1
|
Pan L, Huang R, Lu Z, Duan W, Sun S, Yan L, Cui G, Niu L, Wang Z, Zeng W. Combined transcriptome and metabolome analysis identifies triterpenoid-induced defense responses in Myzus persicae Sülzer-infested peach. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6644-6662. [PMID: 39110720 DOI: 10.1093/jxb/erae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/06/2024] [Indexed: 11/01/2024]
Abstract
Piercing/sucking insects such as green peach aphid (GPA) (Myzus persicae) cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees (Prunus persica) to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to GPA were studied. The gene expression of aphid-susceptible plants infested with aphids was similar to that of control plants, whereas the gene expression of aphid-resistant plants infested with aphids showed strong induced changes in gene expression compared with control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid infestation induced larger changes in aphid-resistant than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed highly significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid-susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, and NACs) were strongly induced upon GPA infestation in aphid-resistant, but not in aphid-susceptible peaches. These results suggested that the accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.
Collapse
Affiliation(s)
- Lei Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Rui Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhenhua Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenyi Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Shihang Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Lele Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Guochao Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Liang Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhiqiang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenfang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
2
|
Wang X, Li L, Fan R, Yan Y, Zhou R. Genome‑wide identification of circular RNAs and MAPKs reveals the regulatory networks in response to green peach aphid infestation in peach (Prunus persica). Gene 2024; 933:148994. [PMID: 39395730 DOI: 10.1016/j.gene.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The green peach aphid (GPA), Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution and a vector of over 100 plant viruses. Various pathways, such as the mitogen-activated protein kinase (MAPK) cascades, play pivotal roles in signaling plant defense against pest attack, and circular RNAs (circRNAs) regulate the expression of mRNAs in response to pest attack. However, the mechanism underlying peach (Prunus persica) response to GPA attack remains unclear. The present study initially identified and characterized 316 circRNAs and 18 PpMAPKs from healthy and GPA-infested peach leaves by whole-transcriptome sequencing and predicted the differentially expressed circRNAs (DECs) after GPA infestation. PCR and Sanger sequencing confirmed the presence of six DECs in peach samples. Besides, RNA sequencing analysis detected 13 DECs, including 5 upregulated and 8 downregulated ones, in peach in response to the GPA attack. Gene ontology (GO) enrichment analysis indicated that specific DECs play crucial roles in the MAPK signaling pathway, and qRT-PCR revealed that GPA infestation altered the expression patterns of PpMAPKs. Finally, five circRNAs, three microRNA (miRNAs), and two MAPK target genes were identified to interact as a network and perform critical roles in modulating the MAPK pathway in the peach during GPA infestation.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China.
| | - Li Li
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Rongyao Fan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Yujun Yan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| |
Collapse
|
3
|
Zhu P, Li H, Lu T, Liang R, Wan B. Combined analysis of mRNA and miRNA transcriptomes reveals the regulatory mechanism of Xanthomonas arboricola pv pruni resistance in Prunus persica. BMC Genomics 2024; 25:214. [PMID: 38413907 PMCID: PMC10898114 DOI: 10.1186/s12864-024-10113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Peach bacterial shot hole, caused by Xanthomonas arboricola pv pruni (Xap), is a global bacterial disease that poses a threat to the yield and quality of cultivated peach trees (Prunus persica). RESULTS This study compared the mRNA and miRNA profiles of two peach varieties, 'Yanbao' (resistant) and 'Yingzui' (susceptible), after inoculation with Xap to identify miRNAs and target genes associated with peach tree resistance. mRNA sequencing results revealed that in the S0-vs-S3 comparison group, 1574 genes were upregulated and 3975 genes were downregulated. In the R0-vs-R3 comparison group, 1575 genes were upregulated and 3726 genes were downregulated. Through miRNA sequencing, a total of 112 known miRNAs belonging to 70 miRNA families and 111 new miRNAs were identified. Notably, some miRNAs were exclusively expressed in either resistant or susceptible varieties. Additionally, 59 miRNAs were downregulated and 69 miRNAs were upregulated in the R0-vs-R3 comparison group, while 46 miRNAs were downregulated and 52 miRNAs were upregulated in the S0-vs-S3 comparison group. Joint analysis of mRNA and miRNA identified 79 relationship pairs in the S0-vs-S3 comparison group, consisting of 48 miRNAs and 51 target genes. In the R0-vs-R3 comparison group, there were 58 relationship pairs, comprising 28 miRNAs and 20 target genes. Several target genes related to resistance, such as SPL6, TIFY6B, and Prupe.4G041800_v2.0.a1 (PPO), were identified through literature reports and GO/KEGG enrichment analysis. CONCLUSION In conclusion, this study discovered several candidate genes involved in peach tree resistance by analyzing differential expression of mRNA and miRNA. These findings provide valuable insights into the mechanisms underlying resistance to Xap in peach trees.
Collapse
Affiliation(s)
- Pengxiang Zhu
- Guangxi Academy of Specialty Crops, Guilin, 541004, China
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China
| | - Haiyan Li
- Guangxi Academy of Specialty Crops, Guilin, 541004, China
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China
| | - Tailiang Lu
- Guangxi Academy of Specialty Crops, Guilin, 541004, China
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China
| | - Ruizheng Liang
- Guangxi Academy of Specialty Crops, Guilin, 541004, China.
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China.
| | - Baoxiong Wan
- Guangxi Academy of Specialty Crops, Guilin, 541004, China.
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin, 541004, China.
| |
Collapse
|
4
|
Greer SF, Surendran A, Grant M, Lillywhite R. The current status, challenges, and future perspectives for managing diseases of brassicas. Front Microbiol 2023; 14:1209258. [PMID: 37533829 PMCID: PMC10392840 DOI: 10.3389/fmicb.2023.1209258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
The Brassica genus comprises the greatest diversity of agriculturally important crops. Several species from this genus are grown as vegetable and oil crops for food, animal feed and industrial purposes. In particular, B. oleracea has been extensively bred to give rise to several familiar vegetables (cabbage, broccoli, cauliflower, kale and Brussels Sprouts, etc.) that are grouped under seven major cultivars. In 2020, 96.4 million tonnes of vegetable brassicas were produced globally with a 10.6% increase over the past decade. Yet, like other crops, the production of brassicas is challenged by diseases among which, black rot, clubroot, downy mildew and turnip yellows virus have been identified by growers as the most damaging to UK production. In some cases, yield losses can reach 90% depending upon the geographic location of cultivation. This review aims to provide an overview of the key diseases of brassicas and their management practices, with respect to the biology and lifecycle of the causal pathogens. In addition, the existing controls on the market as well as those that are currently in the research and development phases were critically reviewed. There is not one specific control method that is effective against all the diseases. Generally, cultural practices prevent disease rather than reduce or eliminate disease. Chemical controls are limited, have broad-spectrum activity, are damaging to the environment and are rapidly becoming ineffective due to the evolution of resistance mechanisms by the pathogens. It is therefore important to develop integrated pest management (IPM) strategies that are tailored to geographic locations. Several knowledge gaps have been identified and listed in this review along with the future recommendations to control these four major diseases of brassicas. As such, this review paper will act as a guide to sustainably tackle pre-harvest diseases in Brassica crops to reduce food loss.
Collapse
Affiliation(s)
- Shannon F. Greer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Arthy Surendran
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Carbon, Crop and Soils Group, SRUC, Edinburgh, United Kingdom
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Robert Lillywhite
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
5
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
6
|
Integrated Transcriptome and Metabolome Analysis to Identify Sugarcane Gene Defense against Fall Armyworm ( Spodoptera frugiperda) Herbivory. Int J Mol Sci 2022; 23:ijms232213712. [PMID: 36430189 PMCID: PMC9694286 DOI: 10.3390/ijms232213712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Sugarcane is the most important sugar crop, contributing ≥80% to total sugar production around the world. Spodoptera frugiperda is one of the main pests of sugarcane, potentially causing severe yield and sugar loss. The identification of key defense factors against S. frugiperda herbivory can provide targets for improving sugarcane resistance to insect pests by molecular breeding. In this work, we used one of the main sugarcane pests, S. frugiperda, as the tested insect to attack sugarcane. Integrated transcriptome and metabolomic analyses were performed to explore the changes in gene expression and metabolic processes that occurred in sugarcane leaf after continuous herbivory by S. frugiperda larvae for 72 h. The transcriptome analysis demonstrated that sugarcane pest herbivory enhanced several herbivory-induced responses, including carbohydrate metabolism, secondary metabolites and amino acid metabolism, plant hormone signaling transduction, pathogen responses, and transcription factors. Further metabolome analysis verified the inducement of specific metabolites of amino acids and secondary metabolites by insect herbivory. Finally, association analysis of the transcriptome and metabolome by the Pearson correlation coefficient method brought into focus the target defense genes against insect herbivory in sugarcane. These genes include amidase and lipoxygenase in amino acid metabolism, peroxidase in phenylpropanoid biosynthesis, and pathogenesis-related protein 1 in plant hormone signal transduction. A putative regulatory model was proposed to illustrate the sugarcane defense mechanism against insect attack. This work will accelerate the dissection of the mechanism underlying insect herbivory in sugarcane and provide targets for improving sugarcane variety resistance to insect herbivory by molecular breeding.
Collapse
|
7
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
8
|
Chen N, Zhang H, Zang E, Liu ZX, Lan YF, Hao WL, He S, Fan X, Sun GL, Wang YL. Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains. BMC Genomics 2022; 23:466. [PMID: 35751010 PMCID: PMC9233376 DOI: 10.1186/s12864-022-08703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Opisthopappus is a major wild source of Asteraceae with resistance to cold and drought. Two species of this genus (Opisthopappus taihangensis and O. longilobus) have been employed as model systems to address the evolutionary history of perennial herb biomes in the Taihang Mountains of China. However, further studies on the adaptive divergence processes of these two species are currently impeded by the lack of genomic resources. To elucidate the molecular mechanisms involved, a comparative analysis of these two species was conducted. Among the identified transcription factors, the bHLH members were most prevalent, which exhibited significantly different expression levels in the terpenoid metabolic pathway. O. longilobus showed higher level of expression than did O. taihangensis in terms of terpenes biosynthesis and metabolism, particularly monoterpenoids and diterpenoids. Analyses of the positive selection genes (PSGs) identified from O. taihangensis and O. longilobus revealed that 1203 genes were related to adaptative divergence, which were under rapid evolution and/or have signs of positive selection. Differential expressions of PSG occurred primarily in the mitochondrial electron transport, starch degradation, secondary metabolism, as well as nucleotide synthesis and S-metabolism pathway processes. Several PSGs were obviously differentially expressed in terpenes biosynthesis that might result in the fragrances divergence between O. longilobus and O. taihangensis, which would provide insights into adaptation of the two species to different environments that characterized by sub-humid warm temperate and temperate continental monsoon climates. The comparative analysis for these two species in Opisthopappus not only revealed how the divergence occurred from molecular perspective, but also provided novel insights into how differential adaptations occurred in Taihang Mountains.
Collapse
Affiliation(s)
- Ning Chen
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Hao Zhang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - En Zang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Zhi-Xia Liu
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Ya-Fei Lan
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Wei-Li Hao
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Shan He
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gen-Lou Sun
- Department of Biology, Saint Mary's University, Halifax, B3H3C3, Canada.
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|
9
|
Twayana M, Girija AM, Mohan V, Shah J. Phloem: At the center of action in plant defense against aphids. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153695. [PMID: 35468314 DOI: 10.1016/j.jplph.2022.153695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.
Collapse
Affiliation(s)
- Moon Twayana
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Anil M Girija
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Vijee Mohan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| |
Collapse
|
10
|
Pan L, Lu Z, Yan L, Zeng W, Shen Z, Yu M, Bu L, Cui G, Niu L, Wang Z. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1357-1369. [PMID: 35022695 DOI: 10.1093/jxb/erab506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The green peach aphid (GPA), Myzus persicae, is a polyphagous, sap-sucking aphid and a vector of many plant viruses. In peach, Prunus persica, three individual dominant GPA resistance loci have been genetically defined (Rm1-3), but knowledge of the underlying genes is limited. In this study, we focused on the Rm3 locus. Bulk segregant analysis (BSA) mapping in segregating progeny populations delimited Rm3 to an interval spanning 160 kb containing 21 genes on chromosome 1. RNA-seq data provided no evidence of candidate genes, but chromosomal structural variations were predicted around a nucleotide-binding site-leucine-rich repeat (NLR) gene (ppa000596m) within the Rm3 fine-mapping interval. Following bacterial artificial chromosome (BAC) library construction for a GPA-resistant peach cultivar and the sequencing of three target BAC clones, a chromosomal structural variation encompassing two novel TIR-NLR-class disease resistance (R) protein-coding genes was identified, and the expressed NLR gene (NLR1) was identified as a candidate for M. persicae resistance. Consistent with its proposed role in controlling GPA resistance, NLR1 was only expressed in the leaves of resistant peach phenotypes. A molecular marker that was designed based on the NLR1 sequence co-segregated with the GPA-resistant phenotype in four segregating populations, 162 peach cultivars, and 14 wild relatives, demonstrating the dominant inheritance of the Rm3 locus. Our findings can be exploited to facilitate future breeding for GPA-resistance in peach.
Collapse
Affiliation(s)
- Lei Pan
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenhua Lu
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Yan
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenfang Zeng
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhijun Shen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingliang Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lulu Bu
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guochao Cui
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liang Niu
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiqiang Wang
- Key Laboratory of Fruit Breeding Technology of the Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
11
|
Zhong Y, Chen Z, Cheng ZM. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Mol Genet Genomics 2022; 297:263-276. [PMID: 35031863 PMCID: PMC8803762 DOI: 10.1007/s00438-021-01849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.
Collapse
Affiliation(s)
- Yan Zhong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Recent Duplications Dominate VQ and WRKY Gene Expansions in Six Prunus Species. Int J Genomics 2021; 2021:4066394. [PMID: 34961840 PMCID: PMC8710041 DOI: 10.1155/2021/4066394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Genes encoding VQ motif-containing (VQ) transcriptional regulators and WRKY transcription factors can participate separately or jointly in plant growth, development, and abiotic and biotic stress responses. In this study, 222 VQ and 645 WRKY genes were identified in six Prunus species. Based on phylogenetic tree topologies, the VQ and WRKY genes were classified into 13 and 32 clades, respectively. Therefore, at least 13 VQ gene copies and 32 WRKY gene copies were present in the genome of the common ancestor of the six Prunus species. Similar small Ks value peaks for the VQ and WRKY genes suggest that the two gene families underwent recent duplications in the six studied species. The majority of the Ka/Ks ratios were less than 1, implying that most of the VQ and WRKY genes had undergone purifying selection. Pi values were significantly higher in the VQ genes than in the WRKY genes, and the VQ genes therefore exhibited greater nucleotide diversity in the six species. Forty-one of the Prunus VQ genes were predicted to interact with 44 of the WRKY genes, and the expression levels of some predicted VQ-WRKY interacting pairs were significantly correlated. Differential expression patterns of the VQ and WRKY genes suggested that some might be involved in regulating aphid resistance in P. persica and fruit development in P. avium.
Collapse
|
13
|
Natukunda MI, Hohenstein JD, McCabe CE, Graham MA, Qi Y, Singh AK, MacIntosh GC. Interaction between Rag genes results in a unique synergistic transcriptional response that enhances soybean resistance to soybean aphids. BMC Genomics 2021; 22:887. [PMID: 34895143 PMCID: PMC8665634 DOI: 10.1186/s12864-021-08147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pyramiding different resistance genes into one plant genotype confers enhanced resistance at the phenotypic level, but the molecular mechanisms underlying this effect are not well-understood. In soybean, aphid resistance is conferred by Rag genes. We compared the transcriptional response of four soybean genotypes to aphid feeding to assess how the combination of Rag genes enhanced the soybean resistance to aphid infestation. RESULTS A strong synergistic interaction between Rag1 and Rag2, defined as genes differentially expressed only in the pyramid genotype, was identified. This synergistic effect in the Rag1/2 phenotype was very evident early (6 h after infestation) and involved unique biological processes. However, the response of susceptible and resistant genotypes had a large overlap 12 h after aphid infestation. Transcription factor (TF) analyses identified a network of interacting TF that potentially integrates signaling from Rag1 and Rag2 to produce the unique Rag1/2 response. Pyramiding resulted in rapid induction of phytochemicals production and deposition of lignin to strengthen the secondary cell wall, while repressing photosynthesis. We also identified Glyma.07G063700 as a novel, strong candidate for the Rag1 gene. CONCLUSIONS The synergistic interaction between Rag1 and Rag2 in the Rag1/2 genotype can explain its enhanced resistance phenotype. Understanding molecular mechanisms that support enhanced resistance in pyramid genotypes could facilitate more directed approaches for crop improvement.
Collapse
Affiliation(s)
- Martha I. Natukunda
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Chantal E. McCabe
- Corn Insects and Crop Genetics Research, USDA-ARS, Ames, IA 50011 USA
| | - Michelle A. Graham
- Corn Insects and Crop Genetics Research, USDA-ARS, Ames, IA 50011 USA
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Yunhui Qi
- Department of Statistics, Iowa State University, Ames, IA 50011 USA
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
14
|
Kiani M, Bryan B, Rush C, Szczepaniec A. Transcriptional Responses of Resistant and Susceptible Wheat Exposed to Wheat Curl Mite. Int J Mol Sci 2021; 22:ijms22052703. [PMID: 33800120 PMCID: PMC7962190 DOI: 10.3390/ijms22052703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
(1) Background: The wheat curl mite (Aceria tosichella Keifer) is a key pest of wheat (Triticum aestivum L.) worldwide. While a number of wheat cultivars resistant to the mites have been employed to minimize the impact on the yield and quality of grain, little is known regarding the mechanisms underlying host plant resistance. Therefore, the goal of this study was to explore changes in transcriptome of resistant and susceptible wheat in order to quantify the molecular changes that drive host plant resistance. (2) Methods: Two varieties, wheat curl mite-susceptible (Karl 92) and wheat curl mite-resistant (TAM112) wheat, both at 2-week postemergence, were used in this study. Half of the plants were exposed to wheat curl mite herbivory and half remained mite-free and served as controls. Transcriptome changes were quantified using RNA-seq and compared among treatments to identify genes and pathways affected by herbivores. (3) Results: We identified a number of genes and pathways involved in plant defenses against pathogens, herbivores, and abiotic stress that were differentially expressed in the resistant wheat exposed to wheat curl mite herbivory but were unaffected in the susceptible wheat. (4) Conclusions: Our outcomes indicated that resistant wheat counteracts wheat curl mite exposure through effective induction of genes and pathways that enhance its defense responses.
Collapse
Affiliation(s)
- Mahnaz Kiani
- Thegreencell, Inc., 15810 Gaither Drive, Gaithersburg, MD 20877, USA
- Correspondence:
| | - Becky Bryan
- Department of Plant Pathology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA; (B.B.); (C.R.)
| | - Charles Rush
- Department of Plant Pathology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA; (B.B.); (C.R.)
| | - Adrianna Szczepaniec
- Department of Entomology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA; or
| |
Collapse
|
15
|
Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, D’Agostino N, Rao R. Zucchini Plants Alter Gene Expression and Emission of ( E)-β-Caryophyllene Following Aphis gossypii Infestation. FRONTIERS IN PLANT SCIENCE 2021; 11:592603. [PMID: 33488643 PMCID: PMC7820395 DOI: 10.3389/fpls.2020.592603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
Zucchini (Cucurbita pepo L.) is widely cultivated in temperate regions. One of the major production challenges is the damage caused by Aphis gossypii (Homoptera: Aphididae), a polyphagous aphid, which can negatively affect its host plant, both directly by feeding and indirectly by vectoring viruses. To gain insights into the transcriptome events that occur during the zucchini-aphid interaction and to understand the early-to-late defense response through gene expression profiles, we performed RNA-sequencing (RNA-Seq) on zucchini leaves challenged by A. gossypii (24, 48, and 96 h post-infestation; hpi). Data analysis indicated a complex and dynamic pattern of gene expression and a transient transcriptional reconfiguration that involved more than 700 differentially expressed genes (DEGs), including a large number of defense-related genes. The down-regulation of key genes of plant immunity, such as leucine-rich repeat (LRR) protein kinases, transcription factors, and genes associated with direct (i.e., protease inhibitors, cysteine peptidases, etc.) and indirect (i.e., terpene synthase) defense responses, suggests the aphid ability to manipulate plant immune responses. We also investigated the emission of volatile organic compounds (VOCs) from infested plants and observed a reduced emission of (E)-β-caryophyllene at 48 hpi, likely the result of aphid effectors, which reflects the down-regulation of two genes involved in the biosynthesis of terpenoids. We showed that (E)-β-caryophyllene emission was modified by the duration of plant infestation and by aphid density and that this molecule highly attracts Aphidius colemani, a parasitic wasp of A. gossypii. With our results we contributed to the identification of genes involved in cucurbit plant interactions with phloem feeders. Our findings may also help pave the way toward developing tolerant zucchini varieties and to identify molecules for sustainable management of harmful insect populations.
Collapse
Affiliation(s)
- Alessia Vitiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Laboratory of Entomology, Wageningen University, Wageningen, Netherlands
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Massimo Giorgini
- Sede Secondaria di Portici, Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Toby J. A. Bruce
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Pingault L, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J, Sarath G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int J Mol Sci 2020; 21:ijms21217966. [PMID: 33120946 PMCID: PMC7672581 DOI: 10.3390/ijms21217966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| |
Collapse
|
17
|
Duhlian L, Koramutla MK, Subramanian S, Chamola R, Bhattacharya R. Comparative transcriptomics revealed differential regulation of defense related genes in Brassica juncea leading to successful and unsuccessful infestation by aphid species. Sci Rep 2020; 10:10583. [PMID: 32601289 PMCID: PMC7324606 DOI: 10.1038/s41598-020-66217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/18/2020] [Indexed: 11/09/2022] Open
Abstract
Productivity of Indian mustard (B. juncea), a major oil yielding crop in rapeseed-mustard group is heavily inflicted by mustard aphid, L. erysimi. Mustard aphid, a specialist aphid species on rapeseed-mustard crops, rapidly multiplies and colonizes the plants leading to successful infestation. In contrary, legume specific cowpea aphid, A. craccivora when released on B. juncea plants fails to build up population and thus remains unsuccessful in infestation. In the present study, differential host response of B. juncea to the two aphid species, one being successful insect-pest and the other being unsuccessful on it has been studied based on transcriptome analysis. Differential feeding efficiency of the two aphid species on mustard plants was evident from the amount of secreted honeydews. Leaf-transcriptomes of healthy and infested plants, treated with the two aphid species, were generated by RNA sequencing on Illumina platform and de novo assembly of the quality reads. A comparative assessment of the differentially expressed genes due to treatments revealed a large extent of overlaps as well as distinctness with respect to the set of genes and their direction of regulation. With respect to host-genes related to transcription factors, oxidative homeostasis, defense hormones and secondary metabolites, L. erysimi led to either suppression or limited activation of the transcript levels compared to A. craccivora. Further, a comprehensive view of the DEGs suggested more potential of successful insect-pests towards transcriptional reprogramming of the host. qRT-PCR based validation of randomly selected up- and down-regulated transcripts authenticated the transcriptome data.
Collapse
Affiliation(s)
- Lianthanzauva Duhlian
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohit Chamola
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
18
|
Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. BMC Genomics 2020; 21:339. [PMID: 32366323 PMCID: PMC7199342 DOI: 10.1186/s12864-020-6743-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Schizaphis graminum is one of the most important and devastating cereal aphids worldwide, and its feeding can cause chlorosis and necrosis in wheat. However, little information is available on the wheat defence responses triggered by S. graminum feeding at the molecular level. RESULTS Here, we collected and analysed transcriptome sequencing data from leaf tissues of wheat infested with S. graminum at 2, 6, 12, 24 and 48 hpi (hours post infestation). A total of 44,835 genes were either up- or downregulated and differed significantly in response to aphid feeding. The expression levels of a number of genes (9761 genes) were significantly altered within 2 hpi and continued to change during the entire 48 h experiment. Gene Ontology analysis showed that the downregulated DEGs were mainly enriched in photosynthesis and light harvesting, and the total chlorophyll content in wheat leaves was also significantly reduced after S. graminum infestation at 24 and 48 hpi. However, a number of related genes of the salicylic acid (SA)-mediated defence signalling pathway and MAPK-WRKY pathway were significantly upregulated at early feeding time points (2 and 6 hpi). In addition, the gene expression and activity of antioxidant enzymes, such as peroxidase and superoxide dismutase, were rapidly increased at 2, 6 and 12 hpi. DAB staining results showed that S. graminum feeding induced hydrogen peroxide (H2O2) accumulation at the feeding sites at 2 hpi, and increased H2O2 production was detected with the increases in aphid feeding time. Pretreatment with diphenylene iodonium, an NADPH oxidase inhibitor, repressed the H2O2 accumulation and expression levels of SA-associated defence genes in wheat. CONCLUSIONS Our transcriptomic analysis revealed that defence-related pathways and oxidative stress in wheat were rapidly induced within hours after the initiation of aphid feeding. Additionally, NADPH oxidase plays an important role in aphid-induced defence responses and H2O2 accumulation in wheat. These results provide valuable insight into the dynamic transcriptomic responses of wheat leaves to phytotoxic aphid feeding and the molecular mechanisms of aphid-plant interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
19
|
Wu J, Gao H, Zhu X, Li D. An ERF transcription factor enhances plant resistance to Myzus persicae and Spodoptera litura. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1813051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Juan Wu
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
- Department of Genetics and Breeding of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, PR China
| | - Hao Gao
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
| | - Xiwu Zhu
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
| | - Defang Li
- Department of Genetics and Breeding of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, PR China
| |
Collapse
|