1
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. The poetry of nitrogen and carbon metabolic shifts: The role of C/N in pitaya phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112240. [PMID: 39208994 DOI: 10.1016/j.plantsci.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pitaya, a desert plant, has an underexplored flowering mechanism due to a lack of functional validation assays. This study reveals that the transition from vegetative to generative growth in pitaya is regulated by significant metabolic shift, underscoring the importance of understanding and address the challenging issue pitaya's phase change. Lateral buds from 6-years-old 'Guanhuahong' pitaya (Hylocereus monacanthus) plants were collected on April 8th, 18th, and 28th 2023, representing early, middle, and late stages of phase transition, respectively. Results showed diminished nitrogen levels concurrent with increased carbon levels and carbon-to-nitrogen (C/N) ratios during pitaya phase transition. Transcriptomic analysis identified batches of differentially expressed genes (DEGs) involved in downregulating nitrogen metabolism and upregulating carbon metabolism. These batches of genes play a central role in the metabolic shifts that predominantly regulate the transition to the generative phase in pitaya. This study unveils the intricate regulatory network involving 6 sugar synthesis and transport, 11 photoperiod (e.g., PHY, CRY, PIF) and 6 vernalization (e.g., VIN3) pathways, alongside 11 structural flowering genes (FCA, FLK, LFY, AGL) out of a vast array of potential candidates in pitaya phase change. These findings provide insights into the metabolic pathways involved in pitaya's phase transition, offering a theoretical framework for managing flowering, guiding breeding strategies to optimize flowering timing and improve crop yields under varied nitrogen conditions.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhou L, Xiang X, Ji D, Chen Q, Ma T, Wang J, Liu C. A Carbonic Anhydrase, ZmCA4, Contributes to Photosynthetic Efficiency and Modulates CO2 Signaling Gene Expression by Interacting with Aquaporin ZmPIP2;6 in Maize. PLANT & CELL PHYSIOLOGY 2024; 65:243-258. [PMID: 37955399 DOI: 10.1093/pcp/pcad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Carbonic anhydrase (CA) catalyzes the reversible CO2 hydration reaction that produces bicarbonate for phosphoenolpyruvate carboxylase (PEPC). This is the initial step for transmitting the CO2 signal in C4 photosynthesis. However, it remains unknown whether the maize (Zea mays L.) CA gene, ZmCA4, plays a role in the maize photosynthesis process. In our study, we found that ZmCA4 was relatively highly expressed in leaves and localized in the chloroplast and the plasma membrane of mesophyll protoplasts. Knock-out of ZmCA4 reduced CA activity, while overexpression of ZmCA4 increased rubisco activity, as well as the quantum yield and relative electron transport rate in photosystem II. Overexpression of ZmCA4 enhanced maize yield-related traits. Moreover, ZmCA4 interacted with aquaporin ZmPIP2;6 in bimolecular fluorescence complementation and co-immunoprecipitation experiments. The double-knock-out mutant for ZmPIP2;6 and ZmCA4 genes showed reductions in its growth, CA and PEPC activities, assimilation rate and photosystem activity. RNA-Seq analysis revealed that the expression of other ZmCAs, ZmPIPs, as well as CO2 signaling pathway homologous genes, and photosynthetic-related genes was all altered in the double-knock-out mutant compared with the wild type. Altogether, our study's findings point to a critical role of ZmCA4 in determining photosynthetic capacity and modulating CO2 signaling regulation via its interaction with ZmPIP2;6, thus providing insight into the potential genetic value of ZmCA4 for maize yield improvement.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaoqin Xiang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Dongpu Ji
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Qiulan Chen
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tengfei Ma
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jiuguang Wang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Chaoxian Liu
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
3
|
Zheng S, Yang L, Zheng H, Wu J, Zhou Z, Tian J. Identification of Hub Genes and Physiological Effects of Overexpressing the Photosynthesis-Related Gene Soly720 in Tomato under High-CO 2 Conditions. Int J Mol Sci 2024; 25:757. [PMID: 38255831 PMCID: PMC10815203 DOI: 10.3390/ijms25020757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Changes in the atmospheric CO2 concentration influence plant growth and development by affecting the morphological structure and photosynthetic performance. Despite evidence for the macro-effects of elevated CO2 concentrations on plant morphology and yield in tomato, the gene regulatory network and key genes related to cross-regulation have not been reported. To identify the hub genes and metabolic pathways involved in the response of tomato to CO2 enrichment, weighted gene co-expression network analysis was conducted using gene expression profiles obtained by RNA sequencing. The role of the photosynthesis-related gene Soly720 (Solyc01g007720) in CO2-enriched tomato plants was explored. Tomato plants responded to CO2 enrichment primarily through RNA-related pathways and the metabolism of amino acids, fatty acids, and carbohydrates. The hub genes in co-expression networks were associated with plant growth and development, including cellular components and photosynthesis. Compared to wild-type plants, transgenic plants overexpressing the Soly720 gene exhibited 13.4%, 5.5%, 8.9%, and 4.1% increases in plant height, stem diameter, leaf length, and leaf width, respectively, under high-CO2 conditions. The morphological improvements in transgenic plants were accompanied by enhancement of photosynthetic performance in terms of chlorophyll contents, photosynthetic characteristics, and key enzyme activities. This study elucidates the response network of tomato to CO2 enrichment and demonstrates the regulatory role of Soly720 in photosynthesis under high-CO2 conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jieyun Tian
- Horticulture College, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (L.Y.); (H.Z.); (J.W.); (Z.Z.)
| |
Collapse
|
4
|
Sharma A, Sharma D, Verma SK. A systematic in silico report on iron and zinc proteome of Zea mays. FRONTIERS IN PLANT SCIENCE 2023; 14:1166720. [PMID: 37662157 PMCID: PMC10469895 DOI: 10.3389/fpls.2023.1166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
Zea mays is an essential staple food crop across the globe. Maize contains macro and micronutrients but is limited in essential mineral micronutrients such as Fe and Zn. Worldwide, serious health concerns have risen due to the deficiencies of essential nutrients in human diets, which rigorously jeopardizes economic development. In the present study, the systematic in silico approach has been used to predict Fe and Zn binding proteins from the whole proteome of maize. A total of 356 and 546 putative proteins have been predicted, which contain sequence and structural motifs for Fe and Zn ions, respectively. Furthermore, the functional annotation of these predicted proteins, based on their domains, subcellular localization, gene ontology, and literature support, showed their roles in distinct cellular and biological processes, such as metabolism, gene expression and regulation, transport, stress response, protein folding, and proteolysis. The versatile roles of these shortlisted putative Fe and Zn binding proteins of maize could be used to manipulate many facets of maize physiology. Moreover, in the future, the predicted Fe and Zn binding proteins may act as relevant, novel, and economical markers for various crop improvement programs.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Sun P, Isner JC, Coupel-Ledru A, Zhang Q, Pridgeon AJ, He Y, Menguer PK, Miller AJ, Sanders D, Mcgrath SP, Noothong F, Liang YK, Hetherington AM. Countering elevated CO 2 induced Fe and Zn reduction in Arabidopsis seeds. THE NEW PHYTOLOGIST 2022; 235:1796-1806. [PMID: 35637611 DOI: 10.1111/nph.18290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/17/2022] [Indexed: 05/27/2023]
Abstract
Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2 -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2 . ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2 .
Collapse
Affiliation(s)
- Peng Sun
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Jean-Charles Isner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Aude Coupel-Ledru
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Institut Agro, LEPSE, INRAE, University of Montpellier, Montpellier, 75338 Cedex 07, France
| | - Qi Zhang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Ashley J Pridgeon
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yaqian He
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Paloma K Menguer
- Centro de Biotechnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501970, Brazil
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Dale Sanders
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steve P Mcgrath
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Fonthip Noothong
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yun-Kuan Liang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
6
|
DiMario RJ, Giuliani R, Ubierna N, Slack AD, Cousins AB, Studer AJ. Lack of leaf carbonic anhydrase activity eliminates the C 4 carbon-concentrating mechanism requiring direct diffusion of CO 2 into bundle sheath cells. PLANT, CELL & ENVIRONMENT 2022; 45:1382-1397. [PMID: 35233800 DOI: 10.1111/pce.14291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 06/14/2023]
Abstract
Carbonic anhydrase (CA) performs the first enzymatic step of C4 photosynthesis by catalysing the reversible hydration of dissolved CO2 that diffuses into mesophyll cells from intercellular airspaces. This CA-catalysed reaction provides the bicarbonate used by phosphoenolpyruvate carboxylase to generate products that flow into the C4 carbon-concentrating mechanism (CCM). It was previously demonstrated that the Zea mays ca1ca2 double mutant lost 97% of leaf CA activity, but there was little difference in the growth phenotype under ambient CO2 partial pressures (pCO2 ). We hypothesise that since CAs are among the fastest enzymes, minimal activity from a third CA, CA8, can provide the inorganic carbon needed to drive C4 photosynthesis. We observed that removing CA8 from the maize ca1ca2 background resulted in plants that had 0.2% of wild-type leaf CA activity. These ca1ca2ca8 plants had reduced photosynthetic parameters and could only survive at elevated pCO2 . Photosynthetic and carbon isotope analysis combined with modelling of photosynthesis and carbon isotope discrimination was used to determine if ca1ca2ca8 plants had a functional C4 cycle or were relying on direct CO2 diffusion to ribulose 1,5-bisphosphate carboxylase/oxygenase within bundle sheath cells. The results suggest that leaf CA activity in ca1ca2ca8 plants was not sufficient to sustain the C4 CCM.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Rita Giuliani
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Nerea Ubierna
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Aaron D Slack
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Hu Z, Ma Q, Foyer CH, Lei C, Choi HW, Zheng C, Li J, Zuo J, Mao Z, Mei Y, Yu J, Klessig DF, Shi K. High CO 2 - and pathogen-driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. THE NEW PHYTOLOGIST 2021; 229:2827-2843. [PMID: 33206385 DOI: 10.1111/nph.17087] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/01/2020] [Indexed: 05/12/2023]
Abstract
Atmospheric CO2 concentrations exert a strong influence on the susceptibility of plants to pathogens. However, the mechanisms involved in the CO2 -dependent regulation of pathogen resistance are largely unknown. Here we show that the expression of tomato (Solanum lycopersicum) β-CARBONIC ANHYDRASE 3 (βCA3) is induced by the virulent pathogen Pseudomonas syringae pv. tomato DC3000. The role of βCA3 in the high CO2 -mediated response in tomato and two other Solanaceae crops is distinct from that in Arabidopsis thaliana. Using βCA3 knock-out and over-expression plants, we demonstrate that βCA3 plays a positive role in the activation of basal immunity, particularly under high CO2 . βCA3 is transcriptionally activated by the transcription factor NAC43 and is also post-translationally regulated by the receptor-like kinase GRACE1. The βCA3 pathway of basal immunity is independent on stomatal- and salicylic-acid-dependent regulation. Global transcriptome analysis and cell wall metabolite measurement implicate cell wall metabolism/integrity in βCA3-mediated basal immunity under both CO2 conditions. These data not only highlight the importance of βCA3 in plant basal immunity under high CO2 in a well-studied susceptible crop-pathogen system, but they also point to new targets for disease management strategies in a changing climate.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qiaomei Ma
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Cui Lei
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hyong Woo Choi
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianxin Li
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jinhua Zuo
- National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Zhuo Mao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yuyang Mei
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Daniel F Klessig
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
8
|
Palit P, Ghosh R, Tolani P, Tarafdar A, Chitikineni A, Bajaj P, Sharma M, Kudapa H, Varshney RK. Molecular and Physiological Alterations in Chickpea under Elevated CO2 Concentrations. PLANT & CELL PHYSIOLOGY 2020; 61:1449-1463. [PMID: 32502248 PMCID: PMC7434580 DOI: 10.1093/pcp/pcaa077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/24/2020] [Indexed: 05/12/2023]
Abstract
The present study reports profiling of the elevated carbon dioxide (CO2) concentration responsive global transcriptome in chickpea, along with a combinatorial approach for exploring interlinks between physiological and transcriptional changes, important for the climate change scenario. Various physiological parameters were recorded in two chickpea cultivars (JG 11 and KAK 2) grown in open top chambers under ambient [380 parts per million (ppm)] and two stressed/elevated CO2 concentrations (550 and 700 ppm), at different stages of plant growth. The elevated CO2 concentrations altered shoot and root length, nodulation (number of nodules), total chlorophyll content and nitrogen balance index, significantly. RNA-Seq from 12 tissues representing vegetative and reproductive growth stages of both cultivars under ambient and elevated CO2 concentrations identified 18,644 differentially expressed genes including 9,687 transcription factors (TF). The differential regulations in genes, gene networks and quantitative real-time polymerase chain reaction (qRT-PCR) -derived expression dynamics of stress-responsive TFs were observed in both cultivars studied. A total of 138 pathways, mainly involved in sugar/starch metabolism, chlorophyll and secondary metabolites biosynthesis, deciphered the crosstalk operating behind the responses of chickpea to elevated CO2 concentration.
Collapse
Affiliation(s)
- Paramita Palit
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Raju Ghosh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Priya Tolani
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Avijit Tarafdar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Prasad Bajaj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
- Corresponding authors: Rajeev K. Varshney, E-mail, ; Fax, +91 40 30713071; Himabindu Kudapa, E-mail, ; Fax, +91 40 30713071; Mamta Sharma, E-mail, ; Fax, +91 40 30713071
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
- Corresponding authors: Rajeev K. Varshney, E-mail, ; Fax, +91 40 30713071; Himabindu Kudapa, E-mail, ; Fax, +91 40 30713071; Mamta Sharma, E-mail, ; Fax, +91 40 30713071
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
- Corresponding authors: Rajeev K. Varshney, E-mail, ; Fax, +91 40 30713071; Himabindu Kudapa, E-mail, ; Fax, +91 40 30713071; Mamta Sharma, E-mail, ; Fax, +91 40 30713071
| |
Collapse
|
9
|
Ding L, Chaumont F. Are Aquaporins Expressed in Stomatal Complexes Promising Targets to Enhance Stomatal Dynamics? FRONTIERS IN PLANT SCIENCE 2020; 11:458. [PMID: 32373147 PMCID: PMC7186399 DOI: 10.3389/fpls.2020.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
The opening and closure of stomata depend on the turgor pressure adjustment by the influx or efflux of ions and water in guard cells. In this process, aquaporins may play important roles by facilitating the transport of water and other small molecules. In this perspective, we consider the potential roles of aquaporins in the membrane diffusion of different molecules (H2O, CO2, and H2O2), processes dependent on abscisic acid and CO2 signaling in guard cells. While the limited data already available emphasizes the roles of aquaporins in stomatal movement, we propose additional approaches to elucidate the specific roles of single or several aquaporin isoforms in the stomata and evaluate the perspectives aquaporins might offer to improve stomatal dynamics.
Collapse
|
10
|
Zheng S, Chen Z, Nie H, Sun S, Zhou D, Wang T, Zhai X, Liu T, Xing G, Li M. Identification of differentially expressed photosynthesis- and sugar synthesis-related genes in tomato ( Solanum lycopersicum) plants grown under different CO 2 concentrations. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1715833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Shaowen Zheng
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhifeng Chen
- College of Biological and Agricultural Technology, Zunyi Normal University, Zunyi, Guizhou, China
| | - Hongmei Nie
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Sheng Sun
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Dan Zhou
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tianhong Wang
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xijiao Zhai
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tingting Liu
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoming Xing
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Meilan Li
- Department of Horticultural, Shanxi Agricultural University, Taigu, Shanxi, China
- Collaborative Innovation Center for Improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
11
|
Song SY, Meng XW, Xia Z, Liu H, Zhang J, Chen QC, Liu HY, Ji FH, Peng K. Cognitive impairment and transcriptomic profile in hippocampus of young mice after multiple neonatal exposures to sevoflurane. Aging (Albany NY) 2019; 11:8386-8417. [PMID: 31582589 PMCID: PMC6814607 DOI: 10.18632/aging.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Children with repeated inhalational anesthesia may develop cognitive disorders. This study aimed to investigate the transcriptome-wide response of hippocampus in young mice that had been exposed to multiple sevoflurane in the neonatal period. Mice received 3% sevoflurane for 2 h on postnatal day (PND) 6, 8, and 10, followed by arterial blood gas test on PND 10, behavioral experiments on PND 31–36, and RNA sequencing (RNA-seq) of hippocampus on PND 37. Functional annotation and protein-protein interaction analyses of differentially expressed genes (DEGs) and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. Neonatal sevoflurane exposures induced cognitive and social behavior disorders in young mice. RNA-seq identified a total of 314 DEGs. Several enriched biological processes (ion channels, brain development, learning, and memory) and signaling pathways (oxytocin signaling pathway and glutamatergic, cholinergic, and GABAergic synapses) were highlighted. As hub-proteins, Pten was involved in nervous system development, synapse assembly, learning, memory, and behaviors, Nos3 and Pik3cd in oxytocin signaling pathway, and Cdk16 in exocytosis and phosphorylation. Some top DEGs were validated by qPCR. This study revealed a transcriptome-wide profile in mice hippocampus after multiple neonatal exposures to sevoflurane, promoting better understanding of underlying mechanisms and investigation of preventive strategies.
Collapse
Affiliation(s)
- Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - ZhengYuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing-Cai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|