1
|
Du J, Luo H, Ye S, Zhang H, Zheng Z, Liu K. Unraveling IFI44L's biofunction in human disease. Front Oncol 2024; 14:1436576. [PMID: 39737399 PMCID: PMC11682996 DOI: 10.3389/fonc.2024.1436576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Interferon-induced protein 44-like (IFI44L) is regarded as an immune-related gene and is a member of interferon-stimulated genes (ISGs). They participate in network transduction, and its own epigenetic modifications, apoptosis, cell-matrix formation, and many other pathways in tumors, autoimmune diseases, and viral infections. The current review provides a comprehensive overview of the onset and biological mechanisms of IFI44L and its potential clinical applications in malignant tumors and non-neoplastic diseases.
Collapse
|
2
|
Michael S, Liotta N, Fei T, Bendall ML, Nixon DF, Dopkins N. Endogenous retroelement expression in modeled airway epithelial repair. Microbes Infect 2024:105465. [PMID: 39681187 DOI: 10.1016/j.micinf.2024.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/14/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by impairment of the CF transmembrane conductance regulator (CFTR) via gene mutation. CFTR is expressed at the cellular membrane of epithelial cells and functions as an anion pump which maintains water and salt ion homeostasis. In pulmonary airways of CF patients, pathogens such as P. aeruginosa and subsequent uncontrolled inflammation damage the human airway epithelial cells (HAECs) and can be life-threatening. We previously identified that inhibiting endogenous retroelement (ERE) reverse transcriptase can hamper the inflammatory response to bacterial flagella in THP-1 cells. Here, we investigate how ERE expression is sensitive to HAEC repair and toll-like receptor 5 (TLR5) activation, a primary mechanism by which inflammation impacts disease outcome. Our results demonstrate that several human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs) fluctuate throughout the various stages of repair and that TLR5 activation further influences ERE expression. By considering the impact of the most common CF mutation F508del/F508del on ERE expression in unwounded HAECs, we also found that two specific EREs, L1FLnI_2p23.1c and HERVH_10p12.33, were downregulated in CF-derived HAECs. Collectively, we show that ERE expression in HAECs is sensitive to certain modalities reflective of CF pathogenesis, and specific EREs may be indicative of CF disease state and pathogenesis.
Collapse
Affiliation(s)
- Stephanie Michael
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas Liotta
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tongyi Fei
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Koo H, Morrow CD. Shared and unique patterns of autonomous human endogenous retrovirus loci transcriptomes in CD14 + monocytes from individuals with physical trauma or infection with COVID-19. Retrovirology 2024; 21:17. [PMID: 39497142 PMCID: PMC11533341 DOI: 10.1186/s12977-024-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Since previous studies have suggested that the RNAs of human endogenous retrovirus (HERV) might be involved in regulating innate immunity, it is important to investigate the HERV transcriptome patterns in innate immune cell types such as CD14 + monocytes. Using single cell RNA-seq datasets from resting or stimulated PBMCs mapped to 3,220 known discrete autonomous proviral HERV loci, we found individual-specific variation in HERV transcriptomes between HERV loci in CD14 + monocytes. Analysis of paired datasets from the same individual that were cultured in vitro with LPS or without (i.e. control) revealed 36 HERV loci in CD14 + monocytes that were detected only after activation. To extend our analysis to in vivo activated CD14 + monocytes, we used two scRNA-seq datasets from studies that had demonstrated activation of circulating CD14 + monocytes in patients with physical trauma or patients hospitalized with COVID-19 infections. For direct comparison between the trauma and COVID-19 datasets, we first analyzed 1.625 billion sequence reads from a composite pangenome control of 21 normal individuals. Comparison of the sequence read depth of HERV loci in the trauma or COVID-19 samples to the pangenome control revealed that 39 loci in the COVID-19 and 11 HERV loci in the trauma samples were significantly different (Mann-Whitney U test), with 9 HERV loci shared between the COVID-19 and trauma datasets. The capacity to compare HERV loci transcriptome patterns in innate immune cells, like CD14 + monocytes, across different pathological conditions will lead to greater understanding of the physiological role of HERV expression in health and disease.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| |
Collapse
|
4
|
Du P, Li J, Hua M, Zhu L, Chen C, Zeng H. Potential Contributions of Human Endogenous Retroviruses in Innate Immune Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1225-1233. [PMID: 39230265 DOI: 10.4049/jimmunol.2300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The phenomenon wherein innate immune cells adopt long-term inflammatory phenotypes following the first stimuli is named trained immunity and can improve host defense against infections. Transcriptional and epigenetic reprogramming are critical mechanisms of trained immunity; however, the regulatory networks are not entirely clear at present. The human endogenous retroviruses (HERVs) provide large amounts of transcriptional regulators in the regulatory pathways. In this study, we analyzed published large omics data to explore the roles of such "dark matter" of the human genome in trained and tolerant macrophages. We collected 80 RNA sequencing data and 62 sequencing data to detect histone modifications and active regulatory regions from nine published studies on trained and tolerant macrophages. By analyzing the characteristics of transcription and epigenetic modification of HERVs, as well as their association with gene expression, we found that 15.3% of HERVs were transcribed nonrandomly from noncoding regions and enriched in specific HERV families and specific chromosomes, such as chromosomes 11, 15, 17, and 19, and they were highly related with the expression of adjacent genes. We found that 295 differentially expressed HERVs are located in 50-kbp flanking regions of 142 differentially expressed genes. We found epigenetic changes of these HERVs and that overlap with predicted enhancers and identified 35 enhancer-like HERVs. The related genes were highly involved in the activation and inflammatory responses, such as the TLR pathway. Other pathways including phosphoinositide signaling and transport of folate and K+ might be also related with trained immunity, which require further study. These results demonstrated that HERVs might play important roles in trained immunity.
Collapse
Affiliation(s)
- Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Jiarui Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 2024; 25:212-222. [PMID: 37872387 DOI: 10.1038/s41580-023-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Semsari H, Babaei E, Ranjkesh M, Esmaili N, Mallet F, Karimi A. Association of Human Endogenous Retrovirus-W (HERV-W) Copies with Pemphigus Vulgaris. Curr Mol Med 2024; 24:683-688. [PMID: 37078354 DOI: 10.2174/1566524023666230418114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Pemphigus is classified as a group of chronic, recurrent, and potentially fatal bullous autoimmune diseases that leads to blisters and skin lesions resulting from IgG antibodies and the loss of cellular connections in the epidermis. Human endogenous retrovirus (HERV) sequences and their products (RNA, cytosolic DNA, and proteins) can modulate the immune system and contribute to autoimmunity. The extent to which, HERV-W env copies may be involved in the pathogenesis of pemphigus remains to be elucidated. AIM This study aimed to comparatively evaluate the relative levels of HERV-W env DNA copy numbers in the peripheral blood mononuclear cells (PBMCs) of pemphigus vulgaris patients and healthy controls. METHODS Thirty-one pemphigus patients and the corresponding age- and sex-matched healthy controls were included in the study. The relative levels of HERV-W env DNA copy numbers were then evaluated by qPCR using specific primers, in the PBMCs of the patients and controls. RESULTS Our results indicated that relative levels of HERV-W env DNA copy numbers in the patients were significantly higher than that in the controls (1.67±0.86 vs. 1.17±0.75; p = 0.02). There was also a significant difference between the HERV-W env copies of male and female patients (p = 0.001). Furthermore, there was no relationship between the HERV-W env copy number and disease onset (p = 0.19) . According to the obtained data, we could not find any relationship between the HERV-W env copy number and serum Dsg1(p=0.86) and Dsg3 (p=0.76) levels. CONCLUSION Our results indicated a positive link between the HERV-W env copies and pathogenesis of pemphigus. The association between clinical severity score and HERVW env copies in the PBMCs as a biomarker for pemphigus needs further studies.
Collapse
Affiliation(s)
- Hanieh Semsari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammadreza Ranjkesh
- Department of Dermatology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Esmaili
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Razi Hospital, Tehran, Iran
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Edouard Herriot Hospital, University of Lyon1- Hospices Civils de Lyon-bioMérieux, 5 Place d'Arsonval, Lyon Cedex 3, Lyon, France
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhang X, Xie T, Li X, Feng M, Mo G, Zhang Q, Zhang X. Transcriptome Sequencing Reveals That Intact Expression of the Chicken Endogenous Retrovirus chERV3 In Vitro Can Possibly Block the Key Innate Immune Pathway. Animals (Basel) 2023; 13:2720. [PMID: 37684986 PMCID: PMC10486640 DOI: 10.3390/ani13172720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Endogenous retroviruses (ERVs) are viral sequences that have integrated into the genomes of vertebrates. Our preliminary transcriptome sequencing analysis revealed that chERV3 is active and is located on chromosome 1:32602284-32615631. We hypothesized that chERV3 may have a role in the host innate immune response to viral infection. In this study, using reverse genetics, we constructed the puc57-chERV3 full-length reverse cloning plasmid in vitro. We measured the p27 content in culture supernatant by enzyme-linked immunosorbent assay (ELISA). Finally, transcriptome analysis was performed to analyze the function of chERV3 in innate immunity. The results showed that chERV3 may generate p27 viral particles. We found that compared to the negative control (NC) group (transfected with pMD18T-EGFP), the chERV3 group exhibited 2538 up-regulated differentially expressed genes (DEGs) and 1828 down-regulated DEGs at 24 hours (h) and 1752 up-regulated DEGs and 1282 down-regulated DEGs at 48 h. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the down-regulated DEGs were enriched mainly in immune-related processes such as the inflammatory response, innate immune response, and Toll-like receptor signaling pathway. GSEA showed that the Toll-like receptor signaling pathway was suppressed by chERV3 at both time points. We hypothesized that chERV3 can influence the activation of the innate immune pathway by blocking the Toll-like receptor signaling pathway to achieve immune evasion.
Collapse
Affiliation(s)
- Xi Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiaoqi Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Qihong Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Chattopadhyay P, Mishra P, Mehta P, Soni J, Gupta R, Tarai B, Budhiraja S, Pandey R. Transcriptomic study reveals lncRNA-mediated downregulation of innate immune and inflammatory response in the SARS-CoV-2 vaccination breakthrough infections. Front Immunol 2022; 13:1035111. [PMID: 36466827 PMCID: PMC9716354 DOI: 10.3389/fimmu.2022.1035111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 08/15/2023] Open
Abstract
Introduction The emergence of multiple variants of concerns (VOCs) with higher number of Spike mutations have led to enhanced immune escape by the SARS-CoV-2. With the increasing number of vaccination breakthrough (VBT) infections, it is important to understand the possible reason/s of the breakthrough infections. Methods We performed transcriptome sequencing of 57 VBT and unvaccinated COVID-19 patients, followed by differential expression and co-expression analysis of the lncRNAs and the mRNAs. The regulatory mechanism was highlighted by analysis towards repeat element distribution within the co-expressed lncRNAs, followed by repeats driven homologous interaction between the lncRNAs and the promoter regions of genes from the same topologically associated domains (TAD). Results We identified 727 differentially expressed lncRNAs (153 upregulated and 574 downregulated) and 338 mRNAs (34 up- and 334 downregulated) in the VBT patients. This includes LUCAT1, MALAT1, ROR1-AS1, UGDH-AS1 and LINC00273 mediated modulation of immune response, whereas MALAT1, NEAT1 and GAS5 regulated inflammatory response in the VBT. LncRNA-mRNA co-expression analysis highlighted 34 lncRNAs interacting with 267 mRNAs. We also observed a higher abundance of Alu, LINE1 and LTRs within the interacting lncRNAs of the VBT patients. These interacting lncRNAs have higher interaction with the promoter region of the genes from the same TAD, compared to the non-interacting lncRNAs with the enrichment of Alu and LINE1 in the gene promoter. Discussion Significant downregulation and GSEA of the TAD gene suggest Alu and LINE1 driven homologous interaction between the lncRNAs and the TAD genes as a possible mechanism of lncRNA-mediated suppression of innate immune/inflammatory responses and activation of adaptive immune response. The lncRNA-mediated suppression of innate immune/inflammatory responses and activation of adaptive immune response might explain the SARS-CoV-2 breakthrough infections with milder symptoms in the VBT. Besides, the study also highlights repeat element mediated regulation of genes in 3D as another possible way of lncRNA-mediated immune-regulation modulating vaccination breakthroughs milder disease phenotype and shorter hospital stay.
Collapse
Affiliation(s)
- Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Gupta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
A Systems Biology Approach on the Regulatory Footprint of Human Endogenous Retroviruses (HERVs). Diseases 2022; 10:diseases10040098. [PMID: 36412592 PMCID: PMC9680359 DOI: 10.3390/diseases10040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are a family of endogenous retroviruses that comprise the ~8.93% of the human genome sequence, with a high proportion being human specific. The recent expansion of repeated HERV sequences has offered a framework for genetic and epigenetic innovation. In the current report, a systematic approach is implemented to catalogue regulatory elements within HERVs, as a roadmap to potential functions of HERV sequences in gene networks. ENCODE Project has offered a wealth of epigenetic data based on omics technologies. I analyzed the presence of HERV sequences on consensus cis-regulatory elements (cCREs) from ENCODE data. On the one side, HERVs are in 1 out of 9 cCREs (>100.000 cCREs in total), dispersed within the genome and present in cis-regulatory regions of ~81% of human genes, as calculated following gene enrichment analysis. On the other side, promoter-associated HERV cCREs are present adjacent to (in a 200 bp window) the transcription start sites of 256 human genes. Regulatory network production, followed by centrality analysis led to the discovery of 90 core genes containing HERV-associated promoters. Pathway analysis on the core network genes and their immediate neighbors revealed a regulatory footprint that, among others, is associated with inflammation, chemokine signaling and response to viral infection. Collectively, these results support the concept that the expansion of regulatory sequences derived from HERVs is critical for epigenetic innovation that may have wired together genes into novel transcriptional networks with critical roles in cellular physiology and pathology.
Collapse
|
10
|
Mallet F, Diouf L, Meunier B, Perret M, Reynier F, Leissner P, Quemeneur L, Griffiths AD, Moucadel V, Pachot A, Venet F, Monneret G, Lepape A, Rimmelé T, Tan LK, Brengel-Pesce K, Textoris J. Herpes DNAemia and TTV Viraemia in Intensive Care Unit Critically Ill Patients: A Single-Centre Prospective Longitudinal Study. Front Immunol 2021; 12:698808. [PMID: 34795661 PMCID: PMC8593420 DOI: 10.3389/fimmu.2021.698808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction We analysed blood DNAemia of TTV and four herpesviruses (CMV, EBV, HHV6, and HSV-1) in the REAnimation Low Immune Status Marker (REALISM) cohort of critically ill patients who had presented with either sepsis, burns, severe trauma, or major surgery. The aim was to identify common features related to virus and injury-associated pathologies and specific features linking one or several viruses to a particular pathological context. Methods Overall and individual viral DNAemia were measured over a month using quantitative PCR assays from the 377 patients in the REALISM cohort. These patients were characterised by clinical outcomes [severity scores, mortality, Intensive Care Unit (ICU)-acquired infection (IAI)] and 48 parameters defining their host response after injury (cell populations, immune functional assays, and biomarkers). Association between viraemic event and clinical outcomes or immune markers was assessed using χ2-test or exact Fisher’s test for qualitative variables and Wilcoxon test for continuous variables. Results The cumulative incidence of viral DNAemia increased from below 4% at ICU admission to 35% for each herpesvirus during the first month. EBV, HSV1, HHV6, and CMV were detected in 18%, 12%, 10%, and 9% of patients, respectively. The incidence of high TTV viraemia (>10,000 copies/ml) increased from 11% to 15% during the same period. Herpesvirus viraemia was associated with severity at admission; CMV and HHV6 viraemia correlated with mortality during the first week and over the month. The presence of individual herpesvirus during the first month was significantly associated (p < 0.001) with the occurrence of IAI, whilst herpesvirus DNAemia coupled with high TTV viraemia during the very first week was associated with IAI. Herpesvirus viraemia was associated with a lasting exacerbated host immune response, with concurrent profound immune suppression and hyper inflammation, and delayed return to immune homeostasis. The percentage of patients presenting with herpesvirus DNAemia was significantly higher in sepsis than in all other groups. Primary infection in the hospital and high IL10 levels might favour EBV and CMV reactivation. Conclusion In this cohort of ICU patients, phenotypic differences were observed between TTV and herpesviruses DNAemia. The higher prevalence of herpesvirus DNAemia in sepsis hints at further studies that may enable a better in vivo understanding of host determinants of herpesvirus viral reactivation. Furthermore, our data suggest that EBV and TTV may be useful as additional markers to predict clinical deterioration in ICU patients.
Collapse
Affiliation(s)
- François Mallet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Léa Diouf
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,IVIDATA, Levallois-Perret, France
| | - Boris Meunier
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Soladis Inc., Cambridge, MA, United States
| | - Magali Perret
- BIOASTER Technology Research Institute, Lyon, France
| | | | | | | | - Andrew D Griffiths
- Laboratoire de Biochimie (LBC), École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI) Paris, Paris Sciences & Lettres (PSL) Université, Centre National de la Recherche Scientifique (CNRS) UMR8231, Paris, France
| | - Virginie Moucadel
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Alexandre Pachot
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Alain Lepape
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | | | - Karen Brengel-Pesce
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julien Textoris
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
11
|
Tamouza R, Meyer U, Foiselle M, Richard JR, Wu CL, Boukouaci W, Le Corvoisier P, Barrau C, Lucas A, Perron H, Leboyer M. Identification of inflammatory subgroups of schizophrenia and bipolar disorder patients with HERV-W ENV antigenemia by unsupervised cluster analysis. Transl Psychiatry 2021; 11:377. [PMID: 34230451 PMCID: PMC8260666 DOI: 10.1038/s41398-021-01499-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of infections that took place several million years ago and represent around 8% of the human genome. Despite evidence implicating increased expression of HERV type W envelope (HERV-W ENV) in schizophrenia and bipolar disorder, it remains unknown whether such expression is associated with distinct clinical or biological characteristics and symptoms. Accordingly, we performed unsupervised two-step clustering of a multivariate data set that included HERV-W ENV protein antigenemia, serum cytokine levels, childhood trauma scores, and clinical data of cohorts of patients with schizophrenia (n = 29), bipolar disorder (n = 43) and healthy controls (n = 32). We found that subsets of patients with schizophrenia (~41%) and bipolar disorder (~28%) show positive antigenemia for HERV-W ENV protein, whereas the large majority (96%) of controls was found to be negative for ENV protein. Unsupervised cluster analysis identified the presence of two main clusters of patients, which were best predicted by the presence or absence of HERV-W ENV protein. HERV-W expression was associated with increased serum levels of inflammatory cytokines and higher childhood maltreatment scores. Furthermore, patients with schizophrenia who were positive for HERV-W ENV protein showed more manic symptoms and higher daily chlorpromazine (CPZ) equivalents, whereas HERV-W ENV positive patients with bipolar disorder were found to have an earlier disease onset than those who were negative for HERV-W ENV protein. Taken together, our study suggest that HERV-W ENV protein antigenemia and cytokines can be used to stratify patients with major mood and psychotic disorders into subgroups with differing inflammatory and clinical profiles.
Collapse
Affiliation(s)
- Ryad Tamouza
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, France.
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France.
- Fondation FondaMental, Créteil, France.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Marianne Foiselle
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Ching-Lien Wu
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Wahid Boukouaci
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Philippe Le Corvoisier
- Université Paris Est Créteil, Centre Investigation Clinique, CIC Henri Mondor, Créteil, France
| | - Caroline Barrau
- Plateforme de Ressources Biologiques, HU Henri Mondor, Créteil, France
| | - Alexandre Lucas
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), plateau We-Met, Inserm UMR1048 and Université Paul Sabatier, Toulouse, France
| | - Hervé Perron
- GeNeuro, 3, Chemin du pré Fleuri 1228 Plan-les-Ouates, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Marion Leboyer
- AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT), Créteil, France.
- Université Paris Est Créteil, Laboratoire Neuro-Psychiatrie translationnelle, Créteil, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
12
|
Pisano MP, Grandi N, Tramontano E. Human Endogenous Retroviruses (HERVs) and Mammalian Apparent LTRs Retrotransposons (MaLRs) Are Dynamically Modulated in Different Stages of Immunity. BIOLOGY 2021; 10:biology10050405. [PMID: 34062989 PMCID: PMC8147956 DOI: 10.3390/biology10050405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022]
Abstract
Human Endogenous retroviruses (HERVs) and Mammalian Apparent LTRs Retrotransposons (MaLRs) are remnants of ancient retroviral infections that represent a large fraction of our genome. The HERV and MaLR transcriptional activity is regulated in developmental stages, adult tissues, and pathological conditions. In this work, we used a bioinformatics approach based on RNA-sequencing (RNA-seq) to study the expression and modulation of HERVs and MaLR in a scenario of activation of the immune response. We analyzed transcriptome data from subjects before and after the administration of an inactivated vaccine against the Hantaan orthohantavirus, the causative agent of Korean hemorrhagic fever, to investigate the HERV and MaLR expression and differential expression in response to the administration of the vaccine. Specifically, we described the HERV transcriptome in PBMCs and identified HERV and MaLR loci differentially expressed after the 2nd, 3rd, and 4th inactivated vaccine administrations. We found that the expression of 545 HERV and MaLR elements increased in response to the vaccine and that the activation of several individual HERV and MaLR loci is specific for each vaccine administration and correlated to different genes and immune-related pathways.
Collapse
|
13
|
Strayer DR, Young D, Mitchell WM. Effect of disease duration in a randomized Phase III trial of rintatolimod, an immune modulator for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. PLoS One 2020; 15:e0240403. [PMID: 33119613 PMCID: PMC7595369 DOI: 10.1371/journal.pone.0240403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rintatolimod is a selective TLR3 agonist, which has demonstrated clinical activity for ME/CFS in Phase II and Phase III double-blind, placebo-controlled, randomized, multi-site clinical trials. METHODS AND FINDINGS A hypothesis-based post-hoc analysis of the Intent to Treat (ITT) population diagnosed with ME/CFS from 12 independent clinical sites of a Phase III trial was performed to evaluate the effect of rintatolimod therapy based on disease duration. The clinical activity of rintatolimod was evaluated by exercise treadmill tolerance (ETT) using a modified Bruce protocol. The ITT population (n = 208) was divided into two subsets of symptom duration. Patients with symptom duration of 2-8 years were identified as the Target Subset (n = 75); the remainder (<2 year plus >8 year) were identified as the Non-Target Subset (n = 133). Placebo-adjusted percentage improvements in exercise duration and the vertical rise for the Target Subset (n = 75) were more than twice that of the ITT population. The Non-Target Subset (n = 133) failed to show any clinically significant ETT response to rintatolimod when compared to placebo. Within the Target Subset, 51.2% of rintatolimod-treated patients improved their exercise duration by ≥25% (p = 0.003) despite reduced statistical power from division of the original ITT population into two subsets. CONCLUSION/SIGNIFICANCE Analysis of ETT from a Phase III trial has identified within the ITT population, a subset of ME/CFS patients with ≥2 fold increased exercise response to rintatolimod. Substantial improvement in physical performance was seen for the majority (51.2%) of these severely debilitated patients who improved exercise duration by ≥25%. This magnitude of exercise improvement was associated with clinically significant enhancements in quality of life. The data indicate that ME/CFS patients have a relatively short disease duration window (<8 years) to expect a significant response to rintatolimod under the dosing conditions utilized in this Phase III clinical trial. These results may have direct relevance to the cognitive impairment and fatigue being experienced by patients clinically recovered from COVID-19 and free of detectable SARS-CoV-2. TRIAL REGISTRATION ClinicalTrials.gov: NCT00215800.
Collapse
Affiliation(s)
- David R. Strayer
- AIM ImmunoTech Inc., Philadelphia, Pennsylvania, United States of America
| | - Diane Young
- AIM ImmunoTech Inc., Philadelphia, Pennsylvania, United States of America
| | - William M. Mitchell
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Deciphering heterogeneity of septic shock patients using immune functional assays: a proof of concept study. Sci Rep 2020; 10:16136. [PMID: 32999313 PMCID: PMC7527338 DOI: 10.1038/s41598-020-73014-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The complexity of sepsis pathophysiology hinders patient management and therapeutic decisions. In this proof-of-concept study we characterised the underlying host immune response alterations using a standardised immune functional assay (IFA) in order to stratify a sepsis population. In septic shock patients, ex vivo LPS and SEB stimulations modulated, respectively, 5.3% (1/19) and 57.1% (12/21) of the pathways modulated in healthy volunteers (HV), highlighting deeper alterations induced by LPS than by SEB. SEB-based clustering, identified 3 severity-based groups of septic patients significantly different regarding mHLA-DR expression and TNFα level post-LPS, as well as 28-day mortality, and nosocomial infections. Combining the results from two independent cohorts gathering 20 HV and 60 patients, 1 cluster grouped all HV with 12% of patients. The second cluster grouped 42% of patients and contained all non-survivors. The third cluster grouped 46% of patients, including 78% of those with nosocomial infections. The molecular features of these clusters indicated a distinctive contribution of previously described genes defining a “healthy-immune response” and a “sepsis-related host response”. The third cluster was characterised by potential immune recovery that underlines the possible added value of SEB-based IFA to capture the sepsis immune response and contribute to personalised management.
Collapse
|
15
|
RNA-Seq Transcriptome Analysis Reveals Long Terminal Repeat Retrotransposon Modulation in Human Peripheral Blood Mononuclear Cells after In Vivo Lipopolysaccharide Injection. J Virol 2020; 94:JVI.00587-20. [PMID: 32669333 DOI: 10.1128/jvi.00587-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Human endogenous retroviruses (HERVs) and mammalian apparent long terminal repeat (LTR) retrotransposons (MaLRs) are retroviral sequences that integrated into germ line cells millions of years ago. Transcripts of these LTR retrotransposons are present in several tissues, and their expression is modulated in pathological conditions, although their function remains often far from being understood. Here, we focused on the HERV/MaLR expression and modulation in a scenario of immune system activation. We used a public data set of human peripheral blood mononuclear cells (PBMCs) RNA-Seq from 15 healthy participants to a clinical trial before and after exposure to lipopolysaccharide (LPS), for which we established an RNA-Seq workflow for the identification of expressed and modulated cellular genes and LTR retrotransposon elements.IMPORTANCE We described the HERV and MaLR transcriptome in PBMCs, finding that about 8.4% of the LTR retrotransposon loci were expressed and identifying the betaretrovirus-like HERVs as those with the highest percentage of expressed loci. We found 4,607 HERV and MaLR loci that were modulated as a result of in vivo stimulation with LPS. The HERV-H group showed the highest number of differentially expressed most intact proviruses. We characterized the HERV and MaLR loci as differentially expressed, checking their genomic context of insertion and observing a general colocalization with genes that are involved and modulated in the immune response, as a consequence of LPS stimulation. The analyses of HERV and MaLR expression and modulation show that these LTR retrotransposons are expressed in PBMCs and regulated in inflammatory settings. The similar regulation of HERVs/MaLRs and genes after LPS stimulation suggests possible interactions of LTR retrotransposons and the immune host response.
Collapse
|
16
|
Mommert M, Tabone O, Guichard A, Oriol G, Cerrato E, Denizot M, Cheynet V, Pachot A, Lepape A, Monneret G, Venet F, Brengel-Pesce K, Textoris J, Mallet F. Dynamic LTR retrotransposon transcriptome landscape in septic shock patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:96. [PMID: 32188504 PMCID: PMC7081582 DOI: 10.1186/s13054-020-2788-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Numerous studies have explored the complex and dynamic transcriptome modulations observed in sepsis patients, but a large fraction of the transcriptome remains unexplored. This fraction could provide information to better understand sepsis pathophysiology. Multiple levels of interaction between human endogenous retroviruses (HERV) and the immune response have led us to hypothesize that sepsis is associated with HERV transcription and that HERVs may contribute to a signature among septic patients allowing stratification and personalized management. METHODS We used a high-density microarray and RT-qPCR to evaluate the HERV and Mammalian Apparent Long Terminal Repeat retrotransposons (MaLR) transcriptome in a pilot study that included 20 selected septic shock patients, stratified on mHLA-DR expression, with samples collected on day 1 and day 3 after inclusion. We validated the results in an unselected, independent cohort that included 100 septic shock patients on day 3 after inclusion. We compared septic shock patients, according to their immune status, to describe the transcriptional HERV/MaLR and conventional gene expression. For differential expression analyses, moderated t tests were performed and Wilcoxon signed-rank tests were used to analyze RT-qPCR results. RESULTS We showed that 6.9% of the HERV/MaLR repertoire was transcribed in the whole blood, and septic shock was associated with an early modulation of a few thousand of these loci, in comparison to healthy volunteers. We provided evidence that a subset of HERV/MaLR and conventional genes were differentially expressed in septic shock patients, according to their immune status, using monocyte HLA-DR (mHLA-DR) expression as a proxy. A group of 193 differentially expressed HERV/MaLR probesets, tested in an independent septic shock cohort, identified two groups of patients with different immune status and severity features. CONCLUSION We demonstrated that a large, unexplored part of our genome, which codes for HERV/MaLR, may be linked to the host immune response. The identified set of HERV/MaLR probesets should be evaluated on a large scale to assess the relevance of these loci in the stratification of septic shock patients. This may help to address the heterogeneity of these patients.
Collapse
Affiliation(s)
- Marine Mommert
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France. .,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.
| | - Olivier Tabone
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Audrey Guichard
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Guy Oriol
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Elisabeth Cerrato
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Mélanie Denizot
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Valérie Cheynet
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Alexandre Pachot
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Alain Lepape
- Intensive Care Unit, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.,Emerging Pathogens Laboratory, Epidemiology and International Health, International Center for Infectiology Research (CIRI), Lyon, France.,bioMérieux Joint Research Unit, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Immunology Laboratory, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Immunology Laboratory, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Julien Textoris
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Department of Anaesthesiology and Critical Care Medicine, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Université Claude Bernard Lyon 1, Lyon, France
| | - François Mallet
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | | | | |
Collapse
|
17
|
Machnik M, Oleksiewicz U. Dynamic Signatures of the Epigenome: Friend or Foe? Cells 2020; 9:cells9030653. [PMID: 32156057 PMCID: PMC7140607 DOI: 10.3390/cells9030653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Highly dynamic epigenetic signaling is influenced mainly by (micro)environmental stimuli and genetic factors. The exact mechanisms affecting particular epigenomic patterns differ dependently on the context. In the current review, we focus on the causes and effects of the dynamic signatures of the human epigenome as evaluated with the high-throughput profiling data and single-gene approaches. We will discuss three different aspects of phenotypic outcomes occurring as a consequence of epigenetics interplaying with genotype and environment. The first issue is related to the cases of environmental impacts on epigenetic profile, and its adverse and advantageous effects related to human health and evolutionary adaptation. The next topic will present a model of the interwoven co-evolution of genetic and epigenetic patterns exemplified with transposable elements (TEs) and their epigenetic repressors Krüppel-associated box zinc finger proteins (KRAB–ZNFs). The third aspect concentrates on the mitosis-based microevolution that takes place during carcinogenesis, leading to clonal diversity and expansion of tumor cells. The whole picture of epigenome plasticity and its role in distinct biological processes is still incomplete. However, accumulating data define epigenomic dynamics as an essential co-factor driving adaptation at the cellular and inter-species levels with a benefit or disadvantage to the host.
Collapse
Affiliation(s)
- Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Correspondence:
| |
Collapse
|
18
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
19
|
Talotta R, Sarzi-Puttini P, Laska MJ, Atzeni F. Retrotransposons shuttling genetic and epigenetic information from the nuclear to the mitochondrial compartment: Do they play a pathogenetic role in scleroderma? Cytokine Growth Factor Rev 2019; 49:42-58. [PMID: 31677967 DOI: 10.1016/j.cytogfr.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Endogenous retroelements are a class of ancient defective viral insertions contained in the genome of host cells, where they account for up to 40% of all DNA. Centuries of co-existence in host genome have led to the development of immunotolerance to endogenous retroelements, most of which are defective and unable to replicate or transcribe functional proteins. However, given their capacity to move across the nuclear and mitochondrial genome and recombine, they could mix phenotypes and give rise to infections that may trigger innate and adaptive immune responses by sensing receptors capable of recognising foreign nucleic acids and proteins. It has recently been suggested that they play a role in the pathogenesis of autoimmune diseases on the grounds of their partial reactivation or the epigenetic control of host gene transcription. A number of studies have confirmed their contribution to the development of rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus, but there is still a lack of data concerning systemic sclerosis (SSc). Their role in the pathogenesis of SSc can be hypothesised on the basis of mitochondrial and nuclear chromatinic damage, and hyper-activation of the immune pathway involved in antiviral defense. SSc is characterised by genetic and immunological evidence of a viral infection but, as no viral agent has yet been isolated from SSc patients, the hypothesis that partial reactivation of endogenous retroviruses may trigger the disease cannot be excluded and deserves further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| | - Piercarlo Sarzi-Puttini
- Rheumatology Unit, University Hospital ASST-Fatebenefratelli-Sacco, Via G.B Grassi 74, 20157 Milan, Italy.
| | | | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| |
Collapse
|
20
|
Karimi A, Sheervalilou R, Kahroba H. A New Insight on Activation of Human Endogenous Retroviruses (HERVs) in Malignant Melanoma upon Exposure to CuSO4. Biol Trace Elem Res 2019; 191:70-74. [PMID: 30539386 DOI: 10.1007/s12011-018-1605-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Human endogenous retroviruses (HERVs) are semi-conserved subtypes of long-terminal repeats containing retrotransposons that constitute approximately 8% of the genome. Under pathological conditions, the expression of HERVs is also affected by epigenetic modifications. The extent to which the activation of human endogenous retroviruses can be influenced upon exposure to copper remains to be evaluated. Thus, the present study was designed to evaluate the effects of CuSO4 administration on the transcriptional activity of three HERV families (H, K, and W) in human malignant melanoma cells. For this purpose, following the determination of less cytotoxic concentrations of copper sulfate, the human skin malignant melanoma SK-MEL-37 cells were treated with 25, 50, and 75 μM CuSO4 for 96 h. Then, mRNA expression of env gene of HERV-H, HERV-K, and HERV-W was evaluated by qPCR. According to the results, 96-h treatment of SK-MEL-37 cells with 75 μM CuSO4 could significantly downregulate HERV-H evn expression (P < 0.05). Moreover, exposure of 25 μM copper significantly upregulated the expression of HERV-K env (P < 0.05). Regarding HERV-W env, the expression level increased significantly in all treated concentrations (P < 0.05). It seems that the expression change was decreased in both HERV-W and HERV-K by increasing doses. The study results demonstrated that copper exposure to melanoma cells might promote tumor growth by inducing HERVs and/or control tumor development by decreasing the activation of HERVs in defined levels of copper. According to the findings of this study, copper might exert a binary effect on malignant melanoma.
Collapse
Affiliation(s)
- Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, East Azerbaijan, 5166614756, Iran.
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, East Azerbaijan, 5166614756, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, East Azerbaijan, 5166614756, Iran
| |
Collapse
|
21
|
Karimi A, Esmaili N, Ranjkesh M, Zolfaghari MA. Expression of human endogenous retroviruses in pemphigus vulgaris patients. Mol Biol Rep 2019; 46:6181-6186. [PMID: 31473891 DOI: 10.1007/s11033-019-05053-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
Pemphigus is a severe, potentially life-threatening autoimmune blistering mucocutaneous disease which establishes with autoreactive IgG antibodies that target cellular adhesions, precisely extracellular domains of keratinocyte proteins. Several genetic and environmental elements are believed to contribute to the pathogenesis of the disease. The extent to which the initiation and progress of this autoimmune blistering disease may be influenced by the expression of human endogenous retroviruses (HERVs) remains to be elucidated. In this study, we evaluated the expression of HERV groups (K, W, and H) in pemphigus vulgaris (PV) patients in comparison to controls. Peripheral blood samples were collected from 24 PV patients and the corresponding age- and sex-matched healthy controls to extract total RNA for evaluation of HERV-K (HML-2), HERV-W, and HERV-H, env gene expression profile by qPCR. The mRNA expression level of HERV-K, HERV-W, and HERV-H were significantly upregulated in PV patients in comparison to healthy controls (P < 0.0001). The difference in expression of studied HERVs groups between men and women was no significant (P > 0.05). Although rituximab taking patients had a decreased expression level of studied HERVs, the results were not significant (P > 0.05). According to our obtained data, HERVs expression could be measured as a possible diagnostic tool for detection of PV and monitoring of the treatment.
Collapse
Affiliation(s)
- Abbas Karimi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Razi Hospital, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nafiseh Esmaili
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Razi Hospital, Tehran, Iran.
| | - Mohammadreza Ranjkesh
- Department of Dermatology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Vidmar L, Maver A, Drulović J, Sepčić J, Novaković I, Ristič S, Šega S, Peterlin B. Multiple Sclerosis patients carry an increased burden of exceedingly rare genetic variants in the inflammasome regulatory genes. Sci Rep 2019; 9:9171. [PMID: 31235738 PMCID: PMC6591387 DOI: 10.1038/s41598-019-45598-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The role of rare genetic variation and the innate immune system in the etiology of multiple sclerosis (MS) is being increasingly recognized. Recently, we described several rare variants in the NLRP1 gene, presumably conveying an increased risk for familial MS. In the present study we aimed to assess rare genetic variation in the inflammasome regulatory network. We performed whole exome sequencing of 319 probands, comprising patients with familial MS, sporadic MS and control subjects. 62 genes involved in the NLRP1/NLRP3 inflammasome regulation were screened for potentially pathogenic rare genetic variation. Aggregate mutational burden was analyzed, considering the variants' predicted pathogenicity and frequency in the general population. We demonstrate an increased (p = 0.00004) variant burden among MS patients which was most pronounced for the exceedingly rare variants with high predicted pathogenicity. These variants were found in inflammasome genes (NLRP1/3, CASP1), genes mediating inflammasome inactivation via auto and mitophagy (RIPK2, MEFV), and genes involved in response to infection with DNA viruses (POLR3A, DHX58, IFIH1) and to type-1 interferons (TYK2, PTPRC). In conclusion, we present new evidence supporting the importance of rare genetic variation in the inflammasome signaling pathway and its regulation via autophagy and interferon-β to the etiology of MS.
Collapse
Affiliation(s)
- Lovro Vidmar
- Clinical Institute of Medical Genetics, Slajmerjeva 3, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ales Maver
- Clinical Institute of Medical Genetics, Slajmerjeva 3, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jelena Drulović
- Clinic of Neurology, CCS, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Juraj Sepčić
- Postgraduate Study, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivana Novaković
- Faculty of Medicine, University of Belgrade, Institute of Human Genetics, 26 Visegradska, Belgrade, Serbia
| | - Smiljana Ristič
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Saša Šega
- Division of Neurology, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, Slajmerjeva 3, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Feng M, Ren F, Zhou Y, Zhang N, Lu Q, Swevers L, Sun J. Correlation in Expression between LTR Retrotransposons and Potential Host Cis-Targets during Infection of Antherea pernyi with ApNPV Baculovirus. Viruses 2019; 11:v11050421. [PMID: 31064084 PMCID: PMC6563192 DOI: 10.3390/v11050421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022] Open
Abstract
The published genome sequence of Antheraeayamamai (Saturnnidae) was used to construct a library of long terminal repeat (LTR)-retrotransposons that is representative of the wild silkmoth (Antherea) genus, and that includes 22,666 solo LTRs and 541 full-length LTRs. The LTR retrotransposons of Antheraeayamamai (AyLTRs) could be classified into the three canonical groups of Gypsy, Copia and Belpao. Eleven AyLTRs contained the env gene element, but the relationship with the env element of baculovirus, particularly A. yamamai and pernyi nucleopolyhedrovirus (AyNPV and ApNPV), was distant. A total of 251 “independent” full-length AyLTRs were identified that were located within 100 kb distance (downstream or upstream) of 406 neighboring genes in A. yamamai. Regulation of these genes might occur in cis by the AyLTRs, and the neighboring genes were found to be enriched in GO terms such as “response to stimulus”, and KEGG terms such as “mTOR signaling pathway” among others. Furthermore, the library of LTR-retrotransposons and the A. yamamai genome were used to identify and analyze the expression of LTR-retrotransposons and genes in ApNPV-infected and non-infected A. pernyi larval midguts, using raw data of a published transcriptome study. Our analysis demonstrates that 93 full-length LTR-retrotransposons are transcribed in the midgut of A. pernyi of which 12 significantly change their expression after ApNPV infection (differentially expressed LTR-retrotransposons or DELs). In addition, the expression of differentially expressed genes (DEGs) and neighboring DELs on the chromosome following ApNPV infection suggests the possibility of regulation of expression of DEGs by DELs through a cis mechanism, which will require experimental verification. When examined in more detail, it was found that genes involved in Notch signaling and stress granule (SG) formation were significantly up-regulated in ApNPV-infected A. pernyi larval midgut. Moreover, several DEGs in the Notch and SG pathways were found to be located in the neighborhood of particular DELs, indicating the possibility of DEG-DEL cross-regulation in cis for these two pathways.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15341, Greece.
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15341, Greece.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clin Ther 2019; 41:675-698. [PMID: 30910331 DOI: 10.1016/j.clinthera.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Studies to determine epigenetic changes associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain scarce; however, current evidence clearly shows that methylation patterns of genomic DNA and noncoding RNA profiles of immune cells differ between patients and healthy subjects, suggesting an active role of these epigenetic mechanisms in the disease. The present study compares and contrasts the available ME/CFS epigenetic data in an effort to evidence overlapping pathways capable of explaining at least some of the dysfunctional immune parameters linked to this disease. METHODS A systematic search of the literature evaluating the ME/CFS epigenome landscape was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Differential DNA methylation and noncoding RNA differential expression patterns associated with ME/CFS were used to screen for the presence of transposable elements using the Dfam browser, a search program nurtured with the Repbase repetitive sequence database and the RepeatMasker annotation tool. FINDINGS Unexpectedly, particular associations of transposable elements and ME/CFS epigenetic hallmarks were uncovered. A model for the disease emerged involving transcriptional induction of endogenous dormant transposons and structured cellular RNA interactions, triggering the activation of the innate immune system without a concomitant active infection. IMPLICATIONS Repetitive sequence filters (ie, RepeatMasker) should be avoided when analyzing transcriptomic data to assess the potential participation of repetitive sequences ("junk repetitive DNA"), representing >45% of the human genome, in the onset and evolution of ME/CFS. In addition, transposable element screenings aimed at designing cost-effective, focused empirical assays that can confirm or disprove the suspected involvement of transposon transcriptional activation in this disease, following the pilot strategy presented here, will require databases gathering large ME/CFS epigenetic datasets.
Collapse
|
25
|
Albert Vega C, Mommert M, Boccard M, Rimmelé T, Venet F, Pachot A, Leray V, Monneret G, Delwarde B, Brengel-Pesce K, Mallet F, Trouillet-Assant S. Source of Circulating Pentraxin 3 in Septic Shock Patients. Front Immunol 2019; 9:3048. [PMID: 30687307 PMCID: PMC6338061 DOI: 10.3389/fimmu.2018.03048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis, which is the leading cause of death in intensive care units (ICU), has been acknowledged as a global health priority by the WHO in 2017. Identification of biomarkers allowing early stratification and recognition of patients at higher risk of death is crucial. One promising biomarker candidate is pentraxin-3 (PTX3); initially elevated and persistently increased plasma concentration in septic patients has been associated with increased mortality. PTX3 is an acute phase protein mainly stored in neutrophil granules. These cells are responsible for rapid and prompt release of PTX3 in inflammatory context, but the cellular origin responsible for successive days' elevation in sepsis remains unknown. Upon inflammatory stimulation, PTX3 can also be produced by other cell types, including endothelial and immune cells. As in septic patients immune alterations have been described, we therefore sought to investigate whether such cells participated in the elevation of PTX3 over the first days after septic shock onset. To address this point, PTX3 was measured in plasma from septic shock patients at day 3 after ICU admission as well as in healthy volunteers (HV), and the capacity of whole blood cells to secrete PTX3 after inflammatory stimulation was evaluated ex vivo. A significantly mean higher (100-fold) concentration of plasma PTX3 was found in patients compared to HV, which was likely due to the inflammation-induced initial release of the pre-existing PTX3 reservoir contained in neutrophils. Strikingly, when whole blood was stimulated ex vivo with LPS no significant difference between patients and HV in PTX3 release was found. This was in contrast with TNFα which decreased production was illustrative of the endotoxin tolerance phenomenon occurring in septic patients. Then, the release of PTX3 protein from a HV neutrophil-free PBMC endotoxin tolerance model was investigated. At the transcriptional level, PTX3 seems to be a weakly tolerizable gene similar to TNFα. Conversely, increased protein levels observed in anergy condition reflects a non-tolerizable phenotype, more likely to an anti-inflammatory marker. Hence, altered immune cells still have the ability to produce PTX3 in response to an inflammatory trigger, and therefore circulating white blood cell subset could be responsible of the sustained PTX3 plasma levels over the first days of sepsis setting.
Collapse
Affiliation(s)
- Chloé Albert Vega
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - Marine Mommert
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - Mathilde Boccard
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Département des Maladies Infectieuses et tropicales, Hospices Civils de Lyon, Lyon, France
| | - Thomas Rimmelé
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | - Alexandre Pachot
- Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - Veronique Leray
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | - Benjamin Delwarde
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Sophie Trouillet-Assant
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Faculté de Médecine Lyon Est, Virpath - Université Lyon, CIRI, INSERM U1111, CNRS 5308, ENS, UCBL, Lyon, France
| |
Collapse
|
26
|
Matteucci C, Balestrieri E, Argaw-Denboba A, Sinibaldi-Vallebona P. Human endogenous retroviruses role in cancer cell stemness. Semin Cancer Biol 2018; 53:17-30. [PMID: 30317035 DOI: 10.1016/j.semcancer.2018.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Cancer incidence and mortality, metastasis, drug resistance and recurrence are still the critical issues of oncological diseases. In this scenario, increasing scientific evidences demonstrate that the activation of human endogenous retroviruses (HERVs) is involved in the aggressiveness of tumors such as melanoma, breast, germ cell, renal, ovarian, liver and haematological cancers. In their dynamic regulation, HERVs have also proved to be important determinants of pluripotency in human embryonic stem cells (ESC) and of the reprogramming process of induced pluripotent stem cells (iPSCs). In many types of tumors, essential characteristics of aggressiveness have been associated with the achievement of stemness features, often accompanied with the identification of defined subpopulations, termed cancer stem cells (CSCs), which possess stem cell-like properties and sustain tumorigenesis. Indeed, CSCs show high self-renewal capacity with a peculiar potential in tumor initiation, progression, metastasis, heterogeneity, recurrence, radiotherapy and drug resistance. However, HERVs role in CSCs biology is still not fully elucidated. In this regard, CD133 is a widely recognized marker of CSCs, and our group demonstrated, for the first time, the requirement of HERV-K activation to expand and maintain a CD133+ melanoma cell subpopulation with stemness features in response to microenvironmental modifications. The review will discuss HERVs expression as cancer hallmark, with particular focus on their role in the regulation of cancer stemness features and the potential involvement as targets for therapy.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy.
| | - Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| |
Collapse
|