1
|
Fruth A, Lang C, Größl T, Garn T, Flieger A. Genomic surveillance of STEC/EHEC infections in Germany 2020 to 2022 permits insight into virulence gene profiles and novel O-antigen gene clusters. Int J Med Microbiol 2024; 314:151610. [PMID: 38310676 DOI: 10.1016/j.ijmm.2024.151610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024] Open
Abstract
Shiga toxin-producing E. coli (STEC), including the subgroup of enterohemorrhagic E. coli (EHEC), are important bacterial pathogens which cause diarrhea and the severe clinical manifestation hemolytic uremic syndrome (HUS). Genomic surveillance of STEC/EHEC is a state-of-the-art tool to identify infection clusters and to extract markers of circulating clinical strains, such as their virulence and resistance profile for risk assessment and implementation of infection prevention measures. The aim of the study was characterization of the clinical STEC population in Germany for establishment of a reference data set. To that end, from 2020 to 2022 1257 STEC isolates, including 39 of known HUS association, were analyzed and lead to a classification of 30.4 % into 129 infection clusters. Major serogroups in all clinical STEC analyzed were O26, O146, O91, O157, O103, and O145; and in HUS-associated strains were O26, O145, O157, O111, and O80. stx1 was less frequently and stx2 or a combination of stx, eaeA and ehxA were more frequently found in HUS-associated strains. Predominant stx gene subtypes in all STEC strains were stx1a (24 %) and stx2a (21 %) and in HUS-associated strains were mainly stx2a (69 %) and the combination of stx1a and stx2a (12.8 %). Furthermore, two novel O-antigen gene clusters (RKI6 and RKI7) and strains of serovars O45:H2 and O80:H2 showing multidrug resistance were detected. In conclusion, the implemented surveillance tools now allow to comprehensively define the population of clinical STEC strains including those associated with the severe disease manifestation HUS reaching a new surveillance level in Germany.
Collapse
Affiliation(s)
- Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Tobias Größl
- Division of Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Thomas Garn
- Division of Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11) and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany.
| |
Collapse
|
2
|
Hoyle DV, Wee BA, Macleod K, Chase-Topping ME, Bease AG, Tongue SC, Gally DL, Delannoy S, Fach P, Pearce MC, Gunn GJ, Holmes A, Allison L. Phylogenetic relationship and virulence composition of Escherichia coli O26:H11 cattle and human strain collections in Scotland; 2002-2020. Front Microbiol 2023; 14:1260422. [PMID: 38029122 PMCID: PMC10657854 DOI: 10.3389/fmicb.2023.1260422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002-2004 and 2014-2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections.
Collapse
Affiliation(s)
- Deborah V. Hoyle
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Bryan A. Wee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Kareen Macleod
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Margo E. Chase-Topping
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Andrew G. Bease
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sue C. Tongue
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - David L. Gally
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sabine Delannoy
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Patrick Fach
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Michael C. Pearce
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - George J. Gunn
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Michelacci V, Montalbano Di Filippo M, Gigliucci F, Arancia S, Chiani P, Minelli F, Roosens NHC, De Keersmaecker SCJ, Bogaerts B, Vanneste K, Morabito S. Population Analysis of O26 Shiga Toxin-Producing Escherichia coli Causing Hemolytic Uremic Syndrome in Italy, 1989-2020, Through Whole Genome Sequencing. Front Cell Infect Microbiol 2022; 12:842508. [PMID: 35223557 PMCID: PMC8864317 DOI: 10.3389/fcimb.2022.842508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) belonging to the O26 serogroup represent an important cause of Hemolitic Uremic Syndrome (HUS) in children worldwide. The localization of STEC virulence genes on mobile genetic elements allowed the emergence of clones showing different assets of this accessory genomic fraction. A novel O26 STEC clone belonging to Sequence Type (ST) 29 and harboring stx2a, ehxA and etpD plasmid-borne genes has emerged and spread in Europe since the mid-1990s, while another ST29 clone positive for stx2d and lacking plasmid-borne virulence genes was recently described as emerging in France. In Italy, O26 has been the most frequently detected STEC serogroup from HUS cases since the late 1990s. In this study we describe the genomic characterization and population structure of 144 O26 STEC strains isolated from human sources in Italy in the period 1989-2020. A total of 89 strains belonged to ST21, 52 to ST29, two to ST396 and one to ST4944. ST29 strains started to be isolated from 1999. 24 strains were shown to harbour stx1a, alone (n=20) or in combination with stx2a (n=4). The majority of the strains (n=118) harbored stx2a genes only and the two ST396 strains harbored stx2d. A Hierarchical Clustering on Principal Components (HCPC) analysis, based on the detection of accessory virulence genes, antimicrobial resistance (AMR) genes and plasmid replicons, classified the strains in seven clusters identified with numbers from 1 to 7, containing two, 13, 39, 63, 16, 10 and one strain, respectively. The majority of the genetic features defining the clusters corresponded to plasmid-borne virulence genes, AMR genes and plasmid replicons, highlighting specific assets of plasmid-borne features associated with different clusters. Core genome Multi Locus Sequence Typing grouped ST21 and ST29 strains in three clades each, with each ST29 clade exactly corresponding to one HCPC cluster. Our results showed high conservation of either the core or the accessory genomic fraction in populations of ST29 O26 STEC, differently from what observed in ST21 strains, suggesting that a different selective pressure could drive the evolution of different populations of these pathogens possibly involving different ecological niches.
Collapse
Affiliation(s)
- Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Federica Gigliucci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Arancia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Minelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nancy H. C. Roosens
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | | | - Bert Bogaerts
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Kevin Vanneste
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Abstract
Escherichia coli is a commensal of the vertebrate gut that is increasingly involved in various intestinal and extra-intestinal infections as an opportunistic pathogen. Numerous pathotypes that represent groups of strains with specific pathogenic characteristics have been described based on heterogeneous and complex criteria. The democratization of whole-genome sequencing has led to an accumulation of genomic data that render possible a population phylogenomic approach to the emergence of virulence. Few lineages are responsible for the pathologies compared with the diversity of commensal strains. These lineages emerged multiple times during E. coli evolution, mainly by acquiring virulence genes located on mobile elements, but in a specific chromosomal phylogenetic background. This repeated emergence of stable and cosmopolitan lineages argues for an optimization of strain fitness through epistatic interactions between the virulence determinants and the remaining genome.
Collapse
|
5
|
Saltykova A, Buytaers FE, Denayer S, Verhaegen B, Piérard D, Roosens NHC, Marchal K, De Keersmaecker SCJ. Strain-Level Metagenomic Data Analysis of Enriched In Vitro and In Silico Spiked Food Samples: Paving the Way towards a Culture-Free Foodborne Outbreak Investigation Using STEC as a Case Study. Int J Mol Sci 2020; 21:E5688. [PMID: 32784459 PMCID: PMC7460976 DOI: 10.3390/ijms21165688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Culture-independent diagnostics, such as metagenomic shotgun sequencing of food samples, could not only reduce the turnaround time of samples in an outbreak investigation, but also allow the detection of multi-species and multi-strain outbreaks. For successful foodborne outbreak investigation using a metagenomic approach, it is, however, necessary to bioinformatically separate the genomes of individual strains, including strains belonging to the same species, present in a microbial community, which has up until now not been demonstrated for this application. The current work shows the feasibility of strain-level metagenomics of enriched food matrix samples making use of data analysis tools that classify reads against a sequence database. It includes a brief comparison of two database-based read classification tools, Sigma and Sparse, using a mock community obtained by in vitro spiking minced meat with a Shiga toxin-producing Escherichia coli (STEC) isolate originating from a described outbreak. The more optimal tool Sigma was further evaluated using in silico simulated metagenomic data to explore the possibilities and limitations of this data analysis approach. The performed analysis allowed us to link the pathogenic strains from food samples to human isolates previously collected during the same outbreak, demonstrating that the metagenomic approach could be applied for the rapid source tracking of foodborne outbreaks. To our knowledge, this is the first study demonstrating a data analysis approach for detailed characterization and phylogenetic placement of multiple bacterial strains of one species from shotgun metagenomic WGS data of an enriched food sample.
Collapse
Affiliation(s)
- Assia Saltykova
- Transversal Activities in Applied Genomics (TAG), Sciensano, 1050 Brussels, Belgium
- IDLab, Department of Information Technology, Ghent University, IMEC, 9052 Ghent, Belgium
| | - Florence E Buytaers
- Transversal Activities in Applied Genomics (TAG), Sciensano, 1050 Brussels, Belgium
- IDLab, Department of Information Technology, Ghent University, IMEC, 9052 Ghent, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium
| | - Denis Piérard
- National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC STEC), Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics (TAG), Sciensano, 1050 Brussels, Belgium
| | - Kathleen Marchal
- IDLab, Department of Information Technology, Ghent University, IMEC, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Genetics, University of Pretoria, Pretoria 0083, South Africa
| | | |
Collapse
|
6
|
Global distribution of epidemic-related Shiga toxin 2 encoding phages among enteroaggregative Escherichia coli. Sci Rep 2020; 10:11738. [PMID: 32678145 PMCID: PMC7366661 DOI: 10.1038/s41598-020-68462-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Since the Shiga toxin-producing enteroaggregative Escherichia coli (Stx-EAEC) O104:H4 strain caused a massive outbreak across Europe in 2011, the importance of Stx-EAEC has attracted attention from a public health perspective. Two Stx-EAEC O86 isolates were obtained from patients with severe symptoms in Japan in 1999 and 2015. To characterize the phylogeny and pathogenic potential of these Stx-EAEC O86 isolates, whole-genome sequence analyses were performed by short-and long-read sequencing. Among genetically diverse E. coli O86, the Stx-EAEC O86 isolates were clustered with the EAEC O86:H27 ST3570 subgroup. Strikingly, there were only two loci with single nucleotide polymorphisms (SNPs) between the Stx2a phage of a Japanese O86:H27 isolate and that of the European epidemic-related Stx-EAEC O104:H4 isolate. These results provide evidence of global distribution of epidemic-related Stx2a phages among various lineages of E. coli with few mutations.
Collapse
|
7
|
Maria Ferreira Cavalcanti A, Tavanelli Hernandes R, Harummyy Takagi E, Ernestina Cabílio Guth B, de Lima Ori É, Regina Schicariol Pinheiro S, Sueli de Andrade T, Louzada Oliveira S, Cecilia Cergole-Novella M, Rodrigues Francisco G, dos Santos LF. Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil. Microorganisms 2020; 8:microorganisms8020171. [PMID: 31991731 PMCID: PMC7074907 DOI: 10.3390/microorganisms8020171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since no recent data characterizing Shiga toxin-producing E. coli (STEC) from human infections in Brazil are available, the present study aimed to investigate serotypes, stx genotypes, and accessory virulence genes, and also to perform pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) of 43 STEC strains recovered from 2007 to 2017. Twenty-one distinct serotypes were found, with serotype O111:H8 being the most common. However, serotypes less frequently reported in human diseases were also found and included a hybrid STEC/ETEC O100:H25 clone. The majority of the strains carried stx1a as the sole stx genotype and were positive for the eae gene. Regarding the occurrence of 28 additional virulence genes associated with plasmids and pathogenicity islands, a diversity of profiles was found especially among the eae-harboring strains, which had combinations of markers composed of up to 12 distinct genes. Although PFGE analysis demonstrated genetic diversity between serotypes such as O157:H7, O111:H8, O26:H11, O118:H16, and O123:H2, high genetic relatedness was found for strains of serotypes O24:H4 and O145:H34. MLST allowed the identification of 17 distinct sequence types (STs) with ST 16 and 21 being the most common ones. Thirty-five percent of the strains studied were not typeable by the currently used MLST approach, suggesting new STs. Although STEC O111:H8 remains the leading serotype in Brazil, a diversity of other serotypes, some carrying virulence genes and belonging to STs incriminated as causing severe disease, were found in this study. Further studies are needed to determine whether they have any epidemiological relevance.
Collapse
Affiliation(s)
- Adriene Maria Ferreira Cavalcanti
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Rodrigo Tavanelli Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Elizabeth Harummyy Takagi
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Beatriz Ernestina Cabílio Guth
- Departamento de Microbiologia, Imunologia, Parasitologia, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brasil;
| | - Érica de Lima Ori
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Sandra Regina Schicariol Pinheiro
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Tânia Sueli de Andrade
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Samara Louzada Oliveira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Maria Cecilia Cergole-Novella
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Gabriela Rodrigues Francisco
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Luís Fernando dos Santos
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
- Correspondence: ; Tel.: +55-11-3068-2896
| |
Collapse
|