (tribe Triticeae of Poaceae). The karyotpic diversity of Aegilops umbellulata, Ae. markgrafii, Ae. comosa subsp. comosa and subsp. subventricosa, and Ae. uniaristata was evaluated by the fluorescence in situ hybridization (FISH) probes oligo-pSc119.2 and pTa71 in combination with (AAC)5, (ACT)7, and (CTT)12, respectively. Abundant intra- and interspecific genetic variation was discovered in Ae. umbellulata, Ae. markgrafii, and Ae. comosa, but not Ae. uniaristata. Chromosome 7 of Ae. umbellulata had more variants (six variants) than the other six U chromosomes (2-3 variants) as revealed by probes oligo-pSc119.2 and (AAC)5. Intraspecific variation in Ae. markgrafii and Ae. comosa was revealed by oligo-pSc119.2 in combination with (ACT)7 and (CTT)12, respectively. At least five variants were found in every chromosome of Ae. markgrafii and Ae. comosa, and up to 18, 10, and 15 variants were identified for chromosomes 2 of Ae. markgrafii, 4 of Ae. comosa subsp. comosa, and 6 of Ae. comosa subsp. subventricosa. The six Ae. uniaristata accessions showed identical FISH signal patterns. A large number of intra-specific polymorphic FISH signals were observed between the homologous chromosomes of Ae. markgrafii and Ae. comosa, especially chromosomes 1, 2, 4, and 7 of Ae. markgrafii, chromosome 4 of Ae. comosa subsp. comosa, and chromosome 6 of Ae. comosa subsp. subventricosa. Twelve Ae. comosa and 24 Ae. markgrafii accessions showed heteromorphism between homologous chromosomes. Additionally, a translocation between the short arms of chromosomes 1 and 7 of Ae. comosa PI 551038 was identified. The FISH karyotypes can be used to clearly identify the chromosome variations of each chromosome in these Aegilops species and also provide valuable information for understanding the evolutionary relationships and structural genomic variation among Aegilops species.
Collapse
Affiliation(s)
- Zhongping Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Shoufen Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Tingyu Bao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yuanyuan Zuo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Qin Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Zehong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
20
|
Zhang J, Yang F, Jiang Y, Guo Y, Wang Y, Zhu X, Li J, Wan H, Wang Q, Deng Z, Xuan P, Yang W. Preferential Subgenome Elimination and Chromosomal Structural Changes Occurring in Newly Formed Tetraploid Wheat- Aegilops ventricosa Amphiploid (AABBD vD vN vN v). Front Genet 2020; 11:330. [PMID: 32477398 PMCID: PMC7235383 DOI: 10.3389/fgene.2020.00330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/20/2020] [Indexed: 11/15/2022] Open
Abstract
Artificial allopolyploids derived from the genera Triticum and Aegilops have been used as genetic resources for wheat improvement and are a classic example of evolution via allopolyploidization. In this study, we investigated chromosomes and subgenome transmission behavior in the newly formed allopolyploid of wheat group via multicolor Fluorescence in situ hybridization (mc-FISH), using pSc119.2, pTa535, and (GAA)7 as probe combinations, to enabled us to precisely identify individual chromosomes in 381 S3 and S4 generations plants derived from reciprocal crosses between Ae. ventricosa (DvDvNvNv) and T. turgidum (AABB). A higher rate of aneuploidy, constituting 66.04–86.41% individuals, was observed in these two early generations. Of the four constituent subgenomes, Dv showed the highest frequency of elimination, followed by Nv and B, while A was the most stable. In addition, structural chromosomal changes occurred ubiquitously in the selfed progenies of allopolyploids. Among the constituent subgenomes, B showed the highest number of aberrations. In terms of chromosomal dynamics, there was no significant association between the chromosomal behavior model and the cytoplasm, with the exception of chromosomal loss in the Dv subgenome. The chromosome loss frequency in the Dv subgenome was significantly higher in the T. turgidum × Ae. ventricosa cross than in the Ae. ventricosa × T. turgidum cross. This result indicates that, although the D subgenome showed great instability, allopolyploids containing D subgenome could probably be maintained after a certain hybridization in which the D subgenome donor was used as the maternal parent at its onset stage. Our findings provide valuable information pertaining to the behavior patterns of subgenomes during allopolyploidization. Moreover, the allopolyploids developed here could be used as potential resources for the genetic improvement of wheat.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China
| | - Fan Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanlin Guo
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ying Wang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - XinGuo Zhu
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ziyuan Deng
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Pu Xuan
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - WuYun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
21
|
Feng Z, Zhang M, Liu X, Liang D, Liu X, Hao M, Liu D, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Zhang L. FISH karyotype comparison between A b- and A-genome chromosomes using oligonucleotide probes. J Appl Genet 2020; 61:313-322. [PMID: 32248406 DOI: 10.1007/s13353-020-00555-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023]
Abstract
Triticum boeoticum (2n = 2x = 14, AbAb) contains beneficial traits for common wheat improvement. The discrimination of Ab-genome chromosomes from A-genome chromosomes is an important step in gene transfer from T. boeoticum to common wheat. In this study, fluorescence in situ hybridization (FISH) analysis using nine oligonucleotide probes revealed high divergence between chromosomes of the common wheat germplasm Crocus and T. boeoticum accession G52. The combination of Oligo-pTa535-HM and Oligo-pSc119.2-HM can differentiate Ab and A chromosomes within homologous groups 2, 4, 5, and 6; chromosomes 2Ab and 6Ab can be identified by using (ACT)7, (CTT)7, and (GAA)7. The probes Oligo-pTa713 and (ACT)7 can be utilized for the identification of chromosomes 1Ab and 3Ab, respectively. Probes (CAG)7 and (CAC)7 can be applied in the identification of 7Ab. Moreover, probe combinations consisting of Oligo-pTa535-HM and (AAC)7 with (ACT)7 or (CTT)7 and of Oligo-pTa535-HM and Oligo-pTa713 with (CAC)7 or (CTT)7 will help discriminate the Ab-genome chromosomes of T. boeoticum. These probes are being used as potential markers to select common wheat Crocus-T. boeoticum G52 alien chromosome lines. Moreover, FISH patterns are highly divergent between Ab- and A-genome chromosomes, indicating that obvious chromosome structural variations arose during wheat evolution.
Collapse
Affiliation(s)
- Zhen Feng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Dongyu Liang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaojuan Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China. .,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
22
|
Xi W, Tang S, Du H, Luo J, Tang Z, Fu S. ND-FISH-positive oligonucleotide probes for detecting specific segments of rye (Secale cereale L.) chromosomes and new tandem repeats in rye. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Liu X, Feng Z, Liang D, Zhang M, Liu X, Hao M, Liu D, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Zhang L. Development, identification, and characterization of blue-grained wheat-Triticum boeoticum substitution lines. J Appl Genet 2020; 61:169-177. [PMID: 32072449 DOI: 10.1007/s13353-020-00553-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Diploid wild einkorn wheat, Triticum boeoticum Boiss (AbAb, 2n = 2x = 14), is a wheat-related species with a blue aleurone layer. In this study, six blue-grained wheat lines were developed from F8 progeny of crosses between common wheat and T. boeoticum. The chromosome constitutions of these lines were characterized by fluorescence in situ hybridization (FISH) using the oligonucleotide probes Oligo-pTa535-1, Oligo-pSc119.2-1, Oligo-pTa71-2, and (AAC)7. Multicolor FISH using Oligo-pTa535-1, Oligo-pSc119.2-1, and Oligo-pTa71-2 identified all 42 common wheat chromosomes, while Oligo-pTa535-1 and (AAC)7 discriminated the 14 chromosomes of T. boeoticum. FISH revealed that all six blue-grained lines were wheat-T. boeoticum 4Ab (4B) disomic substitution lines. The substitution lines were validated by genotyping using the wheat 55 K single nucleotide polymorphism (SNP) array containing 53,063 markers. These 4Ab (4B) substitution lines represent novel germplasm for blue-grained wheat breeding. The FISH probes and SNP markers used here can be applied in the development of blue-grained wheat-Triticum boeoticum translocation lines.
Collapse
Affiliation(s)
- Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Zhen Feng
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Dongyu Liang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Xiaojuan Liu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China. .,Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
24
|
Badaeva ED, Fisenko AV, Surzhikov SA, Yankovskaya AA, Chikida NN, Zoshchuk SA, Belousova MK, Dragovich AY. Genetic Heterogeneity of a Diploid Grass Aegilops tauschii Revealed by Chromosome Banding Methods and Electrophoretic Analysis of the Seed Storage Proteins (Gliadins). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, Wei Y, Zhang H, Kishii M, Hawkesford MJ, Mao L, Zheng Y, Liu D. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2285-2294. [PMID: 31049633 DOI: 10.1007/s00122-019-03354-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/25/2019] [Indexed: 05/15/2023]
Abstract
Introgressing one-eighth of synthetic hexaploid wheat genome through a double top-cross plus a two-phase selection is an effective strategy to develop high-yielding wheat varieties. The continued expansion of the world population and the likely onset of climate change combine to form a major crop breeding challenge. Genetic advances in most crop species to date have largely relied on recombination and reassortment within a relatively narrow gene pool. Here, we demonstrate an efficient wheat breeding strategy for improving yield potentials by introgression of multiple genomic regions of de novo synthesized wheat. The method relies on an initial double top-cross (DTC), in which one parent is synthetic hexaploid wheat (SHW), followed by a two-phase selection procedure. A genotypic analysis of three varieties (Shumai 580, Shumai 969 and Shumai 830) released from this program showed that each harbors a unique set of genomic regions inherited from the SHW parent. The first two varieties were generated from very small populations, whereas the third used a more conventional scale of selection since one of bread wheat parents was a pre-breeding material. The three varieties had remarkably enhanced yield potential compared to those developed by conventional breeding. A widely accepted consensus among crop breeders holds that introducing unadapted germplasm, such as landraces, as parents into a breeding program is a risky proposition, since the size of the breeding population required to overcome linkage drag becomes too daunting. However, the success of the proposed DTC strategy has demonstrated that novel variation harbored by SHWs can be accessed in a straightforward, effective manner. The strategy is in principle generalizable to any allopolyploid crop species where the identity of the progenitor species is known.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China.
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China.
| | - Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Aili Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Die Xie
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Ke Zheng
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Wenshuai Chen
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Ma Yu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Mengping Chen
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Huaigang Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center, 56237, Texcoco, Mexico
| | | | - Long Mao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
26
|
Yi Y, Zheng K, Ning S, Zhao L, Xu K, Hao M, Zhang L, Yuan Z, Liu D. The karyotype of Aegilops geniculata and its use to identify both addition and substitution lines of wheat. Mol Cytogenet 2019; 12:15. [PMID: 30984289 PMCID: PMC6446333 DOI: 10.1186/s13039-019-0428-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The annual allotetraploid species Aegilops geniculata harbors a number of traits relevant for wheat improvement. An effective cytogenetic method has yet to be developed to distinguish between each of its 14 chromosomes. RESULTS A fluorescence in situ hybridization (FISH) approach was adopted to describe the karyotype of Ae. geniculata. Each of its 14 chromosomes was unequivocally recognized using a cocktail of three probes, namely pTa-713, (AAC)5 and pTa71. FISH karyotyping was then used to detect and characterize selections from an Ae. geniculata × bread wheat wide cross of a chromosome 1Mg disomic addition line and three 4Mg(4B) substitution lines. The identity of the addition line was confirmed by the presence of Glu-M1, detected both using an SDS-PAGE separation of endosperm proteins and by applying a PCR assay directed at the Glu-M1 locus. The status of the substitution lines was validated by genotyping using a wheat single nucleotide polymorphism chip. CONCLUSION FISH karyotyping based on pTa-713, (AAC)5 and pTa71 will be useful for determining the contribution of Ae. geniculata to derivatives of an Ae. geniculata × wheat wide cross. SNP chip-based genotyping is effective for confirming the status of whole chromosome wheat/alien substitution lines.
Collapse
Affiliation(s)
- Yingjin Yi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Ke Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Kai Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
27
|
Li D, Li T, Wu Y, Zhang X, Zhu W, Wang Y, Zeng J, Xu L, Fan X, Sha L, Zhang H, Zhou Y, Kang H. FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines. FRONTIERS IN PLANT SCIENCE 2018; 9:526. [PMID: 29765383 PMCID: PMC5938340 DOI: 10.3389/fpls.2018.00526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Tetraploid Thinopyrum elongatum, which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ES⋅1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer.
Collapse
Affiliation(s)
- Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Tang S, Tang Z, Qiu L, Yang Z, Li G, Lang T, Zhu W, Zhang J, Fu S. Developing New Oligo Probes to Distinguish Specific Chromosomal Segments and the A, B, D Genomes of Wheat ( Triticum aestivum L.) Using ND-FISH. FRONTIERS IN PLANT SCIENCE 2018; 9:1104. [PMID: 30093909 PMCID: PMC6070686 DOI: 10.3389/fpls.2018.01104] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 05/03/2023]
Abstract
Non-denaturing FISH (ND-FISH) technology has been widely used to study the chromosomes of Triticeae species because of its convenience. The oligo probes for ND-FISH analysis of wheat (Triticum aestivum L.) chromosomes are still limited. In this study, the whole genome shotgun assembly sequences (IWGSC WGA v0.4) and the first version of the reference sequences (IWGSC RefSeq v1.0) of Chinese Spring (T. aestivum L.) were used to find new tandem repeats. One hundred and twenty oligo probes were designed according to the new tandem repeats and used for ND-FISH analysis of chromosomes of wheat Chinese Spring. Twenty nine of the 120 oligo probes produce clear or strong signals on wheat chromosomes. Two of the 29 oligo probes can be used to conveniently distinguish wheat A-, B-, and D-genome chromosomes. Sixteen of the 29 oligo probes only produce clear or strong signals on the subtelomeric regions of 1AS, 5AS, 7AL, 4BS, 5BS, and 3DS arms, on the telomeric regions of 1AL, 5AL, 2BS, 3BL, 6DS, and 7DL arms, on the intercalary regions of 4AL and 2DL arms, and on the pericentromeric regions of 3DL and 6DS arms. Eleven of the 29 oligo probes generate distinct signal bands on several chromosomes and they are different from those previously reported. In addition, the short and long arms of 6D chromosome have been confirmed. The new oligo probes developed in this study are useful and convenient for distinguishing wheat chromosomes or specific segments of wheat chromosomes.
Collapse
Affiliation(s)
- Shuyao Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Zongxiang Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Ling Qiu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, China
| | - Zujun Yang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guangrong Li
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Lang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenqian Zhu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jiehong Zhang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, China
| | - Shulan Fu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Shulan Fu,
| |
Collapse
|
29
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|