1
|
Deepika, Madhu, Shekhawat J, Dixit S, Upadhyay SK. Pre-mRNA processing factor 4 kinases (PRP4Ks): Exploration of molecular features, interaction network and expression profiling in bread wheat. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-024-11489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
|
2
|
Jin W, Yan W, Ma M, Hasi A, Che G. Genome-wide identification and expression analysis of the JMJ-C gene family in melon (Cucumis melo L.) reveals their potential role in fruit development. BMC Genomics 2023; 24:771. [PMID: 38093236 PMCID: PMC10720240 DOI: 10.1186/s12864-023-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered. RESULTS In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.). CmJMJs were categorized into five subfamilies based on the specific conserved domain: KDM4/JHDM3, KDM5/JARID1, JMJD6, KDM3/JHDM2, and JMJ-C domain-only. The chromosome localization analyses showed that 17 CmJMJs were distributed on nine chromosomes. Cis-acting element analyses of the 17 CmJMJ genes showed numerous hormone, light, and stress response elements distributed in the promoter region. Covariance analysis revealed one pair of replicated fragments (CmJMJ3a and CmJMJ3b) in 17 CmJMJ genes. We investigated the expression profile of 17 CmJMJ genes in different lateral organs and four developmental stages of fruit by RNA-seq transcriptome analysis and RT-qPCR. The results revealed that most CmJMJ genes were prominently expressed in female flowers, ovaries, and developing fruits, suggesting their active role in melon fruit development. Subcellular localization showed that the fruit-related CmJMJ5a protein is specifically localized in the cell nucleus. CONCLUSIONS This study provides a comprehensive understanding of the gene structure, classification, and evolution of JMJ-C in melon and supports the clarification of the JMJ-C functions in further research.
Collapse
Affiliation(s)
- Wuyun Jin
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wei Yan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
3
|
Cheng Z, Wen S, Wu Y, Shang L, Wu L, Lyu D, Yu H, Wang J, Jian H. Comparatively Evolution and Expression Analysis of GRF Transcription Factor Genes in Seven Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:2790. [PMID: 37570944 PMCID: PMC10421444 DOI: 10.3390/plants12152790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Growth regulatory factors (GRF) are plant-specific transcription factors that play pivotal roles in growth and various abiotic stresses regulation. However, adaptive evolution of GRF gene family in land plants are still being elucidated. Here, we performed the evolutionary and expression analysis of GRF gene family from seven representative species. Extensive phylogenetic analyses and gene structure analysis revealed that the number of genes, QLQ domain and WRC domain identified in higher plants was significantly greater than those identified in lower plants. Besides, dispersed duplication and WGD/segmental duplication effectively promoted expansion of the GRF gene family. The expression patterns of GRF gene family and target genes were found in multiple floral organs and abundant in actively growing tissues. They were also found to be particularly expressed in response to various abiotic stresses, with stress-related elements in promoters, implying potential roles in floral development and abiotic stress. Our analysis in GRF gene family interaction network indicated the similar results that GRFs resist to abiotic stresses with the cooperation of other transcription factors like GIFs. This study provides insights into evolution in the GRF gene family, together with expression patterns valuable for future functional researches of plant abiotic stress biology.
Collapse
Affiliation(s)
- Zhihan Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yuke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lin Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Hongtao Yu
- Suihua Branch of Heilongjiang Academy of Agriculture Sciences, Suihua 152052, China;
| | - Jichun Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| |
Collapse
|
4
|
Li Y, Qi S, Chen S, Li H, Zhang T, Bao F, Zhan D, Pang Z, Zhang J, Zhao J. Genome-wide identification and expression analysis of late embryogenesis abundant ( LEA) genes reveal their potential roles in somatic embryogenesis in hybrid sweetgum ( Liquidambar styraciflua × Liquidambar formosana). FORESTRY RESEARCH 2023; 3:12. [PMID: 39526275 PMCID: PMC11533890 DOI: 10.48130/fr-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 11/16/2024]
Abstract
Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants that play significant roles in embryonic development and abiotic stress response. Hybrid sweetgum is an important forest tree resource around the world, and somatic embryogenesis is an efficient way of reproduction and utilization. However, a systematic analysis of the LEA family genes in hybrid sweetgum is lacking, this is not conducive to the efficiency of its somatic embryogenesis. From the whole genome of the hybrid sweetgum, utilizing hidden Markov models, an identification of a total of 79 LEA genes was successfully conducted. They were classified into eight different groups based on their conserved domains and phylogenetic relationships, with the LsfLEA2 group of genes being the most abundant. The gene structure and sequence characteristics and chromosomal localization, as well as the physicochemical properties of LEA proteins were meticulously carried out. Analysis of the cis-acting elements shows that most of the LsfLEA genes are associated with light-responsive-elements. In addition, some genes are associated with biosynthetic pathways, such as abscisic acid response, growth hormone response, methyl jasmonate response, somatic embryogenesis, meristematic tissue expression. Furthermore, we systematically analyzed the expression patterns of hybrid sweetgum LEA genes in different stages of somatic embryogenesis and different tissues, in LEA family genes we also found significant specificity in gene expression during somatic embryogenesis. This study provides new insights into the formation of members of the LsfLEA family genes in hybrid sweetgum, while improving the understanding of the potential role of these genes in the process of hybrid sweetgum somatic embryogenesis and abiotic stress response. These results have a certain guiding significance for the future functional study of LsfLEA family genes, and provide a theoretical basis for exploring the regulatory mechanism of LsfLEA genes in the somatic embryo development stage of hybrid sweetgum.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuaizheng Qi
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Siyuan Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongxuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ting Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fen Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dingju Zhan
- Guangxi Bagui Forest and Flowers Seedlings Co., Ltd., Nanning, China
| | - Zhenwu Pang
- Guangxi Bagui Forest and Flowers Seedlings Co., Ltd., Nanning, China
| | - Jinfeng Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jian Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Alsamman AM, Abdelsattar M, El Allali A, Radwan KH, Nassar AE, Mousa KH, Hussein A, Mokhtar MM, Abd El-Maksoud MM, Istanbuli T, Kehel Z, Hamwieh A. Genome-wide identification, characterization, and validation of the bHLH transcription factors in grass pea. Front Genet 2023; 14:1128992. [PMID: 37021003 PMCID: PMC10067732 DOI: 10.3389/fgene.2023.1128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Background: The basic helix-loop-helix (bHLH) transcription factor is a vital component in plant biology, with a significant impact on various aspects of plant growth, cell development, and physiological processes. Grass pea is a vital agricultural crop that plays a crucial role in food security. However, the lack of genomic information presents a major challenge to its improvement and development. This highlights the urgency for deeper investigation into the function of bHLH genes in grass pea to improve our understanding of this important crop.Results: The identification of bHLH genes in grass pea was performed on a genome-wide scale using genomic and transcriptomic screening. A total of 122 genes were identified as having conserved bHLH domains and were functionally and fully annotated. The LsbHLH proteins could be classified into 18 subfamilies. There were variations in intron-exon distribution, with some genes lacking introns. The cis-element and gene enrichment analyses showed that the LsbHLHs were involved in various plant functions, including response to phytohormones, flower and fruit development, and anthocyanin synthesis. A total of 28 LsbHLHs were found to have cis-elements associated with light response and endosperm expression biosynthesis. Ten conserved motifs were identified across the LsbHLH proteins. The protein-protein interaction analysis showed that all LsbHLH proteins interacted with each other, and nine of them displayed high levels of interaction. RNA-seq analysis of four Sequence Read Archive (SRA) experiments showed high expression levels of LsbHLHs across a range of environmental conditions. Seven highly expressed genes were selected for qPCR validation, and their expression patterns in response to salt stress showed that LsbHLHD4, LsbHLHD5, LsbHLHR6, LsbHLHD8, LsbHLHR14, LsbHLHR68, and LsbHLHR86 were all expressed in response to salt stress.Conclusion: The study provides an overview of the bHLH family in the grass pea genome and sheds light on the molecular mechanisms underlying the growth and evolution of this crop. The report covers the diversity in gene structure, expression patterns, and potential roles in regulating plant growth and response to environmental stress factors in grass pea. The identified candidate LsbHLHs could be utilized as a tool to enhance the resilience and adaptation of grass pea to environmental stress.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| |
Collapse
|
6
|
Guo C, Sun Y, Zhai W, Yao X, Gong D, You B, Huang CP, Zheng J, Chang C. Hypoxia increases RCC stem cell phenotype via altering the androgen receptor (AR)-lncTCFL5-2-YBX1-SOX2 signaling axis. Cell Biosci 2022; 12:185. [PMID: 36397101 PMCID: PMC9670551 DOI: 10.1186/s13578-022-00912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background Early studies indicated that the androgen receptor (AR) could promote renal cell carcinoma (RCC) development and metastasis, but its linkage to RCC progression under hypoxia, remains unclear. Results Here we found AR expression in RCC cells decreased in response to hypoxia, which might then lead to increase the cancer stem cells (CSC) phenotype through the lncTCFL5-2-modulated YBX1/SOX2 signals. The consequences of such hypoxia-modulated AR/lncTCFL5-2/YBX1/SOX2 signals ablity to alter the CSC phenotype might render RCC cells more resistant to targeted therapy with Sunitinib. Mechanism dissection revealed that AR might alter the lncTCFL5-2/YBX1/SOX2 signaling through transcriptional suppression of the lncTCFL5-2 expression via the AR-response-elements (AREs) on the lncTCFL5-2 promoter. The lncTCFL5-2 interacts with YBX1 to increase its stability, which in turn increases SOX2 expression at a transcriptional level via the YBX1-response-elements (YBX1Es) on the SOX2 promoter. The in vivo mouse model with orthotopic xenografts of RCC cells also validates the in vitro data, and a human RCC sample survey demonstrated the clinical significance of the AR/lncTCFL5-2/YBX1/SOX2 signaling axis for the RCC prognosis, likely as a result of regulating CSC phenotypes. Conclusions Together, these findings suggest that hypoxia may increase the RCC CSC phenotype via altering the AR/lncTCFL5-2/YBX1/SOX2 signaling axis and a potential therapy to target this newly identified signal perhaps may help improve the targeted therapy with Sunitinib to better suppress RCC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00912-5.
Collapse
Affiliation(s)
- Changcheng Guo
- grid.412538.90000 0004 0527 0050Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China ,grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Yin Sun
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Wei Zhai
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.415869.7Department of Urology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 400062 China
| | - Xudong Yao
- grid.412538.90000 0004 0527 0050Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Dongkui Gong
- grid.412538.90000 0004 0527 0050Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China ,grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Bosen You
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Chi-Ping Huang
- grid.411508.90000 0004 0572 9415Department of Urology, China Medical University/Hospital, Taichung, 404 Taiwan
| | - Junhua Zheng
- grid.415869.7Department of Urology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 400062 China
| | - Chawnshang Chang
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.411508.90000 0004 0572 9415Department of Urology, China Medical University/Hospital, Taichung, 404 Taiwan
| |
Collapse
|
7
|
Ling Q, Liao J, Liu X, Zhou Y, Qian Y. Genome-Wide Identification of Maize Protein Arginine Methyltransferase Genes and Functional Analysis of ZmPRMT1 Reveal Essential Roles in Arabidopsis Flowering Regulation and Abiotic Stress Tolerance. Int J Mol Sci 2022; 23:12793. [PMID: 36361583 PMCID: PMC9655960 DOI: 10.3390/ijms232112793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/29/2023] Open
Abstract
Histone methylation, as one of the important epigenetic regulatory mechanisms, plays a significant role in growth and developmental processes and stress responses of plants, via altering the methylation status or ratio of arginine and lysine residues of histone tails, which can affect the regulation of gene expression. Protein arginine methyltransferases (PRMTs) have been revealed to be responsible for histone methylation of specific arginine residues in plants, which is important for maintaining pleiotropic development and adaptation to abiotic stresses in plants. Here, for the first time, a total of eight PRMT genes in maize have been identified and characterized in this study, named as ZmPRMT1-8. According to comparative analyses of phylogenetic relationship and structural characteristics among PRMT gene family members from several representative species, all maize 8 PRMT proteins were categorized into three distinct subfamilies. Further, schematic structure and chromosome location analyses displayed evolutionarily conserved structure features and an unevenly distribution on maize chromosomes of ZmPRMT genes, respectively. The expression patterns of ZmPRMT genes in different tissues and under various abiotic stresses (heat, drought, and salt) were determined. The expression patterns of ZmPRMT genes indicated that they play a role in regulating growth and development and responses to abiotic stress. Eventually, to verify the biological roles of ZmPRMT genes, the transgenic Arabidopsis plants overexpressing ZmPRMT1 gene was constructed as a typical representative. The results demonstrated that overexpression of ZmPRMT1 can promote earlier flowering time and confer enhanced heat tolerance in transgenic Arabidopsis. Taken together, our results are the first to report the roles of ZmPRMT1 gene in regulating flowering time and resisting heat stress response in plants and will provide a vital theoretical basis for further unraveling the functional roles and epigenetic regulatory mechanism of ZmPRMT genes in maize growth, development and responses to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | - Yexiong Qian
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
8
|
Cheng YZ, He GQ, Yang SD, Ma SH, Ma JP, Shang FHZ, Li XF, Jin HY, Guo DL. Genome-wide identification and expression analysis of JmjC domain-containing genes in grape under MTA treatment. Funct Integr Genomics 2022; 22:783-795. [PMID: 35854188 DOI: 10.1007/s10142-022-00885-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 12/31/2022]
Abstract
Histone demethylases containing the JmjC domain play an extremely important role in maintaining the homeostasis of histone methylation and are closely related to plant growth and development. Currently, the JmjC domain-containing proteins have been reported in many species; however, they have not been systematically studied in grapes. In this paper, 21 VviJMJ gene family members were identified from the whole grape genome, and the VviJMJ genes were classified into five subfamilies: KDM3, KDM4, KDM5, JMJD6, and JMJ-only based on the phylogenetic relationship and structural features of Arabidopsis and grape. After that, the conserved sites of VviJMJ genes were revealed by protein sequence analysis. In addition, chromosomal localization and gene structure analysis revealed the heterogeneous distribution of VviJMJ genes on grape chromosomes and the structural features of VviJMJ genes, respectively. Analysis of promoter cis-acting elements demonstrated numerous hormone, light, and stress response elements in the promoter region of the VviJMJ genes. Subsequently, the grape fruit was treated with MTA (an H3K4 methylation inhibitor), which significantly resulted in the early ripening of grape fruits. The qRT-PCR analysis showed that VviJMJ genes (except VviJMJ13c) had different expression patterns during grape fruit development. The expression of VviJMJ genes in the treatment group was significantly higher than that in the control group. The results indicate that VviJMJ genes are closely related to grape fruit ripening.
Collapse
Affiliation(s)
- Yi-Zhe Cheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Sheng-Di Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Shuai-Hui Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Jin-Ping Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Fang-Hui-Zi Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Xu-Fei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hui-Ying Jin
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China. .,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
9
|
Wang X, Pan C, Long J, Bai S, Yao M, Chen J, Sun G, Fan Y, Wang Z, Liu F, Liu C, Li Q. Genome-wide identification of the jumonji C domain- containing histone demethylase gene family in wheat and their expression analysis under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:987257. [PMID: 36092409 PMCID: PMC9453444 DOI: 10.3389/fpls.2022.987257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Methylation and demethylation of histone play a crucial role in regulating chromatin formation and gene expression. The jumonji C (JmjC) domain-containing proteins are demethylases that are involved in regulating epigenetic modification in plants. In our study, the JmjC genes in Triticum aestivum L., Triticum turgidum L., Triticum dicoccoides L., Triticum urartu L., and Aegilops tauschii L. were identified. Phylogenetic relationship and colinearity analysis revealed that the wheat JmjC genes were conserved in A, B, and D subgenomes during evolution. Cis-acting elements analysis showed that elements related to stress response, hormone response, and light response were found in wheat JmjC genes. The expression of JmjC genes was affected by tissue types and developmental stages, and members of the same subfamily tended to have similar expression patterns in wheat. They also showed a unique expression pattern in root during PEG (Polyethylene glycol) treatment. In conclusion, comprehensive analysis indicated that three members (Tr-1A-JMJ2, Tr-1B-JMJ2, and Tr-1D-JMJ2) might be regulated by several hormones and function in the early stages of drought stress, while eight members (Tr-1B-JMJ3, Tr-4B-JMJ1, Tr-7A-JMJ1, etc.) displayed a significantly high expression after 24 h of PEG treatment, indicating a role in the later stages of drought stress. This research presents the first genome-wide study of the JmjC family in wheat, and lays the foundation for promoting the study of their functional characterization in wheat drought resistance.
Collapse
Affiliation(s)
- Xinhua Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Cuili Pan
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiaohui Long
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuangyu Bai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Mingming Yao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiajing Chen
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Gang Sun
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yalei Fan
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhangjun Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Fenglou Liu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Qingfeng Li
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
10
|
Li Y, Zhuang F, Zeng J, Yang C, Li Y, Luo M, Wang Y. Identification of the histone demethylases gene family in
Glycyrrhiza inflata
reveals genes responding to abiotic stresses. J Cell Biochem 2022; 123:1780-1792. [DOI: 10.1002/jcb.30315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yuping Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Feng Zhuang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Jiangyi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Chao Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- College of Life Sciences Gannan Normal University Ganzhou Jiangxi China
| |
Collapse
|
11
|
Shaffique S, Khan MA, Wani SH, Pande A, Imran M, Kang SM, Rahim W, Khan SA, Bhatta D, Kwon EH, Lee IJ. A Review on the Role of Endophytes and Plant Growth Promoting Rhizobacteria in Mitigating Heat Stress in Plants. Microorganisms 2022; 10:microorganisms10071286. [PMID: 35889005 PMCID: PMC9319882 DOI: 10.3390/microorganisms10071286] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Among abiotic stresses, heat stress is described as one of the major limiting factors of crop growth worldwide, as high temperatures elicit a series of physiological, molecular, and biochemical cascade events that ultimately result in reduced crop yield. There is growing interest among researchers in the use of beneficial microorganisms. Intricate and highly complex interactions between plants and microbes result in the alleviation of heat stress. Plant–microbe interactions are mediated by the production of phytohormones, siderophores, gene expression, osmolytes, and volatile compounds in plants. Their interaction improves antioxidant activity and accumulation of compatible osmolytes such as proline, glycine betaine, soluble sugar, and trehalose, and enriches the nutrient status of stressed plants. Therefore, this review aims to discuss the heat response of plants and to understand the mechanisms of microbe-mediated stress alleviation on a physio-molecular basis. This review indicates that microbes have a great potential to enhance the protection of plants from heat stress and enhance plant growth and yield. Owing to the metabolic diversity of microorganisms, they can be useful in mitigating heat stress in crop plants. In this regard, microorganisms do not present new threats to ecological systems. Overall, it is expected that continued research on microbe-mediated heat stress tolerance in plants will enable this technology to be used as an ecofriendly tool for sustainable agronomy.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops Khudwani, Shere-e-Kashmir University of Agriculture Sciences and Technology Srinagar, Anantnag 190025, Jammu and Kashmir, India;
| | - Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41944, Korea; (A.P.); (W.R.)
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41944, Korea; (A.P.); (W.R.)
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 45000, Pakistan;
| | - Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.S.); (M.A.K.); (M.I.); (S.-M.K.); (D.B.); (E.-H.K.)
- Correspondence: ; Tel.: +82-53-950-5708
| |
Collapse
|
12
|
Zhao W, Wang X, Zhang Q, Zheng Q, Yao H, Gu X, Liu D, Tian X, Wang X, Li Y, Zhu Z. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice. PLANT PHYSIOLOGY 2022; 189:1050-1064. [PMID: 35253881 PMCID: PMC9157158 DOI: 10.1093/plphys/kiac095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
The homeostasis of histone methylation is maintained by histone methyltransferases and demethylases, which are important for the regulation of gene expression. Here, we report a histone demethylase from rice (Oryza sativa), Jumonji C domain-containing protein (JMJ710), which belongs to the JMJD6 group and plays an important role in the response to drought stress. Overexpression of JMJ710 causes a drought-sensitive phenotype, while RNAi and clustered regularly interspaced short palindromic repeats (CRISPR)-knockout mutant lines show drought tolerance. In vitro and in vivo assays showed that JMJ710 is a histone demethylase. It targets to MYB TRANSCRIPTION FACTOR 48 (MYB48-1) chromatin, demethylates H3K36me2, and negatively regulates the expression of MYB48-1, a positive regulator of drought tolerance. Under drought stress, JMJ710 is downregulated and the expression of MYB48-1 increases, and the subsequent activation of its downstream drought-responsive genes leads to drought tolerance. This research reports a negative regulator of drought stress-responsive genes, JMJ710, that ensures that the drought tolerance mechanism is not mis-activated under normal conditions but allows quick activation upon drought stress.
Collapse
Affiliation(s)
- Weijie Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qian Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Haitao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongliang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xuemin Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Author for correspondence:
| |
Collapse
|
13
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
14
|
Li Y, Zhu S, Yao J, Fang S, Li T, Li B, Wang X, Wang M, Wu L, Pan J, Feng X, Chen W, Zhang Y. Genome-wide Characterization of the JmjC Domain-Containing Histone Demethylase Gene Family Reveals GhJMJ24 and GhJMJ49 Involving in Somatic Embryogenesis Process in Cotton. Front Mol Biosci 2022; 9:888983. [PMID: 35573733 PMCID: PMC9091307 DOI: 10.3389/fmolb.2022.888983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
The Jumonji C (JmjC) domain-containing protein family, an important family of histone demethylase in plants, can directly reverse histone methylation and play important roles in various growth and development processes. In the present study, 51 JmjC genes (GhJMJs) were identified by genome-wide analysis in upland cotton (Gossypium hirsutum), which can be categorized into six distinct groups by phylogenetic analysis. Extensive syntenic relationship events were found between G. hirsutum and Theobroma cacao. We have further explored the putative molecular regulatory mechanisms of the JmjC gene family in cotton. GhJMJ24 and GhJMJ49 were both preferentially expressed in embryogenic callus compared to nonembryogenic callus in cotton tissue culture, which might be regulated by transcription factors and microRNAs to some extent. Further experiments indicated that GhJMJ24 and GhJMJ49 might interact with SUVH4, SUVH6, DDM1, CMT3, and CMT1 in the nucleus, potentially in association with demethylation of H3K9me2. Taken together, our results provide a foundation for future research on the biological functions of GhJMJ genes in cotton, especially in somatic embryogenesis in cotton tissue culture, which is crucial for the regeneration of transgenic plants.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xinyu Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingyang Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xuemei Feng
- Shandong Denghai Shengfeng Seed Industry Co., Ltd., Jining, china
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Evolutionary History and Functional Diversification of the JmjC Domain-Containing Histone Demethylase Gene Family in Plants. PLANTS 2022; 11:plants11081041. [PMID: 35448769 PMCID: PMC9029850 DOI: 10.3390/plants11081041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022]
Abstract
Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were identified from 21 different plant species. The evolutionary analysis results showed that the JmjC gene was detected in each species, that is, the gene has already appeared in algae. The phylogenetic analysis showed that the KDM3/JHDM2 subfamily genes may have appeared when plants transitioned from water to land, but were lost in lycophytes (Selaginella moellendorffii). During the evolutionary process, some subfamily genes may have been lost in individual species. According to the analysis of the conserved domains, all of the plant JmjC genes contained a typical JmjC domain, which was highly conserved during plant evolution. The analysis of cis-acting elements showed that the promoter region of the JmjC gene was rich in phytohormones and biotic and abiotic stress-related elements. The transcriptome data analysis and protein interaction analyses showed that JmjC genes play an important role in plant growth and development. The results clarified the evolutionary history of JmjC family genes in plants and lay the foundation for the analysis of the biological functions of JmjC family genes.
Collapse
|
16
|
Comprehensive Analysis of Jumonji Domain C Family from Citrus grandis and Expression Profilings in the Exocarps of “Huajuhong” (Citrus grandis “Tomentosa”) during Various Development Stages. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis. The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic analysis revealed that they could be classified into five groups, namely KDM3, KDM4, KDM5, JMJC, and JMJD6. The domain structures and motif architectures in the five groups were diversified. Cis-acting elements on the promoters of 18 CgJMJC genes were also investigated, and the abscisic acid-responsive element (ABRE) was distributed on 15 CgJMJC genes. Furthermore, the expression profiles of 18 CgJMJCs members in the exocarps of three varieties of “Huajuhong”, for different developmental stages, were examined. The results were validated by quantitative real-time PCR (qRT-PCR). The present study provides a comprehensive characterization of JMJC domain-containing proteins in C. grandis and their expression patterns in the exocarps of C. grandis “Tomentosa” for three varieties with various development stages.
Collapse
|
17
|
Chen B, Ali S, Zhang X, Zhang Y, Wang M, Zhang Q, Xie L. Genome-wide identification, classification, and expression analysis of the JmjC domain-containing histone demethylase gene family in birch. BMC Genomics 2021; 22:772. [PMID: 34711171 PMCID: PMC8555302 DOI: 10.1186/s12864-021-08063-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Histone methylation occurs primarily on lysine residues and requires a set of enzymes capable of reading, writing, and erasing to control its establishment and deletion, which is essential for maintaining chromatin structure and gene expression. Histone methylation and demethylation are contributed to plant growth and development, and are involved in adapting to environmental stresses. The JmjC domain-containing proteins are extensively studied for their function in histone lysine demethylation in plants, and play a critical role in sustaining histone methylation homeostasis. RESULTS In this study, a total of 21 JmjC domain-containing histone demethylase proteins (JHDMs) in birch were identified and classified into five subfamilies based on structural characteristics and phylogenetic relationships among Arabidopsis, rice, maize, and birch. Although the BpJMJ genes displayed significant schematic variation, their distribution on the chromosomes is relatively uniform. Additionally, the BpJMJ genes in birch have never experienced a tandem-duplication event proved by WGD analysis and were remaining underwent purifying selection (Ka/Ks < < 1). A typical JmjC domain was found in all BpJMJ genes, some of which have other essential domains for their functions. In the promoter regions of BpJMJ genes, cis-acting elements associated with hormone and abiotic stress responses were overrepresented. Under abiotic stresses, the transcriptome profile reveals two contrasting expression patterns within 21 BpJMJ genes. Furthermore, it was established that most BpJMJ genes had higher expression in young tissues under normal conditions, with BpJMJ06/16 having the highest expression in germinating seeds and participating in the regulation of BpGA3ox1/2 gene expression. Eventually, BpJMJ genes were found to directly interact with genes involved in the "intracellular membrane" in respond to cold stress. CONCLUSIONS The present study will provide a foundation for future experiments on histone demethylases in birch and a theoretical basis for epigenetic research on growth and development in response to abiotic stresses.
Collapse
Affiliation(s)
- Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shahid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xu Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yonglan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qingzhu Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Linan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
18
|
Shen Q, Lin Y, Li Y, Wang G. Dynamics of H3K27me3 Modification on Plant Adaptation to Environmental Cues. PLANTS 2021; 10:plants10061165. [PMID: 34201297 PMCID: PMC8228231 DOI: 10.3390/plants10061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Given their sessile nature, plants have evolved sophisticated regulatory networks to confer developmental plasticity for adaptation to fluctuating environments. Epigenetic codes, like tri-methylation of histone H3 on Lys27 (H3K27me3), are evidenced to account for this evolutionary benefit. Polycomb repressive complex 2 (PRC2) and PRC1 implement and maintain the H3K27me3-mediated gene repression in most eukaryotic cells. Plants take advantage of this epigenetic machinery to reprogram gene expression in development and environmental adaption. Recent studies have uncovered a number of new players involved in the establishment, erasure, and regulation of H3K27me3 mark in plants, particularly highlighting new roles in plants’ responses to environmental cues. Here, we review current knowledge on PRC2-H3K27me3 dynamics occurring during plant growth and development, including its writers, erasers, and readers, as well as targeting mechanisms, and summarize the emerging roles of H3K27me3 mark in plant adaptation to environmental stresses.
Collapse
|
19
|
Chen J, Li N, Wang X, Meng X, Cui X, Chen Z, Ren H, Ma J, Liu H. Late embryogenesis abundant (LEA) gene family in Salvia miltiorrhiza: identification, expression analysis, and response to drought stress. PLANT SIGNALING & BEHAVIOR 2021; 16:1891769. [PMID: 33818288 PMCID: PMC8078505 DOI: 10.1080/15592324.2021.1891769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 05/19/2023]
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in plant defense response to drought stress. However, genome-wide identification of the LEA gene family was not revealed in Salvia miltiorrhiza. In this study, 61 SmLEA genes were identified from S. miltiorrhiza and divided into 7 subfamilies according to their conserved domains and phylogenetic relationships. SmLEA genes contained the LEA conserved motifs and few introns. SmLEA genes of the same subfamilies had similar gene structures and predicted subcellular locations. Our results indicated that the promoters of SmLEA genes contained various cis-acting elements associated with abiotic stress response. In addition, RNA-seq and real-time PCR results suggested that SmLEA genes are specifically expressed in different tissue, and most SmLEA genes can be induced by drought stress. These results provide a valuable foundation for future functional investigations of SmLEA genes and drought stress-resistant breeding of S. miltiorrhiza.
Collapse
Affiliation(s)
- Juan Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Na Li
- College of Agriculture, Henan University of Science and Technology, Luoyang Henan, China
| | - Xiaoyu Wang
- College of Life Science, Northwest A&F University, Yangling Shaanxi, China
| | - Xue Meng
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Xiaomin Cui
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Hui Ren
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an Shaanxi, China
| | - Jing Ma
- Inspection and Testing Center for Quality and Safety of Agricultural Products, Ningxia Institute of Agricultural Survey and Design, Yinchuan Ningxia, China
| | - Hao Liu
- College of Life Science, Northwest A&F University, Yangling Shaanxi, China
- College of Agriculture, Ludong University, Yantai Shandong, China
- CONTACT Hao Liu College of Life Science, Northwest A&F University, Yangling Shaanxi 712100, China; College of Agriculture, Ludong University, Yantai Shandong264001, China
| |
Collapse
|
20
|
Lopez L, Fasano C, Perrella G, Facella P. Cryptochromes and the Circadian Clock: The Story of a Very Complex Relationship in a Spinning World. Genes (Basel) 2021; 12:672. [PMID: 33946956 PMCID: PMC8145066 DOI: 10.3390/genes12050672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023] Open
Abstract
Cryptochromes are flavin-containing blue light photoreceptors, present in most kingdoms, including archaea, bacteria, plants, animals and fungi. They are structurally similar to photolyases, a class of flavoproteins involved in light-dependent repair of UV-damaged DNA. Cryptochromes were first discovered in Arabidopsis thaliana in which they control many light-regulated physiological processes like seed germination, de-etiolation, photoperiodic control of the flowering time, cotyledon opening and expansion, anthocyanin accumulation, chloroplast development and root growth. They also regulate the entrainment of plant circadian clock to the phase of light-dark daily cycles. Here, we review the molecular mechanisms by which plant cryptochromes control the synchronisation of the clock with the environmental light. Furthermore, we summarise the circadian clock-mediated changes in cell cycle regulation and chromatin organisation and, finally, we discuss a putative role for plant cryptochromes in the epigenetic regulation of genes.
Collapse
Affiliation(s)
| | | | | | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TERIN-BBC-BBE, Trisaia Research Center, 75026 Rotondella, Matera, Italy; (L.L.); (C.F.); (G.P.)
| |
Collapse
|
21
|
Sun Z, Wang X, Qiao K, Fan S, Ma Q. Genome-wide analysis of JMJ-C histone demethylase family involved in salt-tolerance in Gossypium hirsutum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:420-433. [PMID: 33257231 DOI: 10.1016/j.plaphy.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The jumonji C (JMJ-C) domain-containing protein is a histone demethylase and is involved in plant stress. However, the function of the JMJ-C gene family in cotton is still not confirmed. Herein, 25, 26, 52, and 53 members belonging to the JMJ-C gene family were identified in Gossypium raimondii, Gossypium arboreum, Gossypium hirsutum, and Gossypium barbadense, respectively. Based on phylogenetic relationships and conserved domains, the JMJ-C genes were categorized into five subfamilies, KDM3, KDM4, KDM5, JMJC, and JMJD6. The chromosomal location, gene structure, motif compositions, and cis-elements have been displayed. The collinear investigation showed that whole-genome duplication event is the mainly power to drive JMJ-C gene family expansion. Transcriptome and qRT-PCR analysis revealed that eight GhJMJs were induced by salt and PEG treatment. Further assays confirmed that GhJMJ34/40 greatly improved salt and osmotic tolerance in Saccharomyces cerevisiae. These results help clarify JMJ-C protein functions in preparation for further study.
Collapse
Affiliation(s)
- Zhimao Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiaoyan Wang
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, China.
| | - Kaikai Qiao
- State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Shuli Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Qifeng Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| |
Collapse
|
22
|
Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize. Gene 2020; 770:145348. [PMID: 33333230 DOI: 10.1016/j.gene.2020.145348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022]
Abstract
Heat shock factors (Hsfs) and heat shock proteins (Hsps) play a critical role in the molecular mechanisms such as plant development and defense against abiotic. As an important food crop, maize is vulnerable to adverse environment such as heat stress and water logging, which leads to a decline in yield and quality. To date, very little is known regarding the structure and function of Hsf and Hsp genes in maize. Although some Hsf and Hsp genes have been characterized in maize, analysis of the entire Hsf and Hsp70 gene families were not completed following Maize (B73) Genome Sequencing Project. Therefore, studying their molecular mechanism and revealing their biological function in plant stress resistance process will contribute to reveal important theoretical significance and application value for improving corn yield and quality. In this study, we have identified 25 ZmHsf and 22 ZmHsp70 genes in maize. The structural characteristics and phylogenetic relationships of the Hsf and Hsp70 gene families of Arabidopsis thaliana, rice and maize were compared. The final 25 ZmHsf proteins and 22 ZmHsp70 proteins were divided into three and four subfamilies, respectively. In addition, chromosomal localization indicated that the ZmHsf and ZmHsp70 genes were unevenly distributed on the chromosome, and the gene structure map revealed the characteristics of their structures. Finally, transcriptome analysis indicated that most of the ZmHsf and ZmHsp70 genes showed different expression patterns at different developmental stages of maize. Further, by semi-quantitative RT-PCR and quantitative real-time PCR analysis, all 25 ZmHsf and 22 ZmHsp70 genes were confirmed to respond to heat stress treatment, indicating that they have potential effects in heat stress response. The analyses performed by combining co-expression network with protein-protein interaction network among the members of the Hsf and Hsp70 gene families in maize further enabled us to recognize components involved in the regulatory network associated with hsfs and hsp70s complex. The predicted subcellular location revealed that maize Hsp70 proteins exhibited a various subcellular distribution, which may be associated with functional diversification in heat stress response. Taken together, our study provides comprehensive information on the members of Hsf and Hsp70 gene families and will help in elucidating their exact function in maize.
Collapse
|
23
|
Chen H, Tong J, Fu W, Liang Z, Ruan J, Yu Y, Song X, Yuan L, Xiao L, Liu J, Cui Y, Huang S, Li C. The H3K27me3 Demethylase RELATIVE OF EARLY FLOWERING6 Suppresses Seed Dormancy by Inducing Abscisic Acid Catabolism. PLANT PHYSIOLOGY 2020; 184:1969-1978. [PMID: 33037128 PMCID: PMC7723082 DOI: 10.1104/pp.20.01255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 05/04/2023]
Abstract
Seed dormancy is an adaptive trait that is crucial to plant survival. Abscisic acid (ABA) is the primary phytohormone that induces seed dormancy. However, little is known about how the level of ABA in seeds is determined. Here we show that the Arabidopsis (Arabidopsis thaliana) H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 (REF6) suppresses seed dormancy by inducing ABA catabolism in seeds. Seeds of the ref6 loss-of-function mutants displayed enhanced dormancy that was associated with increased endogenous ABA content. We further show that the transcripts of two genes key to ABA catabolism, CYP707A1 and CYP707A3, but not genes involved in ABA biosynthesis, were significantly reduced in ref6 mutants during seed development and germination. In developing siliques, REF6 bound directly to CYP707A1 and CYP707A3, and was responsible for reducing their H3K27me3 levels. Genetic analysis demonstrated that the enhanced seed dormancy and ABA concentration in ref6 depended mainly on the reduced expression of CYP707A1 and CYP707A3 Conversely, overexpression of CYP707A1 could offset the enhanced seed dormancy of ref6 Taken together, our results revealed an epigenetic regulation mechanism that is involved in the regulation of ABA content in seeds.
Collapse
Affiliation(s)
- Huhui Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128 Changsha, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128 Changsha, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
24
|
Characterization and Stress Response of the JmjC Domain-Containing Histone Demethylase Gene Family in the Allotetraploid Cotton Species Gossypium hirsutum. PLANTS 2020; 9:plants9111617. [PMID: 33233854 PMCID: PMC7709011 DOI: 10.3390/plants9111617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure by changing the methylation state of the lysine residue site and plays an important role in plant growth and development. In this study, we carried out genome-wide identification and comprehensive analysis of JmjC genes in the allotetraploid cotton species Gossypium hirsutum. In total, 50 JmjC genes were identified and in G. hirsutum, and 25 JmjC genes were identified in its two diploid progenitors, G. arboreum and G. raimondii, respectively. Phylogenetic analysis divided these JmjC genes into five subfamilies. A collinearity analysis of the two subgenomes of G. hirsutum and the genomes of G. arboreum and G. raimondii uncovered a one-to-one relationship between homologous genes of the JmjC gene family. Most homologs in the JmjC gene family between A and D subgenomes of G. hirsutum have similar exon-intron structures, which indicated that JmjC family genes were conserved after the polyploidization. All G. hirsutumJmjC genes were found to have a typical JmjC domain, and some genes also possess other special domains important for their function. Analysis of promoter regions revealed that cis-acting elements, such as those related to hormone and abiotic stress response, were enriched in G. hirsutum JmjC genes. According to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, most G. hirsutumJmjC genes had high abundance expression at developmental stages of fibers, suggesting that they might participate in cotton fiber development. In addition, some G. hirsutumJmjC genes were found to have different degrees of response to cold or osmotic stress, thus indicating their potential role in these types of abiotic stress response. Our results provide useful information for understanding the evolutionary history and biological function of JmjC genes in cotton.
Collapse
|