1
|
Huang M, Fu B, Yin C, Gong P, Liu S, Yang J, Wei X, Liang J, Xue H, He C, Du T, Wang C, Ji Y, Hu J, Zhang R, Du H, Zhang Y, Yang X. Cytochrome P450 CYP6EM1 Underpins Dinotefuran Resistance in the Whitefly Bemisia tabaci. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5153-5164. [PMID: 38427964 DOI: 10.1021/acs.jafc.3c06953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Being a destructive pest worldwide, the whitefly Bemisia tabaci has evolved resistance to neonicotinoid insecticides. The third-generation neonicotinoid dinotefuran has commonly been applied to the control of the whitefly, but its underlying mechanism is currently unknown. On the base of our transcriptome data, here we aim to investigate whether the cytochrome P450 CYP6EM1 underlies dinotefuran resistance in the whitefly. Compared to the susceptible strain, the CYP6EM1 gene was found to be highly expressed in both laboratory and field dinotefuran-resistant populations. Upon exposure to dinotefuran, the mRNA levels of CYP6EM1 were increased. These results demonstrate the involvement of this gene in dinotefuran resistance. Loss and gain of functional studies in vivo were conducted through RNAi and transgenic Drosophila melanogaster assays, confirming the role of CYP6EM1 in conferring such resistance. In a metabolism assay in vitro, the CYP6EM1 protein could metabolize 28.11% of dinotefuran with a possible dinotefuran-dm-NNO metabolite via UPLC-QTOF/MS. Docking of dinotefuran to the CYP6EM1 protein showed a good binding affinity, with an energy of less than -6.0 kcal/mol. Overall, these results provide compelling evidence that CYP6EM1 plays a crucial role in the metabolic resistance of B. tabaci to dinotefuran. Our work provides new insights into the mechanism underlying neonicotinoid resistance and applied knowledge that can contribute to sustainable control of a global pest such as whitefly.
Collapse
Affiliation(s)
- Mingjiao Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, P. R. China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Yao Ji
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Hu J, Fu B, Liang J, Zhang R, Wei X, Yang J, Tan Q, Xue H, Gong P, Liu S, Huang M, Du T, Yin C, He C, Ji Y, Wang C, Zhang C, Du H, Su Q, Yang X, Zhang Y. CYP4CS5-mediated thiamethoxam and clothianidin resistance is accompanied by fitness cost in the whitefly Bemisia tabaci. PEST MANAGEMENT SCIENCE 2024; 80:910-921. [PMID: 37822143 DOI: 10.1002/ps.7826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Understanding the trade-offs between insecticide resistance and the associated fitness is of particular importance to sustainable pest control. One of the most devastating pest worldwide, the whitefly Bemisia tabaci, has developed resistance to various insecticides, especially the neonicotinoid group. Although neonicotinoid resistance often is conferred by P450s-mediated metabolic resistance, the relationship between such resistance and the associated fitness phenotype remains largely elusive. By gene cloning, quantitative reverse transcription (qRT)-PCR, RNA interference (RNAi), transgenic Drosophila melanogaster, metabolism capacity in vitro and 'two sex-age stage' life table study, this study aims to explore the molecular role of a P450 gene CYP4CS5 in neonicotinoid resistance and to investigate whether such resistance mechanism carries fitness costs in the whitefly. RESULTS Our bioassay tests showed that a total of 13 field-collected populations of B. tabaci MED biotype displayed low-to-moderate resistance to thiamethoxam and clothianidin. Compared to the laboratory susceptible strain, we then found that an important P450 CYP4CS5 was remarkably upregulated in the field resistant populations. Such overexpression of CYP4CS5 had a good match with the resistance level among the whitefly samples. Further exposure to the two neonicotinoids resulted in an increase in CYP4CS5 expression. These results implicate that overexpression of CYP4CS5 is closely correlated with thiamethoxam and clothianidin resistance. RNAi knockdown of CYP4CS5 increased mortality of the resistant and susceptible populations after treatment with thiamethoxam and clothianidin in bioassay, but obtained an opposite result when using a transgenic line of D. melanogaster expressing CYP4CS5. Metabolic assays in vitro revealed that CYP4CS5 exhibited certain capacity of metabolizing thiamethoxam and clothianidin. These in vivo and in vitro assays indicate an essential role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance in whitefly. Additionally, our life-table analysis demonstrate that the field resistant whitefly exhibited a prolonged development time, shortened longevity and reduced fecundity compared to the susceptible, suggesting an existing fitness cost as a result of the resistance. CONCLUSION Collectively, in addition to the important role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance, this resistance mechanism is associated with fitness costs in the whitefly. These findings not only contribute to the development of neonicotinoids resistance management strategies, but also provide a new target for sustainable whitefly control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qimei Tan
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengjia Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Li X, Liang P, Wu M, Wang S, Wu Q, Xie W, Zhang Y. Several whitefly genome assemblies and an integrated whitefly gene search platform. INSECT SCIENCE 2024; 31:299-306. [PMID: 37144441 DOI: 10.1111/1744-7917.13206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Xingnuo Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingyue Wu
- Sanya Academy of Troprical Agricultural Sciense, Sanya, Hainan, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
4
|
Liang P, Ning J, Wang W, Zhu P, Gui L, Xie W, Zhang Y. Catalase promotes whitefly adaptation to high temperature by eliminating reactive oxygen species. INSECT SCIENCE 2023; 30:1293-1308. [PMID: 36478361 DOI: 10.1111/1744-7917.13157] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Thermal stress usually leads to excessive production of reactive oxygen species (ROS) in all aerobic organisms. Catalases (CAT) are the key antioxidant enzymes, which act as the first line of defense against ROS in the antioxidant pathway. The highly invasive and widely distributed whitefly Bemisia tabaci MED damages plants by feeding as well as by transmitting many plant viruses. Previous studies have shown that strong adaptability to high temperature helps explain the spread of MED around the world. However, the mechanism underlying high temperature adaptation of this pest is not well understood. In this study, 6 CAT genes were identified from the MED genome and transcriptome dataset, among which BtCAT1, BtCAT2, and BtCAT3 were found to be highly expressed in adults. The expression of BtCAT1, BtCAT2, or BtCAT3 increased with induction temperature and induction time. The MED was exposed with mean high temperature (30 °C or 35 °C) and a short-term extremely high temperature (39 °C or 41 °C) after the silencing of BtCAT1, BtCAT2, or BtCAT3 to significantly increased ROS levels by at least 0.5 times and significantly decreased survival rate and fecundity of MED adults. The ROS level in the treated specimens gradually returned to a normal level after 24 h at 25 °C, but the survival rate still declined significantly. Taken together, our results demonstrate that CAT could help B. tabaci adapt to long-term mean high temperatures and short-term extremely high temperatures by eliminating excessive ROS.
Collapse
Affiliation(s)
- Peng Liang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Ning
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlu Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pu Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Lianyou Gui
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Wang HL, Rao Q, Chen ZZ. Identifying potential insecticide resistance markers through genomic-level comparison of Bemisia tabaci (Gennadius) lines. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22034. [PMID: 37434515 DOI: 10.1002/arch.22034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
The invasive whitefly (Bemisia tabaci) MED is one of the most economically damaging plant pests. The extensive use of insecticide over decades has led to that the invasive B. tabaci MED has developed resistance to a wide range of insecticide classes, but little is known about the genetic background associated with resistance. To this end, we conducted a comparative genome-wide analysis of single-base nucleotide polymorphisms between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line collected in 1976. First, low-coverage genome sequencings were conducted on DNA isolated from individual whiteflies. The sequencing results were evaluated using an available B. tabaci MED genome as a reference. Significant genetic differences were discovered between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line based on the principal component analyses. Top GO categories and KEGG pathways that might be involved in insecticide resistance development were identified, and several of them have not been previously associated with resistance. Additionally, we identified several genetic loci with novel variations including Cytochrome P450 monooxygenases (P450s), UDP-glucuronosyltransferases (UGTs), Glutathione S-transferases (GSTs), esterase, carboxyl-esterases (COE), ABC transporters, fatty acyl-CoA reductase, voltage-gated sodium channels, GABA receptor, and cuticle proteins (CPs) that were previously reported to have close associations with pesticide resistance in well-studied insect groups that provide an essential resource for the design of insecticide resistance-linked loci arrays insecticide. Our results was obtained solely on resequencing genome data sets, more pesticide bio-assays combined with omics datasets should be further used to verify the markers identified here.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Zhen-Zhu Chen
- College of Forestry, Hebei Agricultural University, Hebei, China
| |
Collapse
|
6
|
Yang J, Fu B, Gong P, Zhang C, Wei X, Yin C, Huang M, He C, Du T, Liang J, Liu S, Ji Y, Xue H, Wang C, Hu J, Du H, Zhang R, Yang X, Zhang Y. CYP6CX2 and CYP6CX3 mediate thiamethoxam resistance in field whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1342-1351. [PMID: 37208311 DOI: 10.1093/jee/toad089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well-known for their crucial roles in the detoxification of xenobiotics. However, whether CYP6CX2 and CYP6CX3, 2 genes from our Bemisia tabaci (B. tabaci) MED/Q genome data were associated with detoxification metabolism and confer resistance to thiamethoxam is unclear. In this study, we investigated the role of CYP6CX2 and CYP6CX3 in mediating whitefly thiamethoxam resistance. Our results showed that mRNA levels of CYP6CX2 and CYP6CX3 were up-regulated after exposure to thiamethoxam. Transcriptional levels of 2 genes were overexpressed in laboratory and field thiamethoxam resistant strains by RT-qPCR. These results indicate that the enhanced expression of CYP6CX2 and CYP6CX3 appears to confer thiamethoxam resistance in B. tabaci. Moreover, linear regression analysis showed that the expression levels of CYP6CX2 and CYP6CX3 were positively correlated with thiamethoxam resistance levels among populations. The susceptibility of whitefly adults was markedly increased after silencing 2 genes by RNA interference (RNAi) which further confirming their major role in thiamethoxam resistance. Our findings provide information to better understand the roles of P450s in resistance to neonicotinoids and suggest that these genes may be applied to develop target genes for sustainable management tactic of agricultural pests such as B. tabaci.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengjia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Wei X, Hu J, Yang J, Yin C, Du T, Huang M, Fu B, Gong P, Liang J, Liu S, Xue H, He C, Ji Y, Du H, Zhang R, Wang C, Li J, Yang X, Zhang Y. Cytochrome P450 CYP6DB3 was involved in thiamethoxam and imidacloprid resistance in Bemisia tabaci Q (Hemiptera: Aleyrodidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105468. [PMID: 37532309 DOI: 10.1016/j.pestbp.2023.105468] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/23/2023] [Accepted: 05/14/2023] [Indexed: 08/04/2023]
Abstract
High level resistance for a variety of insecticides has emerged in Bemisia tabaci, a globally notorious insect. Neonicotinoid insecticides have been applied widely to control B. tabaci. Whether a differentially expressed gene CYP6DB3 discovered from transcriptome data of B. tabaci is involved in the resistance to neonicotinoid insecticides remains unclear. In the study, CYP6DB3 expression was significantly up-regulated in both thiamethoxam- and imidacloprid-resistant strains relative to the susceptive strains. We also found that CYP6DB3 expression was up-regulated after B. tabaci adults were exposed to thiamethoxam and imidacloprid. Moreover, knocking down CYP6DB3 expression via feeding corresponding dsRNA significantly reduced CYP6DB3 mRNA levels by 34.1%. Silencing CYP6DB3 expression increased the sensitivity of B. tabaci Q adults against both thiamethoxam and imidacloprid. Overexpression of CYP6DB3 gene reduced the toxicity of imidacloprid and thiamethoxam to transgenic D. melanogaster. In addition, metabolic studies showed that CYP6DB3 can metabolize 24.41% imidacloprid in vitro. Collectively, these results strongly support that CYP6DB3 plays an important role in the resistance of B. tabaci Q to imidacloprid and thiamethoxam. This work will facilitate a deeper insight into the part of cytochrome P450s in the evolution of insecticide resistance and provide a theoretical basis for the development of new integrated pest resistance management.
Collapse
Affiliation(s)
- Xuegao Wei
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinyu Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junkai Li
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Milenovic M, Eickermann M, Junk J, Rapisarda C. Life history parameters of Bemisia tabaci MED (Hemiptera: Aleyrodidae) in the present and future climate of central Europe, predicted by physically realistic climatic chamber simulation. ENVIRONMENTAL ENTOMOLOGY 2023; 52:502-509. [PMID: 36932855 PMCID: PMC10272707 DOI: 10.1093/ee/nvad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023]
Abstract
Whiteflies of the Bemisia tabaci species complex are among the most damaging insect pests in agriculture worldwide, causing damage by feeding on crop plants and by vectoring plant viruses. The species complex consists of over 35 cryptic species that differ in many aspects of their biology including the optimal environment, geographic distribution, and host range. Global warming and associated climate change resulting from human activities is expected to contribute to biological invasions. Bemisia tabaci species show fast adaptability to changes in agroecosystems and have a long record of biological invasions. Climate change driven increase in B. tabaci importance in agricultural systems of Europe has been predicted, but so far not experimentally tested. The present study evaluates the development of B. tabaci MED (=Mediterranean) in a climatic chamber simulation of the future climate in Luxembourg, chosen as a representative region for the Central Europe. Future climate predictions for the period 2061-2070 were derived from a multimodel ensemble of physically consistent regional climatic models. Results show a 40% shorter development time of this important pest in future climatic conditions, with an increase in fecundity by a third, and insignificant difference in mortality. Accelerated development, combined with its already established year-round presence in European greenhouses and predicted northward expansion of outdoor tomato production in Europe, means faster population build-up at the beginning of the outdoor cropping season with the potential of reaching economic importance. Benefits of simulating hourly diurnal cycle of physically consistent meteorological variables versus previous experiments are discussed.
Collapse
Affiliation(s)
- Milan Milenovic
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Michael Eickermann
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jürgen Junk
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Carmelo Rapisarda
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
9
|
Li X, Lin L, Li Z, Hadiatullah H, Sharma S, Du H, Yang X, Chen W, You S, Bureik M, Yuchi Z. Development of an efficient insecticide substrate and inhibitor screening system of insect P450s using fission yeast. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103958. [PMID: 37182814 DOI: 10.1016/j.ibmb.2023.103958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Metabolic resistance is one of the most frequent mechanisms of insecticide resistance, characterized by an increased expression of several important enzymes and transporters, especially cytochrome P450s (CYPs). Due to the large number of P450s in pests, determining the precise relationship between these enzymes and the insecticide substrates is a challenge. Herein, we developed a luminescence-based screening system for efficient identification of insecticide substrates and insect P450 inhibitors. We recombinantly expressed Bemisia tabaci CYP6CM1vQ (Bt CYP6CM1vQ) in the fission yeast Schizosaccharomyces pombe and subsequently permeabilized the yeast cells to convert them into "enzyme bags". We exploited these enzyme bags to screen the activity of twelve luciferin substrates and identified Luciferin-FEE as the optimal competing probe that was further used to characterize the metabolism of eight candidate commercial insecticides. Among them, Bt CYP6CM1vQ exhibited notable activity against pymetrozine and imidacloprid. Their binding modes were predicted by homology modeling and molecular docking, revealing the mechanisms of the metabolism. We also tested the inhibitory effect of eight known P450 inhibitors using our system and identified letrozole and 1-benzylimidazole as showing significant activity against Bt CYP6CM1vQ, with IC50 values of 23.74 μM and 1.30 μM, respectively. Their potential to be developed as an insecticide synergist was further proven by an in vitro toxicity assay using imidacloprid-resistant Bemisia tabaci. Overall, our luciferin-based enzyme bag method is capable of providing a robust and efficient screening of insect P450 substrates and, more importantly, inhibitors to overcome the resistance.
Collapse
Affiliation(s)
- Xiang Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhi Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shishir Sharma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - He Du
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Matthias Bureik
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; College of Life Sciences, Gannan Normal University, Ganzhou, China; Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
10
|
Sun Z, Chen Y, Chen Y, Lu Z, Gui F. Tracking Adaptive Pathways of Invasive Insects: Novel Insight from Genomics. Int J Mol Sci 2023; 24:8004. [PMID: 37175710 PMCID: PMC10179030 DOI: 10.3390/ijms24098004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the huge human and economic costs of invasive insects, which are the main group of invasive species, their environmental impacts through various mechanisms remain inadequately explained in databases and much of the invasion biology literature. High-throughput sequencing technology, especially whole-genome sequencing, has been used as a powerful method to study the mechanisms through which insects achieve invasion. In this study, we reviewed whole-genome sequencing-based advances in revealing several important invasion mechanisms of invasive insects, including (1) the rapid genetic variation and evolution of invasive populations, (2) invasion history and dispersal paths, (3) rapid adaptation to different host plant ranges, (4) strong environmental adaptation, (5) the development of insecticide resistance, and (6) the synergistic damage caused by invasive insects and endosymbiotic bacteria. We also discussed prevention and control technologies based on whole-genome sequencing and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
He C, Liang J, Yang J, Xue H, Huang M, Fu B, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Xie W, Wang S, Wu Q, Zhou X, Yang X, Zhang Y. Over-expression of CP9 and CP83 increases whitefly cell cuticle thickness leading to imidacloprid resistance. Int J Biol Macromol 2023; 233:123647. [PMID: 36780959 DOI: 10.1016/j.ijbiomac.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Cuticular proteins (CPs) play an important role in protecting insects from adverse environmental conditions, like neonicotinoid insecticides, which are heavily used for numerous pests and caused environmental problems and public health concerns worldwide. However, the relationship between CPs and insecticides resistance in Bemisia tabaci, a serious and developed high insecticide resistance, is lacking. In this study, 125 CPs genes were identified in B. tabaci. Further phylogenetic tree showed the RR-2-type genes formed large gene groups in B. tabaci. Transcriptional expression levels of CPs genes at different developmental stages revealed that some CPs genes may play a specific role in insect development. The TEM results indicated that the cuticle thickness of susceptible strain was thinner than imidacloprid-resistance strain. Furthermore, 16 CPs genes (5 in RR-1 subfamily, 7 in RR-2 subfamily, 3 in CPAP3 subfamily and 1 in CPCFC subfamily) were activated in response to imidacloprid. And RNAi results indicated that CP9 and CP83 involved in imidacloprid resistance. In conclusion, this study was the first time to establish a basic information framework and evolutionary relationship between CPs and imidacloprid resistance in B. tabaci, which provides a basis for proposing integrated pest management strategies.
Collapse
Affiliation(s)
- Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Abstract
Many insects contain endosymbiotic bacteria within their bodies. In multiple endosymbiotic systems comprising two or more symbionts, each of the symbionts is generally localized in a different host cell or tissue. Bemisia tabaci (Sweet potato whitefly) possesses a unique endosymbiotic system where co-obligate symbionts are localized in the same bacteriocytes. Using fluorescence in situ hybridization, we found that endosymbionts in B. tabaci MEAM1 occupy distinct subcellular habitats, or niches, within a single bacteriocyte. Hamiltonella was located adjacent to the nucleus of the bacteriocyte, while Portiera was present in the cytoplasm surrounding Hamiltonella. Immunohistochemical analysis revealed that the endoplasmic reticulum separates the two symbionts. Habitat segregation was maintained for longer durations in female bacteriocytes. The same segregation was observed in three genetically distinct B. tabaci groups (MEAM1, MED Q1, and Asia II 6) and Trialeurodes vaporariorum, which shared a common ancestor with Bemisia over 80 million years ago, even though the coexisting symbionts and the size of bacteriocytes were different. These results suggest that the habitat segregation system existed in the common ancestor and was conserved in both lineages, despite different bacterial partners coexisting with Portiera. Our findings provide insights into the evolution and maintenance of complex endosymbiotic systems and highlight the importance of organelles for the construction of separate niches for endosymbionts. IMPORTANCE Co-obligate endosymbionts in B. tabaci are exceptionally localized within the same bacteriocyte (a specialized cell for endosymbiosis), but the underlying mechanism for their coexistence remains largely unknown. This study provides evidence for niche segregation at the subcellular level between the two symbionts. We showed that the endoplasmic reticulum is a physical barrier separating the two species. Despite differences in co-obligate partners, this subcellular niche segregation was conserved across various whitefly species. The physical proximity of symbionts may enable the efficient biosynthesis of essential nutrients via shared metabolic pathways. The expression "Good fences make good neighbors" appears to be true for insect endosymbiotic systems.
Collapse
|
13
|
Xue H, Fu B, Huang M, He C, Liang J, Yang J, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Wang C, Khajehali J, Su Q, Yang X, Zhang Y. CYP6DW3 Metabolizes Imidacloprid to Imidacloprid-urea in Whitefly ( Bemisia tabaci). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2333-2343. [PMID: 36705580 DOI: 10.1021/acs.jafc.2c08353] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bemisia tabaci has developed high resistance to many insecticides and causes substantial agricultural and economic losses annually. The insecticide resistance of whitefly has been widely reported in previous studies; however, the underlying mechanism remains little known. In this study, we cloned two P450 genes: CYP6DW3 and CYP6DW5v1; these genes were markedly overexpressed in imidacloprid-resistant whitefly populations compared with susceptible populations, and knockdown of these genes decreased the imidacloprid resistance of whitefly. Moreover, heterologous expression of whitefly P450 genes in SF9 cells and metabolic studies showed that the CYP6DW3 protein could metabolize 14.11% imidacloprid and produced imidacloprid-urea in vitro. Collectively, the expression levels of CYP6DW3 and CYP6DW5v1 are positively correlated with imidacloprid resistance in B. tabaci. Our study further reveals that cytochrome P450 enzymes affect the physiological activities related to resistance in insects, which helps scholars more deeply understand the resistance mechanism, and contributes to the development of integrated pest management framework.
Collapse
Affiliation(s)
- Hu Xue
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, P. R. China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, P. R. China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Wang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
15
|
Elfekih S, Tay WT, Polaszek A, Gordon KHJ, Kunz D, Macfadyen S, Walsh TK, Vyskočilová S, Colvin J, De Barro PJ. On species delimitation, hybridization and population structure of cassava whitefly in Africa. Sci Rep 2021; 11:7923. [PMID: 33846476 PMCID: PMC8041820 DOI: 10.1038/s41598-021-87107-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/17/2021] [Indexed: 01/03/2023] Open
Abstract
The Bemisia cassava whitefly complex includes species that cause severe crop damage through vectoring cassava viruses in eastern Africa. Currently, this whitefly complex is divided into species and subgroups (SG) based on very limited molecular markers that do not allow clear definition of species and population structure. Based on 14,358 genome-wide SNPs from 62 Bemisia cassava whitefly individuals belonging to sub-Saharan African species (SSA1, SSA2 and SSA4), and using a well-curated mtCOI gene database, we show clear incongruities in previous taxonomic approaches underpinned by effects from pseudogenes. We show that the SSA4 species is nested within SSA2, and that populations of the SSA1 species comprise well-defined south-eastern (Madagascar, Tanzania) and north-western (Nigeria, Democratic Republic of Congo, Burundi) putative sub-species. Signatures of allopatric incipient speciation, and the presence of a 'hybrid zone' separating the two putative sub-species were also detected. These findings provide insights into the evolution and molecular ecology of a highly cryptic hemipteran insect complex in African, and allow the systematic use of genomic data to be incorporated in the development of management strategies for this cassava pest.
Collapse
Affiliation(s)
- S Elfekih
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - W T Tay
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia.
| | - A Polaszek
- Department of Life Sciences, Natural History Museum, London, UK
| | - K H J Gordon
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia
| | - D Kunz
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - S Macfadyen
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia
| | - T K Walsh
- Black Mountain Laboratories, CSIRO, Canberra, ACT, Australia
| | - S Vyskočilová
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - J Colvin
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - P J De Barro
- CSIRO, Ecosciences Precinct, Brisbane, Australia
| |
Collapse
|
16
|
Yang Z, Gong C, Hu Y, Zhong J, Xia J, Xie W, Yang X, Guo Z, Wang S, Wu Q, Zhang Y. Two Deoxythymidine Triphosphate Synthesis-Related Genes Regulate Obligate Symbiont Density and Reproduction in the Whitefly Bemisia tabaci MED. Front Physiol 2021; 11:574749. [PMID: 33716755 PMCID: PMC7943623 DOI: 10.3389/fphys.2020.574749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Deoxythymidine triphosphate (dTTP) is essential for DNA synthesis and cellular growth in all organisms. Here, genetic capacity analysis of the pyrimidine pathway in insects and their symbionts revealed that dTTP is a kind of metabolic input in several host insect/obligate symbiont symbiosis systems, including Bemisia tabaci MED/Candidatus Portiera aleyrodidarum (hereafter Portiera). As such, the roles of dTTP on both sides of the symbiosis system were investigated in B. tabaci MED/Portiera. Dietary RNA interference (RNAi) showed that suppressing dTTP production significantly reduced the density of Portiera, significantly repressed the expression levels of horizontally transferred essential amino acid (EAA) synthesis-related genes, and significantly decreased the reproduction of B. tabaci MED adults as well as the hatchability of their offspring. Our results revealed the regulatory role of dTTP in B. tabaci MED/Portiera and showed that dTTP synthesis-related genes could be potential targets for controlling B. tabaci as well as other sucking pests.
Collapse
Affiliation(s)
- Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Hu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Zhang YC, Gao SS, Xue S, An SH, Zhang KP. Disruption of the cytochrome P450 CYP6BQ7 gene reduces tolerance to plant toxicants in the red flour beetle, Tribolium castaneum. Int J Biol Macromol 2021; 172:263-269. [PMID: 33453254 DOI: 10.1016/j.ijbiomac.2021.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
In insects, the cytochrome P450 CYP6B family plays key roles in the detoxification of toxic plant substances. However, the function of CYP6 family genes in degrading plant toxicants in Tribolium castaneum, an extremely destructive global storage pest, have yet to be elucidated. In this study, a T. castaneum CYP gene, TcCYP6BQ7, was characterized. TcCYP6BQ7 expression was significantly induced after exposure to essential oil of the plant Artemisia vulgaris (EOAV). Spatiotemporal expression profiling revealed that TcCYP6BQ7 expression was higher in larval and adult stages of T. castaneum than in other developmental stages, and that TcCYP6BQ7 was predominantly expressed in the brain and hemolymph from the late larval stage. TcCYP6BQ7 silencing by RNA interference increased larvae mortality in response to EOAV from 49.67% to 71.67%, suggesting that this gene is associated with plant toxicant detoxification. Combined results from this study indicate that the CYP6 family gene TcCYP6BQ7 likely plays a pivotal role in influencing the susceptibility of T. castaneum to plant toxicants. These findings may have implications for the development of novel therapeutics to control this agriculturally important pest.
Collapse
Affiliation(s)
- Yuan-Chen Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China; College of Plant Protection, Henan Agricultural University, Nongye Road 63, Jinshui District, 450002 Zhengzhou, Henan province, PR China
| | - Shan-Shan Gao
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China.
| | - Shuang Xue
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China
| | - Shi-Heng An
- College of Plant Protection, Henan Agricultural University, Nongye Road 63, Jinshui District, 450002 Zhengzhou, Henan province, PR China
| | - Kun-Peng Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Huanghe Road 73, Wenfeng District, 455000 Anyang, Henan province, PR China
| |
Collapse
|
18
|
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, Richards S. Genome-enabled insights into the biology of thrips as crop pests. BMC Biol 2020; 18:142. [PMID: 33070780 PMCID: PMC7570057 DOI: 10.1186/s12915-020-00862-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
Collapse
Affiliation(s)
- Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Aaron A Baumann
- Virology Section, College of Veterinary Medicine, University of Tennessee, A239 VTH, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, 70013, Heraklion, Greece
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Jonathan E Oliver
- Department of Plant Pathology, University of Georgia - Tifton Campus, Tifton, GA, 31793-5737, USA
| | | | - Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Derek J Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Biology, University of Washington, Seattle, WA, 98105, USA
| | - Clauvis N T Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dong Wei
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | | | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Andrew Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kaylee Hervey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | | | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Wang YJ, Wang HL, Wang XW, Liu SS. Transcriptome analysis and comparison reveal divergence between the Mediterranean and the greenhouse whiteflies. PLoS One 2020; 15:e0237744. [PMID: 32841246 PMCID: PMC7447059 DOI: 10.1371/journal.pone.0237744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Both the Mediterranean (MED) species of the Bemisia tabaci whitefly complex and the greenhouse whitefly (Trialeurodes vaporariorum, TV) are important agricultural pests. The two species of whiteflies differ in many aspects such as morphology, geographical distribution, host plant range, plant virus transmission, and resistance to insecticides. However, the molecular basis underlying their differences remains largely unknown. In this study, we analyzed the genetic divergences between the transcriptomes of MED and TV. In total, 2,944 pairs of orthologous genes were identified. The average identity of amino acid sequences between the two species is 93.6%. The average nonsynonymous (Ka) and synonymous (Ks) substitution rates and the ratio of Ka/Ks of the orthologous genes are 0.0389, 2.23 and 0.0204, respectively. The low average Ka/Ks ratio indicates that orthologous genes tend to be under strong purified selection. The most divergent gene classes are related to the metabolisms of xenobiotics, cofactors, vitamins and amino acids, and this divergence may underlie the different biological characteristics between the two species of whiteflies. Genes of differential expression between the two species are enriched in carbohydrate metabolism and regulation of autophagy. These findings provide molecular clues to uncover the biological and molecular differences between the two species of whiteflies.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Ling Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
20
|
Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, Zhang KJ, Huang HJ, Gong JT, Zhang X, Hong XY. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. THE ISME JOURNAL 2020; 14:676-687. [PMID: 31767943 PMCID: PMC7031331 DOI: 10.1038/s41396-019-0559-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Symbiont-mediated nutritional mutualisms can contribute to the host fitness of insects, especially for those that feed exclusively on nutritionally unbalanced diets. Here, we elucidate the importance of B group vitamins in the association of endosymbiotic bacteria Wolbachia with two plant-sap feeding insects, the small brown planthopper, Laodelphax striatellus (Fallén), and the brown planthopper, Nilaparvata lugens (Stål). Infected planthoppers of both species laid more eggs than uninfected planthoppers, while the experimental transfer of Wolbachia into uninfected lines of one planthopper species rescued this fecundity deficit. The genomic analysis showed that Wolbachia strains from the two planthopper species encoded complete biosynthesis operons for biotin and riboflavin, while a metabolic analysis revealed that Wolbachia-infected planthoppers of both species had higher titers of biotin and riboflavin. Furthermore, experimental supplementation of food with a mixture of biotin and riboflavin recovered the fecundity deficit of Wolbachia-uninfected planthoppers. In addition, comparative genomic analysis suggested that the riboflavin synthesis genes are conserved among Wolbachia supergroups. Biotin operons are rare in Wolbachia, and those described share a recent ancestor that may have been horizontally transferred from Cardinium bacteria. Our research demonstrates a type of mutualism that involves a facultative interaction between Wolbachia and plant-sap feeding insects involving vitamin Bs.
Collapse
Affiliation(s)
- Jia-Fei Ju
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Li Bing
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dian-Shu Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kai-Jun Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hai-Jian Huang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jun-Tao Gong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xu Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
21
|
Zhou CS, Cao Q, Li GZ, Ma DY. Role of several cytochrome P450s in the resistance and cross-resistance against imidacloprid and acetamiprid of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species in Xinjiang, China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:209-215. [PMID: 31973859 DOI: 10.1016/j.pestbp.2019.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/29/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoids are commonly used for the control of the whitefly Bemisia tabaci in cotton field. Laboratory test and field experiments have found that whitefly has a high risk of developing resistance and cross-resistance to the pesticide. Over expression of cytochrome P450 is one of the main mechanism that controls pesticide resistance in many insects. In this study we use MEAM1 whitefly, the dominant cryptic species of B. tabaci in Xinjiang cotton field, to investigate the possible resistance and cross-resistance mechanism controlled by cytochrome P450 enzymes. The P450 enzyme activity was higher in both selected strains of imidacloprid and acetamipird than that of susceptible strain. Synergism test showed that piperonyl butoxide (PBO) distinctly increased the control efficiency of imidacloprid and acetamiprid to the two resistance selected strains. Four out of 13 cytochrome genes, CYP4CS3, CYP6CX5, CYP6DW2 and CYP6CM1 were significantly up-regulated in the two selected strains based on real-time fluorescence quantitative PCR results. Other 3 genes, CYP6CX2, CYP6CX4 and CYP6DW3 were only highly expressed in the acetamiprid selected strain instead of the susceptible strain and imidacloprid selected strain. CYP6CM1 showed the highest expression level among all the 13 tested genes. No functional mutation of CYP6CM1 was found by sequence analysis. The possible role of these genes involving the resistance and cross-resistance of the whitefly MEAM1 cryptic species against neonicotinoids was discussed.
Collapse
Affiliation(s)
- Cheng-Song Zhou
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - Qian Cao
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - Guo-Zhi Li
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - De-Ying Ma
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China.
| |
Collapse
|
22
|
Aidlin Harari O, Santos-Garcia D, Musseri M, Moshitzky P, Patel M, Visendi P, Seal S, Sertchook R, Malka O, Morin S. Molecular Evolution of the Glutathione S-Transferase Family in the Bemisia tabaci Species Complex. Genome Biol Evol 2020; 12:3857-3872. [PMID: 31971586 PMCID: PMC7058157 DOI: 10.1093/gbe/evaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 01/23/2023] Open
Abstract
The glutathione S-transferase (GST) family plays an important role in the adaptation of herbivorous insects to new host plants and other environmental constrains. The family codes for enzymes that neutralize reactive oxygen species and phytotoxins through the conjugation of reduced glutathione. Here, we studied the molecular evolution of the GST family in Bemisia tabaci, a complex of >35 sibling species, differing in their geographic and host ranges. We tested if some enzymes evolved different functionality, by comparing their sequences in six species, representing five of the six major genetic clades in the complex. Comparisons of the nonsynonymous to synonymous substitution ratios detected positive selection events in 11 codons of 5 cytosolic GSTs. Ten of them are located in the periphery of the GST dimer, suggesting a putative involvement in interactions with other proteins. Modeling the tertiary structure of orthologous enzymes, identified additional 19 mutations in 9 GSTs, likely affecting the enzymes' functionality. Most of the mutation events were found in the environmentally responsive classes Delta and Sigma, indicating a slightly different delta/sigma tool box in each species. At a broader genomic perspective, our analyses indicated a significant expansion of the Delta GST class in B. tabaci and a general association between the diet breadth of hemipteran species and their total number of GST genes. We raise the possibility that at least some of the identified changes improve the fitness of the B. tabaci species carrying them, leading to their better adaptation to specific environments.
Collapse
Affiliation(s)
- Ofer Aidlin Harari
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mirit Musseri
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Pnina Moshitzky
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mitulkumar Patel
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | - Paul Visendi
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | | | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
23
|
He C, Liang J, Liu S, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Molecular characterization of an NADPH cytochrome P450 reductase from Bemisia tabaci Q: Potential involvement in susceptibility to imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:29-35. [PMID: 31836051 DOI: 10.1016/j.pestbp.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
NADPH cytochrome P450 reductase (CPR) is an integral component of cytochrome P450-mediated biological reactions, such as the metabolism of xenobiotics, including insecticides. CPR has been reported to be associated with insecticide tolerance in several insects. However, the biochemical characteristics and biological function of CPR in Bemisia tabaci Q (BtCPR) remain undefined. In this study, BtCPR was cloned, and bioinformatic analysis showed that BtCPR is a transmembrane protein with a molecular weight (MW) of 76.73 kDa and contains conserved binding domains (FMN, FAD, and NADPH). Tissue- and developmental stage-dependent expression indicated that the highest expression levels of BtCPR occurred in head tissue and in male adults. Transcripts of BtCPR in the field B. tabaci Q strain were 1.62-fold higher than those of the laboratory B. tabaci Q strain. In both field and laboratory adults, the susceptibility of BtCPR-knockdown B. tabaci Q to imidacloprid substantially increased compared to that of the B. tabaci Q control group. Furthermore, the heterologous expression of BtCPR in Sf9 cells exhibited catalytic activity for cytochrome c reduction, following Michaelis-Menten kinetics. Sf9 cells overexpressing BtCPR had greater viability than the control cells when treated with imidacloprid. The results suggest that BtCPR could affect the susceptibility of B. tabaci Q to imidacloprid and could also be considered a novel target for pest control.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection of Hunan Agricultural University, Changsha 410128, PR China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
24
|
Tian L, Zeng Y, Xie W, Wu Q, Wang S, Zhou X, Zhang Y. Genome-wide identification and analysis of genes associated with RNA interference in Bemisia tabaci. PEST MANAGEMENT SCIENCE 2019; 75:3005-3014. [PMID: 30891929 DOI: 10.1002/ps.5415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND As a method of RNA-mediated gene silencing, RNA interference (RNAi) is a useful reverse genetic tool with which to study gene function, and holds great promise for pest management. Bemisia tabaci is a cosmopolitan pest that causes extensive damage to crops. The mechanism underlying RNAi efficiency in B. tabaci is not well known. We identified and analyzed candidate genes in the RNAi pathway to understand the RNAi mechanism and provide a basis for the application of RNAi in pest management. RESULTS We identified 33 genes putatively involved in the RNAi pathway from the B. tabaci Q genome. Phylogenetic and structural analyses confirmed the characteristics of these genes. Furthermore, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and transcriptomic analysis profiled gene expression patterns during different developmental stages. Gene expression levels estimated by qRT-PCR and RNA-seq analyses were significantly correlated. Moreover, gene functions were verified by RNAi. When accompanied by knockdown of AGO2, Dicer2 and Sid1, the efficiency of CYP6DB3 RNAi decreased correspondingly. CONCLUSION In this study, we annotated and validated genes involved in B. tabaci RNAi. A better understanding of the building blocks of the RNAi process in B. tabaci facilitates integration of this novel biotechnology into the management of this emerging pest, either directly or indirectly. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Harish ER, ManiChellappan, MakeshKumar T, Mathew D, Ranjith MT, Girija D. Next-generation sequencing reveals endosymbiont variability in cassava whitefly, Bemisia tabaci, across the agro-ecological zones of Kerala, India. Genome 2019; 62:571-584. [PMID: 31283888 DOI: 10.1139/gen-2018-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Silverleaf whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most notorious invasive insect pests, infesting more than 900 species of plants and spreading more than 200 viral diseases. This polyphagous agricultural pest harbours diverse bacterial communities in its gut, which perform multiple functions in whiteflies, including nutrient provisioning, amino acid biosynthesis, and virus transmission. The present exploratory study compares the bacterial communities associated with silverleaf whitefly infesting cassava, also known as cassava whitefly, collected from two different zones (zone P: plains; zone H: high ranges), from Kerala, India, using next-generation sequencing of 16S rDNA. The data sets for these two regions consisted of 1 321 906 and 690 661 high-quality paired-end sequences with mean length of 150 bp. Highly diverse bacterial communities were present in the sample, containing approximately 3513 operational taxonomic units (OTUs). Sequence analysis showed a marked difference in the relative abundance of bacteria in the populations. A total of 16 bacterial phyla, 27 classes, 56 orders, 91 families, 236 genera, and 409 species were identified from the P population, against 16, 31, 60, 88, 225, and 355, respectively, in the H population. Arsenophonus sp. (Enterobacteriaceae), which is important for virus transmission by whiteflies, was relatively abundant in the P population, whereas in the H population Bacillus sp. was the most dominant group. The association of whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as virus transmission, host range, insecticide resistance, and speciation.
Collapse
Affiliation(s)
- E R Harish
- ICAR-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram - 695 017, India
| | - ManiChellappan
- Department of Agricultural Entomology, College of Horticulture, Kerala Agricultural University, Thrissur - 680 656, India
| | - T MakeshKumar
- ICAR-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram - 695 017, India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur - 680 656, India
| | - M T Ranjith
- Department of Agricultural Entomology, College of Horticulture, Kerala Agricultural University, Thrissur - 680 656, India
| | - D Girija
- Department of Agricultural Microbiology, College of Horticulture, Kerala Agricultural University, Thrissur - 680 656, India
| |
Collapse
|
26
|
Mittapelly P, Bansal R, Michel A. Differential Expression of Cytochrome P450 CYP6 Genes in the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Pentatomidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1403-1410. [PMID: 30753513 DOI: 10.1093/jee/toz007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Cytochrome (CYP) P450s are a superfamily of enzymes that detoxify xenobiotics and regulate numerous physiological processes in insects. The genomes of phytophagous insects usually contain large numbers of P450s, especially within the CYP3 clan. Within this clan, CYP6 subfamily members help detoxify plant host secondary metabolites. In this study, we analyzed three CYP6 genes in the highly polyphagous invasive pest, Halyomorpha halys (Stål), commonly known as brown marmorated stink bug. We characterized and validated the expression of HhCYP6BQ27, HhCYP6BK13, and HhCYP6BK24 among sexes, tissues (gut, fat body, and Malpighian tubules) and hosts (apple, corn, soybean). Sequence characterization by amino acid alignments confirmed the presence of conserved motifs typical of the P450 superfamily. No significant differences existed in gene expression among sexes or when fed different hosts, suggesting that these transcripts might have broad substrate specificities. However, significant differences in gene expression were observed among the tissues studied and were gene-dependent. Collectively, the results show that H. halys differentially expressed CYP6 genes among tissues, which may be related to important and specific physiological functions. This study has increased our understanding of H. halys biology that can be useful for functional studies and can potentially be exploited in developing sustainable pest management strategies.
Collapse
Affiliation(s)
| | - Raman Bansal
- Department of Entomology, The Ohio State University, Wooster, OH
| | - Andy Michel
- Department of Entomology, The Ohio State University, Wooster, OH
- The Center for Applied Plant Sciences, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH
| |
Collapse
|
27
|
Tay WT, Gordon KHJ. Going global - genomic insights into insect invasions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:123-130. [PMID: 31109665 DOI: 10.1016/j.cois.2018.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The spread of invasive insect pests is becoming an increasing problem for agriculture globally. We discuss a number of invasive insects, already of major economic significance that have recently expanded their range to become truly global threats. These include the noctuid moths Helicoverpa and Spodoptera, whose caterpillars have long been among the worst pests in their native Old and New World habitats, respectively, and the whitefly Bemisia, a major vector of plant virus diseases. Importantly, genomic resources for these species have recently become available, allowing research to move beyond the restrictions imposed by earlier approaches limited to a single or few mitochondrial and nuclear markers, to employ genome-wide genotyping and resequencing protocols. These studies have shown hybridisation within the various species complexes, identified regions under selection in agricultural environments, and enable monitoring of genes important as biosecurity risks through introgression into established populations free of the genes. In all cases studied, global trade has emerged as the probable cause of insect spread, making it ever more important that biosecurity protocols and agencies work with researchers to make the most effective use of emerging genomic resources and tools.
Collapse
Affiliation(s)
- Wee Tek Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| | | |
Collapse
|