1
|
Scaramella N, Glinwood R, Locke B. Unique brood ester profile in a Varroa destructor resistant population of European honey bee (Apis mellifera). Sci Rep 2024; 14:25531. [PMID: 39462055 PMCID: PMC11513966 DOI: 10.1038/s41598-024-76399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Varroa destructor is one of the greatest threats to Apis mellifera worldwide and if left untreated will kill a colony in less than three years. A Varroa-resistant population from Gotland, Sweden, has managed to survive for 25 years with little to no Varroa treatment by reducing the mite's reproductive success. The underlying mechanisms of this trait is currently not known, though previous research indicates that it is the honey bee brood, and not adult bee influence, that contributes to this phenotype. As the mite's own reproduction is synchronized with the brood's development though the interception of brood pheromones, it is possible that a change in pheromone profile would disrupt the mite's reproductive timing. To investigate this, we characterized the brood ester pheromone (BEP) profile of our resistant Gotland population compared to a non-resistant control. This was done by extracting and analyzing key cuticular compounds of the BEP using gas chromatography. A significant difference was found immediately after brood capping, indicating a divergence in their pheromonal production at this time point. This is an important step to understanding the mechanisms of the Gotland population's Varroa-resistance and contributes to our global understanding of Varroa destructor infestation and survival.
Collapse
Affiliation(s)
- Nicholas Scaramella
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Robert Glinwood
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
3
|
Han B, Wu J, Wei Q, Liu F, Cui L, Rueppell O, Xu S. Life-history stage determines the diet of ectoparasitic mites on their honey bee hosts. Nat Commun 2024; 15:725. [PMID: 38272866 PMCID: PMC10811344 DOI: 10.1038/s41467-024-44915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
Ectoparasitic mites of the genera Varroa and Tropilaelaps have evolved to exclusively exploit honey bees as food sources during alternating dispersal and reproductive life history stages. Here we show that the primary food source utilized by Varroa destructor depends on the host life history stage. While feeding on adult bees, dispersing V. destructor feed on the abdominal membranes to access to the fat body as reported previously. However, when V. destructor feed on honey bee pupae during their reproductive stage, they primarily consume hemolymph, indicated by wound analysis, preferential transfer of biostains, and a proteomic comparison between parasite and host tissues. Biostaining and proteomic results were paralleled by corresponding findings in Tropilaelaps mercedesae, a mite that only feeds on brood and has a strongly reduced dispersal stage. Metabolomic profiling of V. destructor corroborates differences between the diet of the dispersing adults and reproductive foundresses. The proteome and metabolome differences between reproductive and dispersing V. destructor suggest that the hemolymph diet coincides with amino acid metabolism and protein synthesis in the foundresses while the metabolism of non-reproductive adults is tuned to lipid metabolism. Thus, we demonstrate within-host dietary specialization of ectoparasitic mites that coincides with life history of hosts and parasites.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lihong Cui
- Cell Biology Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, 100084, China
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G2L3, Canada.
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Smeele ZE, Baty JW, Lester PJ. Effects of Deformed Wing Virus-Targeting dsRNA on Viral Loads in Bees Parasitised and Non-Parasitised by Varroa destructor. Viruses 2023; 15:2259. [PMID: 38005935 PMCID: PMC10674661 DOI: 10.3390/v15112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The Varroa destructor mite is a devastating parasite of honey bees; however the negative effects of varroa parasitism are exacerbated by its role as an efficient vector of the honey bee pathogen, Deformed wing virus (DWV). While no direct treatment for DWV infection is available for beekeepers to use on their hives, RNA interference (RNAi) has been widely explored as a possible biopesticide approach for a range of pests and pathogens. This study tested the effectiveness of three DWV-specific dsRNA sequences to lower DWV loads and symptoms in honey bees reared from larvae in laboratory mini-hives containing bees and varroa. The effects of DWV-dsRNA treatment on bees parasitised and non-parasitised by varroa mites during development were investigated. Additionally, the impact of DWV-dsRNA on viral loads and gene expression in brood-parasitising mites was assessed using RNA-sequencing. Bees parasitised during development had significantly higher DWV levels compared to non-parasitised bees. However, DWV-dsRNA did not significantly reduce DWV loads or symptoms in mini-hive reared bees, possibly due to sequence divergence between the DWV variants present in bees and varroa and the specific DWV-dsRNA sequences used. Varroa mites from DWV-dsRNA treated mini-hives did not show evidence of an elevated RNAi response or significant difference in DWV levels. Overall, our findings show that RNAi is not always successful, and multiple factors including pathogen diversity and transmission route may impact its efficiency.
Collapse
Affiliation(s)
- Zoe E. Smeele
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (P.J.L.)
| | | | | |
Collapse
|
5
|
Benoit JB, Finch G, Ankrum AL, Niemantsverdriet J, Paul B, Kelley M, Gantz JD, Matter SF, Lee RE, Denlinger DL. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 2023; 28:541-549. [PMID: 37392307 PMCID: PMC10468472 DOI: 10.1007/s12192-023-01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Therefore, it is important to examine the impact of heat stress on the reproduction of polar terrestrial arthropods, specifically, how brief extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross-mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the negative impacts are transient as the effect on fertility declines with recovery time under less stressful conditions. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial reproductive effects on local populations of Antarctic arthropods.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrea L Ankrum
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | | | - Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Scaramella N, Burke A, Oddie M, Dahle B, de Miranda J, Mondet F, Rosenkranze P, Neumann P, Locke B. Host brood traits, independent of adult behaviours, reduce Varroa destructor mite reproduction in resistant honeybee populations. Int J Parasitol 2023:S0020-7519(23)00092-9. [PMID: 37164049 DOI: 10.1016/j.ijpara.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite's reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.
Collapse
Affiliation(s)
- Nicholas Scaramella
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Ashley Burke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Melissa Oddie
- Norges Birøkterlag, Dyrskuevegen 20, 2040 Kløfta, Norway
| | - Bjørn Dahle
- Norges Birøkterlag, Dyrskuevegen 20, 2040 Kløfta, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Joachim de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Peter Rosenkranze
- Apiculture State Institute, University of Hohenheim, Erna-hruschka-Weg 6, 70599 Stuttgart, Germany
| | - Peter Neumann
- Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Center, Bern, Switzerland
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Wu X, Li Z, Yang H, He X, Yan W, Zeng Z. The adverse impact on lifespan, immunity, and forage behavior of worker bees (Apis mellifera Linnaeus 1758) after exposure to flumethrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160146. [PMID: 36375554 DOI: 10.1016/j.scitotenv.2022.160146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Several pyrethroids (such as flumethrin and fluvalinate) with low toxicity to honey bees and comparable high toxicity to mites are used worldwide as acaricides. However, flumethrin has been used for a long time in colonies to control Varroa destructor and the honey bees might be exposed to flumethrin cumulatively, which could affect the health of honey bee colonies. This study evaluated the potential adverse effects of direct flumethrin exposure on worker bees under laboratory and colony conditions. Under laboratory conditions, downregulation of genes related to immune was observed when worker bees were exposed to flumethrin above 1/16 LD50; at levels above 1/8 LD50, olfactory learning was impaired, and genes related to learning memory were downregulated; and at >1/4 LD50, their lifespan was shortened. Monitoring with radio frequency identification (RFID) revealed that worker bees in a colony exposed to flumethrin above 1/8 LD50 had a shortened lifespan and reduced foraging ability. When worker bees are exposed to >1/4 LD50 of flumethrin, it can lead to excessive rest day behavior. These results indicate that applying flumethrin in colonies may pose a severe health risk to honey bees and reveal the urgent need to develop non-toxic and highly effective acaricides.
Collapse
Affiliation(s)
- Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China.
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Heyan Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Weiyu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| |
Collapse
|
8
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
9
|
Parra ALC, Freitas CDT, Souza PFN, von Aderkas P, Borchers CH, Beattie GA, Silva FDA, Thornburg RW. Ornamental tobacco floral nectar is a rich source of antimicrobial peptides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111427. [PMID: 36007629 DOI: 10.1016/j.plantsci.2022.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.
Collapse
Affiliation(s)
- Aura L C Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Patrick von Aderkas
- University of Victoria - Genome BC Proteomics Center, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Fredy D A Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Robert W Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
10
|
Mani K, Nganso BT, Rodin P, Otmy A, Rafaeli A, Soroker V. Effects of Niemann-Pick type C2 (NPC2) gene transcripts silencing on behavior of Varroa destructor and molecular changes in the putative olfactory gene networks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103817. [PMID: 35926690 DOI: 10.1016/j.ibmb.2022.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
To understand the role of two Niemann-Pick type C2 (NPC2) transcripts, Vd40090 (NP1) and Vd74517 (NP5), in the chemosensing pathway of Varroa destructor, we evaluated the impact of NP5 silencing on mites behavior and compared the effect of silencing of either transcripts on the interaction between chemosensory transcripts. In contrast to silencing NP1, which reduced feeding and reproduction by the mite (Nganso et al., 2021), silencing of NP5 reduced significantly the host reaching ability, but it did not affect the feeding on nurse bee. However, silencing of either transcript changed dramatically the co-expression patterns among the putative chemosensory genes, binding proteins and receptors. The results suggest the role of gustatory receptors in the detection of long-range chemical cues in the chemosensory cascade of the Varroa mite.
Collapse
Affiliation(s)
- Kannan Mani
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Beatrice T Nganso
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Penina Rodin
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Assaf Otmy
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Ada Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Victoria Soroker
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
11
|
Wu JL, Hu RY, Li NN, Tan J, Zhou CX, Han B, Xu SF. Integrative Analysis of lncRNA-mRNA Co-expression Provides Novel Insights Into the Regulation of Developmental Transitions in Female Varroa destructor. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.842704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Varroa destructor is a major pathogenic driver of the Western honeybee colony losses globally. Understanding the developmental regulation of V. destructor is critical to develop effective control measures. Development is a complex biological process regulated by numerous genes and long non-coding RNAs (lncRNAs); however, the underlying regulation of lncRNAs in the development of V. destructor remains unknown. In this study, we analyzed the RNA sequencing (RNA-Seq) data derived from the four stages of female V. destructor in the reproductive phase (i.e., egg, protonymph, deutonymph, and adult). The identified differentially expressed mRNAs and lncRNAs exhibited a stage-specific pattern during developmental transitions. Further functional enrichment established that fat digestion and absorption, ATP-binding cassette (ABC) transporters, mitogen-activated protein kinase (MAPK) signaling pathway, and ubiquitin-proteasome pathway play key roles in the maturation of female V. destructor. Moreover, the lncRNAs and mRNAs of some pivotal genes were significantly upregulated at the deutonymph stage, such as cuticle protein 65/6.4/63/38 and mucin 5AC, suggesting that deutonymph is the key stage of metamorphosis development and pathogen resistance acquisition for female V. destructor. Our study provides novel insights into a foundational understanding of V. destructor biology.
Collapse
|
12
|
Nganso BT, Mani K, Eliash N, Rafaeli A, Soroker V. Towards disrupting Varroa -honey bee chemosensing: A focus on a Niemann-Pick type C2 transcript. INSECT MOLECULAR BIOLOGY 2021; 30:519-531. [PMID: 34216416 DOI: 10.1111/imb.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
We focused our study on the 12 recently identified putative odorant carrier proteins in the ectoparasitic mite, Varroa destructor. Here we show, via an exclusion of the chemosensory appendages (forelegs and gnathosoma) that transcripts of five of the 12 genes were significantly lower, suggesting that they are likely involved in carrying host volatiles. Specifically, three transcripts were found to be foreleg-specific while the other two transcripts were expressed in both the forelegs and gnathosoma. We focused on one of the highly expressed and foreleg-specific transcript Vd40090, which encodes a Niemann-Pick disease protein type C2 (NPC2) protein. Effects of dsRNA-mediated silencing of Vd40090 were first measured by quantifying the transcript levels of genes that encode other putative odorant carrier proteins as well as reproduction related proteins. In addition, the impact of silencing on mites behaviour and survival was tested. Silencing of Vd40090 effectively disrupted Varroa host selection, acceptance and feeding and significantly impaired the expression of genes that regulate its reproduction in brood cells, resulting in reduced reproduction and survival.
Collapse
Affiliation(s)
- B T Nganso
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - K Mani
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - N Eliash
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, the Volcani Centre, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
13
|
Hasegawa N, Techer M, Mikheyev AS. A toolkit for studying Varroa genomics and transcriptomics: preservation, extraction, and sequencing library preparation. BMC Genomics 2021; 22:54. [PMID: 33446105 PMCID: PMC7809802 DOI: 10.1186/s12864-020-07363-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/30/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The honey bee parasite, Varroa destructor, is a leading cause of honey bee population declines. In addition to being an obligate ectoparasitic mite, Varroa carries several viruses that infect honey bees and act as the proximal cause of colony collapses. Nevertheless, until recently, studies of Varroa have been limited by the paucity of genomic tools. Lab- and field-based methods exploiting such methods are still nascent. This study developed a set of methods for preserving Varroa DNA and RNA from the field to the lab and processing them into sequencing libraries. We performed preservation experiments in which Varroa mites were immersed in TRIzol, RNAlater, and absolute ethanol for preservation periods up to 21 days post-treatment to assess DNA and RNA integrity. RESULTS For both DNA and RNA, mites preserved in TRIzol and RNAlater at room temperature degraded within 10 days post-treatment. Mites preserved in ethanol at room temperature and 4 °C remained intact through 21 days. Varroa mite DNA and RNA libraries were created and sequenced for ethanol preserved samples, 15 and 21 days post-treatment. All DNA sequences mapped to the V. destructor genome at above 95% on average, while RNA sequences mapped to V. destructor, but also sometimes to high levels of the deformed-wing virus and to various organisms. CONCLUSIONS Ethanolic preservation of field-collected mites is inexpensive and simple, and allows them to be shipped and processed successfully in the lab for a wide variety of sequencing applications. It appears to preserve RNA from both Varroa and at least some of the viruses it vectors.
Collapse
Affiliation(s)
- Nonno Hasegawa
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan.
| | - Maeva Techer
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan.
- Australian National University, 2600, Canberra, ACT, Australia.
| |
Collapse
|
14
|
Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerg Top Life Sci 2020; 4:45-57. [PMID: 32537655 PMCID: PMC7326341 DOI: 10.1042/etls20190125] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Since its migration from the Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for beekeeping worldwide. Due to a short history of coevolution, the host–parasite relationship between A. mellifera and V. destructor is unbalanced, with honey bees suffering infestation effects at the individual, colony and population levels. Several control solutions have been developed to tackle the colony and production losses due to Varroa, but the burden caused by the mite in combination with other biotic and abiotic factors continues to increase, weakening the beekeeping industry. In this synthetic review, we highlight the main advances made between 2015 and 2020 on V. destructor biology and its impact on the health of the honey bee, A. mellifera. We also describe the main control solutions that are currently available to fight the mite and place a special focus on new methodological developments, which point to integrated pest management strategies for the control of Varroa in honey bee colonies.
Collapse
|
15
|
Lin Z, Liu Y, Chen X, Han C, Wang W, Ke Y, Su X, Li Y, Chen H, Xu H, Chen G, Ji T. Genome-Wide Identification of Long Non-coding RNAs in the Gravid Ectoparasite Varroa destructor. Front Genet 2020; 11:575680. [PMID: 33193688 PMCID: PMC7596327 DOI: 10.3389/fgene.2020.575680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) emerge as critical regulators across a wide variety of biological functions in living organisms. However, to date, no systematic characterization of lncRNAs has been investigated in the ectoparasitic mite Varroa destructor, the most severe biotic threat to honey bees worldwide. Here, we performed an initial genome-wide identification of lncRNAs in V. destructor via high-throughput sequencing technology and reported, for the first time, the transcriptomic landscape of lncRNAs in the devastating parasite. By means of a lncRNA identification pipeline, 6,645 novel lncRNA transcripts, encoded by 3,897 gene loci, were identified, including 2,066 sense lncRNAs, 2,772 lincRNAs, and 1,807 lncNATs. Compared with protein-coding mRNAs, V. destructor lncRNAs are shorter in terms of full length, as well as of the ORF length, contain less exons, and express at lower level. GO term and KEGG pathway enrichment analyses of the lncRNA target genes demonstrated that these predicted lncRNAs may be potentially responsible for the regulatory functions of cellular and biological progresses in the reproductive phase of V. destructor. To our knowledge, this is the first catalog of lncRNA profile in the parasitiformes species, providing a valuable resource for genetic and genomic studies. Understanding the characteristics and features of lncRNAs in V. destructor would promote sustainable parasite control.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yibing Liu
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaomei Chen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Cong Han
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Wuzhong Animal Health Supervision Institute, Suzhou, China
| | - Yalu Ke
- Wuzhong Animal Health Supervision Institute, Suzhou, China
| | - Xiaoling Su
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Yujiao Li
- Shandong Apiculture Breeding of Improved Varieties and Extension Center, Tai’an, China
| | - Heng Chen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Xu
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Wu J, Elsheikha HM, Tu Y, Getachew A, Zhou H, Zhou C, Xu S. Significant transcriptional changes in mature daughter Varroa destructor mites during infestation of different developmental stages of honeybees. PEST MANAGEMENT SCIENCE 2020; 76:2736-2745. [PMID: 32187435 DOI: 10.1002/ps.5821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Varroa destructor is considered a major cause of honeybee (Apis mellifera) colony losses worldwide. Although V. destructor mites exhibit preference behavior for certain honeybee lifecycle stages, the mechanism underlying host finding and preference remains largely unknown. RESULTS By using a de novo transcriptome assembly strategy, we sequenced the mature daughter V. destructor mite transcriptome during infestation of different stages of honeybees (brood cells, newly emerged bees and adult bees). A total of 132 779 unigenes were obtained with an average length of 2745 bp and N50 of 5706 bp. About 63.1% of the transcriptome could be annotated based on sequence homology to the predatory mite Metaseiulus occidentalis proteins. Expression analysis revealed that mature daughter mites had distinct transcriptome profiles after infestation of different honeybee stages, and that the majority of the differentially expressed genes (DEGs) of mite infesting adult honeybees were down-regulated compared to that infesting the sealed brood cells. Gene ontology and KEGG pathway enrichment analyses showed that a large number of DEGs were involved in cellular process and metabolic process, suggesting that Varroa mites undergo metabolic adjustment to accommodate the cellular, molecular and/or immune response of the honeybees. Interestingly, in adult honeybees, some mite DEGs involved in neurotransmitter biosynthesis and transport were identified and their levels of expression were validated by quantitative polymerase chain reaction (qPCR). CONCLUSION These results provide evidence for transcriptional reprogramming in mature daughter Varroa mites during infestation of honeybees, which may be relevant to understanding the mechanism underpinning adaptation and preference behavior of these mites for honeybees. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangli Wu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Yangyang Tu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Awraris Getachew
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huaiyu Zhou
- Department of Pathogenic Biology, Shandong University School of Basic Medicine, Jinan, P. R. China
| | - Chunxue Zhou
- Department of Pathogenic Biology, Shandong University School of Basic Medicine, Jinan, P. R. China
| | - Shufa Xu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
17
|
Butolo NP, Azevedo P, de Alencar LD, Domingues CEC, Miotelo L, Malaspina O, Nocelli RCF. A high quality method for hemolymph collection from honeybee larvae. PLoS One 2020; 15:e0234637. [PMID: 32555675 PMCID: PMC7302910 DOI: 10.1371/journal.pone.0234637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
The drastic decline of bees is associated with several factors, including the immune system suppression due to the increased exposure to pesticides. A widely used method to evaluate these effects on these insects' immune systems is the counting of circulating hemocytes in the hemolymph. However, the extraction of hemolymph from larvae is quite difficult, and the collected material is frequently contaminated with other tissues and gastrointestinal fluids, which complicates counting. Therefore, the present work established a high quality and easily reproducible method of extracting hemolymph from honeybee larvae (Apis mellifera), the extraction with ophthalmic scissors. Extraction methods with the following tools also were tested: 30G needle, fine-tipped forceps, hypodermic syringe, and capillaries tubes. The hemolymph was obtained via an incision on the larvae’s right side for all methods, except for the extraction with ophthalmic scissors, in which the hemolymph was extracted from the head region. To assess the purity of the collected material, turbidity analyses of the samples using a turbidimeter were proposed, tested, and evaluated. The results showed that the use of ophthalmic scissors provided the clearest samples and was free from contamination. A reference range between 22,432.35 and 24,504.87 NTU (nephelometric turbidity units) was established, in which the collected samples may be considered of high quality and free from contamination.
Collapse
Affiliation(s)
- Nicole Pavan Butolo
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
- * E-mail: (NPB); (PA)
| | - Patricia Azevedo
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia–Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
- * E-mail: (NPB); (PA)
| | - Luciano Delmondes de Alencar
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia–Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
| | - Caio E. C. Domingues
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Lucas Miotelo
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
- Departamento de Ciências da Natureza, Matemática e Educação, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar-SP), Araras, SP, Brazil
| |
Collapse
|
18
|
Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol 2020; 36:592-606. [PMID: 32456963 DOI: 10.1016/j.pt.2020.04.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Abstract
The parasitic mite, Varroa destructor, has shaken the beekeeping and pollination industries since its spread from its native host, the Asian honey bee (Apis cerana), to the naïve European honey bee (Apis mellifera) used commercially for pollination and honey production around the globe. Varroa is the greatest threat to honey bee health. Worrying observations include increasing acaricide resistance in the varroa population and sinking economic treatment thresholds, suggesting that the mites or their vectored viruses are becoming more virulent. Highly infested weak colonies facilitate mite dispersal and disease transmission to stronger and healthier colonies. Here, we review recent developments in the biology, pathology, and management of varroa, and integrate older knowledge that is less well known.
Collapse
|
19
|
Techer MA, Rane RV, Grau ML, Roberts JMK, Sullivan ST, Liachko I, Childers AK, Evans JD, Mikheyev AS. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun Biol 2019; 2:357. [PMID: 31583288 PMCID: PMC6773775 DOI: 10.1038/s42003-019-0606-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023] Open
Abstract
Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities.
Collapse
Affiliation(s)
- Maeva A. Techer
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Miguel L. Grau
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - John M. K. Roberts
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
| | | | | | | | | | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
- Australian National University, Canberra, ACT 2600 Australia
| |
Collapse
|
20
|
Posada-Florez F, Childers AK, Heerman MC, Egekwu NI, Cook SC, Chen Y, Evans JD, Ryabov EV. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci Rep 2019; 9:12445. [PMID: 31455863 PMCID: PMC6712216 DOI: 10.1038/s41598-019-47447-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Honey bees, the primary managed insect pollinator, suffer considerable losses due to Deformed wing virus (DWV), an RNA virus vectored by the mite Varroa destructor. Mite vectoring has resulted in the emergence of virulent DWV variants. The basis for such changes in DWV is poorly understood. Most importantly, it remains unclear whether replication of DWV occurs in the mite. In this study, we exposed Varroa mites to DWV type A via feeding on artificially infected honey bees. A significant, 357-fold increase in DWV load was observed in these mites after 2 days. However, after 8 additional days of passage on honey bee pupae with low viral loads, the DWV load dropped by 29-fold. This decrease significantly reduced the mites’ ability to transmit DWV to honey bees. Notably, negative-strand DWV RNA, which could indicate viral replication, was detected only in mites collected from pupae with high DWV levels but not in the passaged mites. We also found that Varroa mites contain honey bee mRNAs, consistent with the acquisition of honey bee cells which would additionally contain DWV replication complexes with negative-strand DWV RNA. We propose that transmission of DWV type A by Varroa mites occurs in a non-propagative manner.
Collapse
Affiliation(s)
| | - Anna K Childers
- USDA, Agricultural Research Service, Bee Research Lab, Beltsville, MD, USA
| | - Matthew C Heerman
- USDA, Agricultural Research Service, Bee Research Lab, Beltsville, MD, USA
| | - Noble I Egekwu
- USDA, Agricultural Research Service, Bee Research Lab, Beltsville, MD, USA
| | - Steven C Cook
- USDA, Agricultural Research Service, Bee Research Lab, Beltsville, MD, USA
| | - Yanping Chen
- USDA, Agricultural Research Service, Bee Research Lab, Beltsville, MD, USA
| | - Jay D Evans
- USDA, Agricultural Research Service, Bee Research Lab, Beltsville, MD, USA
| | - Eugene V Ryabov
- USDA, Agricultural Research Service, Bee Research Lab, Beltsville, MD, USA.
| |
Collapse
|
21
|
Eliash N, Thangarajan S, Goldenberg I, Sela N, Kupervaser M, Barlev J, Altman Y, Knyazer A, Kamer Y, Zaidman I, Rafaeli A, Soroker V. Varroa chemosensory proteins: some are conserved across Arthropoda but others are arachnid specific. INSECT MOLECULAR BIOLOGY 2019; 28:321-341. [PMID: 30444567 DOI: 10.1111/imb.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The tight synchronization between the life cycle of the obligatory parasitic mite Varroa destructor (Varroa) and its host, the honeybee, is mediated by honeybee chemical stimuli. These stimuli are mainly perceived by a pit organ located on the distal part of the mite's foreleg. In the present study, we searched for Varroa chemosensory molecular components by comparing transcriptomic and proteomic profiles between forelegs from different physiological stages, and rear legs. In general, a comparative transcriptomic analysis showed a clear separation of the expression profiles between the rear legs and the three groups of forelegs (phoretic, reproductive and tray-collected mites). Most of the differentially expressed transcripts and proteins in the mite's foreleg were previously uncharacterized. Using a conserved domain approach, we identified 45 transcripts with known chemosensory domains belonging to seven chemosensory protein families, of which 14 were significantly upregulated in the mite's forelegs when compared to rear legs. These are soluble and membrane bound proteins, including the somewhat ignored receptors of degenerin/epithelial Na+ channels and transient receptor potentials. Phylogenetic clustering and expression profiles of the putative chemosensory proteins suggest their role in chemosensation and shed light on the evolution of these proteins in Chelicerata.
Collapse
Affiliation(s)
- N Eliash
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Institute of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - S Thangarajan
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Goldenberg
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - N Sela
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - M Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - J Barlev
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Y Altman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - A Knyazer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Y Kamer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Zaidman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
22
|
Conlon BH, Aurori A, Giurgiu AI, Kefuss J, Dezmirean DS, Moritz RFA, Routtu J. A gene for resistance to the Varroa mite (Acari) in honey bee (Apis mellifera) pupae. Mol Ecol 2019; 28:2958-2966. [PMID: 30916410 DOI: 10.1111/mec.15080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Social insect colonies possess a range of defences which protect them against highly virulent parasites and colony collapse. The host-parasite interaction between honey bees (Apis mellifera) and the mite Varroa destructor is unusual, as honey bee colonies are relatively poorly defended against this parasite. The interaction has existed since the mid-20th Century, when Varroa switched host to parasitize A. mellifera. The combination of a virulent parasite and relatively naïve host means that, without acaricides, honey bee colonies typically die within 3 years of Varroa infestation. A consequence of acaricide use has been a reduced selective pressure for the evolution of Varroa resistance in honey bee colonies. However, in the past 20 years, several natural-selection-based breeding programmes have resulted in the evolution of Varroa-resistant populations. In these populations, the inhibition of Varroa's reproduction is a common trait. Using a high-density genome-wide association analysis in a Varroa-resistant honey bee population, we identify an ecdysone-induced gene significantly linked to resistance. Ecdysone both initiates metamorphosis in insects and reproduction in Varroa. Previously, using a less dense genetic map and a quantitative trait loci analysis, we have identified Ecdysone-related genes at resistance loci in an independently evolved resistant population. Varroa cannot biosynthesize ecdysone but can acquire it from its diet. Using qPCR, we are able to link the expression of ecdysone-linked resistance genes to Varroa's meals and reproduction. If Varroa co-opts pupal compounds to initiate and time its own reproduction, mutations in the host's ecdysone pathway may represent a key selection tool for honey bee resistance and breeding.
Collapse
Affiliation(s)
- Benjamin H Conlon
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Aurori
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | | | - Daniel S Dezmirean
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Robin F A Moritz
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.,University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Jarkko Routtu
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|