1
|
Akinsola OM, Musa AA, Muansangi L, Singh SP, Mukherjee S, Mukherjee A. Genomic insights into adaptation and inbreeding among Sub-Saharan African cattle from pastoral and agropastoral systems. Front Genet 2024; 15:1430291. [PMID: 39119582 PMCID: PMC11306176 DOI: 10.3389/fgene.2024.1430291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background In Sub-Saharan Africa (SSA), cattle are crucial for socioeconomic stability yet face numerous environmental stressors such as diseases, parasites, and extreme heat within pastoral and agropastoral systems. Despite their significance, gaps remain in understanding how genetic diversity and inbreeding influence traits essential for disease resistance and environmental adaptability. This study examines the genomic adaptations that enable SSA cattle to thrive under these conditions and assesses the impact of inbreeding on such adaptive traits. Methods We analyzed genomic data from 113 cattle across four breeds-Kuri, N'dama, Zebu-Fulani, and Zebu-Bororo-employing Runs of Homozygosity (ROH) and Integrated Haplotype Score (iHS) analyses to identify historical and recent genetic selections. Strict quality controls using PLINK software ensured accurate genomic pattern identification related to adaptation and inbreeding. Results ROH analysis revealed islands with genes such as RSAD2, CMPK2, and NOTCH1, which are involved in immune response and cellular stress management, highlighting regions of historical selection that have likely provided adaptive advantages in overcoming environmental and pathogenic stresses. In contrast, iHS analysis identified genes under recent selection like HIPK1, involved in stress response regulation, and EPHA5, which plays a crucial role in neural development and synaptic functions, potentially equipping these breeds with novel adaptations to ongoing and emergent environmental challenges. Conclusion This research confirms that selective pressures inherent in pastoral and agropastoral systems profoundly influence the genetic structure of SSA cattle. By delineating the genetic bases of key adaptive traits, our study offers crucial insights for targeted breeding programs to enhance cattle resilience and productivity. These findings provide a valuable framework for future genetic improvements and conservation strategies, crucial for sustainable livestock management and economic stability in SSA.
Collapse
Affiliation(s)
- Oludayo M. Akinsola
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Lal Muansangi
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sanchit P. Singh
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sabyasachi Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Anupama Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| |
Collapse
|
2
|
Cai Z, Iso-Touru T, Sanchez MP, Kadri N, Bouwman AC, Chitneedi PK, MacLeod IM, Vander Jagt CJ, Chamberlain AJ, Gredler-Grandl B, Spengeler M, Lund MS, Boichard D, Kühn C, Pausch H, Vilkki J, Sahana G. Meta-analysis of six dairy cattle breeds reveals biologically relevant candidate genes for mastitis resistance. Genet Sel Evol 2024; 56:54. [PMID: 39009986 PMCID: PMC11247842 DOI: 10.1186/s12711-024-00920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Mastitis is a disease that incurs significant costs in the dairy industry. A promising approach to mitigate its negative effects is to genetically improve the resistance of dairy cattle to mastitis. A meta-analysis of genome-wide association studies (GWAS) across multiple breeds for clinical mastitis (CM) and its indicator trait, somatic cell score (SCS), is a powerful method to identify functional genetic variants that impact mastitis resistance. RESULTS We conducted meta-analyses of eight and fourteen GWAS on CM and SCS, respectively, using 30,689 and 119,438 animals from six dairy cattle breeds. Methods for the meta-analyses were selected to properly account for the multi-breed structure of the GWAS data. Our study revealed 58 lead markers that were associated with mastitis incidence, including 16 loci that did not overlap with previously identified quantitative trait loci (QTL), as curated at the Animal QTLdb. Post-GWAS analysis techniques such as gene-based analysis and genomic feature enrichment analysis enabled prioritization of 31 candidate genes and 14 credible candidate causal variants that affect mastitis. CONCLUSIONS Our list of candidate genes can help to elucidate the genetic architecture underlying mastitis resistance and provide better tools for the prevention or treatment of mastitis, ultimately contributing to more sustainable animal production.
Collapse
Affiliation(s)
- Zexi Cai
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark.
| | - Terhi Iso-Touru
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Naveen Kadri
- Animal Genomics, ETH Zurich, 8092, Zurich, Switzerland
| | - Aniek C Bouwman
- Wageningen University and Research, Animal Breeding and Genomics, P.O. Box 338, 6700, AH, Wageningen, The Netherlands
| | - Praveen Krishna Chitneedi
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | | | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Birgit Gredler-Grandl
- Wageningen University and Research, Animal Breeding and Genomics, P.O. Box 338, 6700, AH, Wageningen, The Netherlands
| | | | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
- Agricultural and Environmental Faculty, University Rostock, 18059, Rostock, Germany
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, 8092, Zurich, Switzerland
| | - Johanna Vilkki
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
3
|
van den Berg I, Chamberlain AJ, MacLeod IM, Nguyen TV, Goddard ME, Xiang R, Mason B, Meier S, Phyn CVC, Burke CR, Pryce JE. Using expression data to fine map QTL associated with fertility in dairy cattle. Genet Sel Evol 2024; 56:42. [PMID: 38844868 PMCID: PMC11154999 DOI: 10.1186/s12711-024-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.
Collapse
Affiliation(s)
- Irene van den Berg
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Tuan V Nguyen
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Mike E Goddard
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brett Mason
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | | | | | | | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
4
|
Rocha RFB, Garcia AO, Dos Santos MG, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCC, Calus MPL, Guimarães SEF. Inheritance of genomic regions and genes associated with number of oocytes and embryos in Gir cattle through daughter design. J Dairy Sci 2024; 107:3794-3801. [PMID: 38310969 DOI: 10.3168/jds.2023-24111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Over the past decades, daughter designs, including genotyped sires and their genotyped daughters, have been used as an approach to identify QTL related to economic traits. The aim of this study was to identify genomic regions inherited by Gir sire families and genes associated with number of viable oocytes (VO), total number of oocytes (TO), and number of embryos (EMBR) based on a daughter design approach. In total, 15 Gir sire families were selected. The number of daughters per family ranged from 26 to 395, which were genotyped with different SNP panels and imputed to the Illumina BovineHD BeadChip (777K) and had phenotypes for oocyte and embryo production. Daughters had phenotypic data for VO, TO, and EMBR. The search for QTL was performed through GWAS based on GBLUP. The QTL were found for each trait among and within families based on the top 10 genomic windows with the greatest genetic variance. For EMBR, genomic windows identified among families were located on BTA4, BTA5, BTA6, BTA7, BTA8, BTA13, BTA16, and BTA17, and they were most frequent on BTA7 within families. For VO, genomic windows were located on BTA2, BTA4, BTA5, BTA7, BTA17, BTA21, BTA22, BTA23, and BTA27 among families, being most frequent on BTA8 within families. For TO, the top 10 genomic windows were identified on BTA2, BTA4, BTA5, BTA7, BTA17, BTA21, BTA22, BTA26, and BTA27, being most frequent on BTA7 and BTA8 within families. Considering all results, the greatest number of genomic windows was found on BTA7, where the VCAN, XRCC4, TRNAC-ACA, HAPLN1, and EDIL3 genes were identified in the common regions. In conclusion, 15 Gir sire families with 26 to 395 daughters per family with phenotypes for oocyte and embryo production helped to identify the inheritance of several genomic regions, especially on BTA7, where the EDIL3, HAPLN1, and VCAN candidate genes were associated with number of oocytes and embryos in Gir cattle families.
Collapse
Affiliation(s)
- R F B Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - A O Garcia
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - M G Dos Santos
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - P I Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - M V B da Silva
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - M F Martins
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - M A Machado
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - J C C Panetto
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - M P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - S E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
5
|
Worku D, Verma A. Genetic variation in bovine LAP3 and SIRT1 genes associated with fertility traits in dairy cattle. BMC Genom Data 2024; 25:32. [PMID: 38500063 PMCID: PMC10949778 DOI: 10.1186/s12863-024-01209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The genetic progress of fertility and reproduction traits in dairy cattle has been constrained by the low heritability of these traits. Identifying candidate genes and variants associated with fertility and reproduction could enhance the accuracy of genetic selection and expedite breeding process of dairy cattle with low-heritability traits. While the bovine LAP3 and SIRT1 genes exhibit well-documented associations with milk production traits in dairy cattle, their effect on cow fertility have not yet been explored. Eleven single nucleotide polymorphisms (SNPs), comprising five in the promoter (rs717156555: C > G, rs720373055: T > C, rs516876447: A > G, rs461857269: C > T and rs720349928: G > A), two in 5'UTR (rs722359733: C > T and rs462932574: T > G), two in intron 12 (rs110932626: A > G and rs43702363: C > T), and one in 3'UTR of exon 13 (rs41255599: C > T) in LAP3 and one in SIRT1 (rs718329990:T > C) genes, have previously been reported to be associated with various traits of milk production and clinical mastitis in Sahiwal and Karan Fries dairy cattle. In this study, the analysis primarily aimed to assess the impact of SNPs within LAP3 and SIRT1 genes on fertility traits in Sahiwal and Karan Fries cattle. Association studies were conducted using mixed linear models, involving 125 Sahiwal and 138 Karan Fries animals in each breed. The analysis utilized a designated PCR-RFLP panel. RESULTS In the promoter region of the LAP3 gene, all variants demonstrated significant (P < 0.05) associations with AFC, except for rs722359733: C > T. However, specific variants with the LAP3 gene's promoter region, namely rs722359733: C > T, rs110932626: A > G, rs43702363: C > T, and rs41255599: C > T, showed significant associations with CI and DO in Sahiwal and Karan Fries cows, respectively. The SNP rs718329990: T > C in the promoter region of SIRT1 gene exhibited a significant association with CI and DO in Sahiwal cattle. Haplotype-based association analysis revealed significant associations between haplotype combinations and AFC, CI and DO in the studied dairy cattle population. Animals with H2H3 and H2H4 haplotype combination exhibited higher AFC, CI and DO than other combinations. CONCLUSIONS These results affirm the involvement of the LAP3 and SIRT1 genes in female fertility traits, indicating that polymorphisms within these genes are linked to the studied traits. Overall, the significant SNPs and haplotypes identified in this study could have the potential to enhance herd profitability and ensure long-term sustainability on dairy farms by enabling the selection of animals with early age first calving and enhance reproductive performance in the dairy cattle breeding program.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Science, Injibara University, Injibara, Ethiopia.
| | - Archana Verma
- Animal Genetics and Breeding Division, ICAR -National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Gangwar M, Kumar S, Ahmad SF, Singh A, Agrawal S, Anitta PL, Kumar A. Identification of genetic variants affecting reproduction traits in Vrindavani cattle. Mamm Genome 2024; 35:99-111. [PMID: 37924370 DOI: 10.1007/s00335-023-10023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
Genome-wide association studies (GWAS) are one of the best ways to look into the connection between single-nucleotide polymorphisms (SNPs) and the phenotypic performance. This study aimed to identify the genetic variants that significantly affect the important reproduction traits in Vrindavani cattle using genome-wide SNP chip array data. In this study, 96 randomly chosen Vrindavani cows were genotyped using the Illumina Bovine50K BeadChip platform. A linear regression model of the genome-wide association study was fitted in the PLINK program between genome-wide SNP markers and reproduction traits, including age at first calving (AFC), inter-calving period (ICP), dry days (DD), and service period (SP) across the first three lactations. Information on different QTLs and genes, overlapping or adjacent to genomic coordinates of significant SNPs, was also mined from relevant databases in order to identify the biological pathways associated with reproductive traits in bovine. The Bonferroni correction resulted in total 39 SNP markers present on different chromosomes being identified that significantly affected the variation in AFC (6 SNPs), ICP (7 SNPs), DD (9 SNPs), and SP (17 SNPs). Novel potential candidate genes associated with reproductive traits that were identified using the GWAS methodology included UMPS, ITGB5, ADAM2, UPK1B, TEX55, bta-mir-708, TMPO, TDRD5, MAPRE2, PTER, AP3B1, DPP8, PLAT, TXN2, NDUFAF1, TGFA, DTNA, RSU1, KCNQ1, ADAM32, and CHST8. The significant SNPs and genes associated with the reproductive traits and the enriched genes may be exploited as candidate biomarkers in animal improvement programs, especially for improved reproduction performance in bovines.
Collapse
Affiliation(s)
- Munish Gangwar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Subodh Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India.
| | - Sheikh Firdous Ahmad
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Akansha Singh
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Swati Agrawal
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - P L Anitta
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Amit Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| |
Collapse
|
7
|
Zhu L, Shen S, Pan C, Lan X, Li J. Bovine FRAS1: mRNA Expression Profile, Genetic Variations, and Significant Correlations with Ovarian Morphological Traits, Mature Follicle, and Corpus Luteum. Animals (Basel) 2024; 14:597. [PMID: 38396565 PMCID: PMC10886075 DOI: 10.3390/ani14040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The amelioration of bovine fertility caused by a multi-factorial problem has always been a hot topic, among which the detection of available target genes is the most crucial. It was hypothesized that the Fraser extracellular matrix complex subunit 1 (FRAS1) gene detected by GWAS is involved in physiological activities such as ovarian development. Herein, unilateral ovaries from 2111 cows were used to examine the mRNA expression profile and polymorphisms of bovine FRAS1 and their associations with fertility-related characteristics. Firstly, it was confirmed that FRAS1 gene transcripts are expressed in various bovine tissues. Then, among five potential insertion-deletion (indel) loci, the 20 bp (named P3-D20-bp) and 15 bp (P4-D15-bp) deletion mutations were confirmed to be polymorphic with linkage equilibrium. Secondly, the P3-D20-bp polymorphism was significantly associated with ovarian weight and corpus luteum diameter in the metaestrus phase and ovarian length in the dioestrum stage. Additionally, both ovarian length and mature follicle diameter in metaestrus are significantly correlated with different genotypes of P4-D15-bp. Thirdly, the transcriptional expression of the FRAS1 gene in groups with a minimum value of ovarian weight or volume was significantly higher than the expression in groups with a maximum value. Instead of that, the more corpus luteum and mature follicles there are, the higher the transcription expression of the FRAS1 gene is. Furthermore, FRAS1 expression in cows with a heterozygous genotype (ID) of P3-D20-bp was significantly higher than others. Eventually, P3-D20-bp deletion could disturb the binding efficiency of WT1-I and Sox2 to FRAS1 sequence according to binding prediction, indicating that mutation may affect gene expression and traits by influencing the binding of transcription factors. Overall, the polymorphisms of P3-D20-bp and P4-D15-bp of the bovine FRAS1 gene significantly correlated to follicle or ovarian traits that could be applied in optimizing female fertility in cow MAS breeding programs.
Collapse
Affiliation(s)
| | | | | | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (L.Z.); (S.S.); (C.P.)
| | - Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (L.Z.); (S.S.); (C.P.)
| |
Collapse
|
8
|
Diniz WJS, Afonso J, Kertz NC, Dyce PW, Banerjee P. Mapping Expression Quantitative Trait Loci Targeting Candidate Genes for Pregnancy in Beef Cows. Biomolecules 2024; 14:150. [PMID: 38397387 PMCID: PMC10886872 DOI: 10.3390/biom14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Despite collective efforts to understand the complex regulation of reproductive traits, no causative genes and/or mutations have been reported yet. By integrating genomics and transcriptomics data, potential regulatory mechanisms may be unveiled, providing opportunities to dissect the genetic factors governing fertility. Herein, we identified regulatory variants from RNA-Seq data associated with gene expression regulation in the uterine luminal epithelial cells of beef cows. We identified 4676 cis and 7682 trans eQTLs (expression quantitative trait loci) affecting the expression of 1120 and 2503 genes, respectively (FDR < 0.05). These variants affected the expression of transcription factor coding genes (71 cis and 193 trans eQTLs) and genes previously reported as differentially expressed between pregnant and nonpregnant cows. Functional over-representation analysis highlighted pathways related to metabolism, immune response, and hormone signaling (estrogen and GnRH) affected by eQTL-regulated genes (p-value ≤ 0.01). Furthermore, eQTLs were enriched in QTL regions for 13 reproduction-related traits from the CattleQTLdb (FDR ≤ 0.05). Our study provides novel insights into the genetic basis of reproductive processes in cattle. The underlying causal mechanisms modulating the expression of uterine genes warrant further investigation.
Collapse
Affiliation(s)
- Wellison J. S. Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, s/n, Fazenda Canchim, São Carlos 13560-970, SP, Brazil;
| | - Nicholas C. Kertz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Paul W. Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Priyanka Banerjee
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| |
Collapse
|
9
|
Zhang Y, Plessis C, Prunier J, Martin H, Labrecque R, Sirard MA. DNA methylation profiles in bovine sperm are associated with daughter fertility. Epigenetics 2023; 18:2280889. [PMID: 38016027 PMCID: PMC10732624 DOI: 10.1080/15592294.2023.2280889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
The current decline in dairy cattle fertility has resulted in significant financial losses for dairy farmers. In the past, most efforts to improve dairy cattle fertility have been focused on either management or genetics, while epigenetics have received less attention. In this study, 12 bulls were selected from a provided 100 bull list and studied (High daughter fertility = 6, Low daughter fertility = 6) for Enzymatic methylation sequencing in the Illumina HiSeq platform according to the Canadian daughter fertility index (DFI), sires with high and low daughter fertility have average DFI of 92 and 112.6, respectively. And the bull list provided shows a mean DFI of 103.4. 252 CpGs with methylation differences greater than 20% (q < 0.01) were identified, as well as the top 10 promising DMRs with a 15% methylation difference (q < 1.1e-26). Interestingly, the DMCs and DMRs were found to be distributed more on the X chromosome than on the autosome, and they were covered by gene clusters linked to germ cell formation and development. In conclusion, these findings could enhance our ability to make informed decisions when deciding on superior bulls and advance our understanding of paternal epigenetic inheritance.
Collapse
Affiliation(s)
- Ying Zhang
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | - Clément Plessis
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | - Julien Prunier
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | - Hélène Martin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | | | - Marc André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| |
Collapse
|
10
|
Luecke SM, Webb EM, Dahlen CR, Reynolds LP, Amat S. Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility. Front Microbiol 2022; 13:1029128. [PMID: 36425035 PMCID: PMC9679222 DOI: 10.3389/fmicb.2022.1029128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 09/13/2023] Open
Abstract
Reproductive failure is a major economical drain on cow-calf operations across the globe. It can occur in both males and females and stem from prenatal and postnatal influences. Therefore, the cattle industry has been making efforts to improve fertility and the pregnancy rate in cattle herds as an attempt to maintain sustainability and profitability of cattle production. Despite the advancements made in genetic selection, nutrition, and the implementation of various reproductive technologies, fertility rates have not significantly improved in the past 50 years. This signifies a missing factor or factors in current reproductive management practices that influence successful fertilization and pregnancy. Emerging lines of evidence derived from human and other animals including cattle suggest that the microbial continuum along the male and female reproductive tracts are associated with male and female fertility-that is, fertilization, implantation, and pregnancy success-highlighting the potential for harnessing the male and female reproductive microbiome to improve fertility in cattle. The objective of this narrative review is to provide an overview of the recent studies on the bovine seminal and vagino-uterine microbiome and discuss individual and interactive roles of these microbial communities in defining cattle fertility.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
11
|
Niesen AM, Genther-Schroeder ON, Bradley CMK, Davidson JA, Rossow HA. Peripheral blood mononuclear cell mitochondrial enzyme activity is associated with parity and lactation performance in early lactation Holstein dairy cows. J Dairy Sci 2022; 105:7036-7046. [PMID: 35787326 DOI: 10.3168/jds.2021-21599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
Mitochondria are central to metabolism and are the primary energy producers for all biosynthesis, including lactation. The objectives of this study were to determine if high- and low-producing dairy cows exhibit differences in peripheral blood mononuclear cell mitochondrial enzyme activities of citrate synthase, complex I, complex IV, and complex V during early lactation and, thus, to determine whether those differences were related to differences in lactation performance in the dairy cow. Fifty-six Holstein cows were assigned to 1 of 4 groups: (1) primiparous high, (2) primiparous low, (3) multiparous high, or (4) multiparous low. Primiparous and multiparous cows were analyzed separately. Then, cows were divided into high or low production groups for each production parameter [peak milk, average milk, energy-corrected milk (ECM), fat-corrected milk (FCM), milk lactose, milk fat, milk protein, total solids (TS), solids-not-fat, feed efficiency, and somatic cell count (SCC)]. For all data analysis, production parameters are expressed as yields (kg/d) and SCC (103 cells/mL). High and low production groups were defined by their respective mean production parameters for the 56 cows, with below average cows defined as low and above average cows defined as high. Whole blood samples were collected at one time point, approximately 70 d in milk at 0800 h, and processed for crude mitochondrial extracts from peripheral blood mononuclear cells to determine the activity rates of mitochondrial enzymes. Milk samples were collected 9 times (3 d, 3 times per d) during the week of blood collection and analyzed for major components (fat, protein, lactose, TS, and SCC). Multiparous cows had lower citrate synthase activity than primiparous cows across all production parameters. High-producing cows had greater complex I activity for peak milk, milk yield, ECM, FCM, milk fat, TS, and feed efficiency, and greater complex V activity for ECM, FCM, milk lactose, milk fat, and TS across parities. These findings imply that the most influential respiratory chain enzymes on the level of milk production are those responsible for electron transport chain initialization and ATP production.
Collapse
Affiliation(s)
- A M Niesen
- Department of Population Health and Reproduction, University of California, Davis 95616
| | | | | | | | - H A Rossow
- Department of Population Health and Reproduction, University of California, Davis 95616.
| |
Collapse
|
12
|
Mohammadi A, Alijani S, Rafat S, Abdollahi-Arpanahi R. Single-step genome-wide association study and candidate genes networks affecting reproductive traits in Iranian Holstein cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Du X, He X, Liu Q, Di R, Liu Q, Chu M. Comparative Transcriptomics Reveals the Key lncRNA and mRNA of Sunite Sheep Adrenal Gland Affecting Seasonal Reproduction. Front Vet Sci 2022; 9:816241. [PMID: 35464356 PMCID: PMC9024317 DOI: 10.3389/fvets.2022.816241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays an important role in the growth and development of mammals. Recently, lncRNA transcripts have emerged as an area of importance in sheep photoperiod and seasonal estrus studies. This research aims to identify lncRNA and mRNA that are differentially expressed in the sheep adrenal gland in long (LP) or short (SP) photoperiods using transcriptome sequencing and bioinformatics analysis based on the OVX + E2 (Bilateral ovariectomy and estradiol-implanted) model. We found significant differences in the expression of lncRNAs in LP42 (where LP is for 42 days) vs. SP-LP42 (where SP is for 42 days followed by LP for 42 days) (n = 304), SP42 (where SP is for 42 days) vs. SP-LP42 (n = 1,110) and SP42 vs. LP42 (n = 928). Cluster analysis and enrichment analysis identified SP42 vs. LP42 as a comparable group of interest and found the following candidate genes related to reproductive phenotype: FGF16, PLGF, CDKN1A, SEMA7A, EDG1, CACNA1C and ADCY5. FGF16 (Up-regulated lncRNA MSTRG.242136 and MSTRG.236582) is the only up-regulated gene that is closely related to oocyte maturation. However, EDG1 (Down-regulated lncRNA MSTRG.43609) and CACNA1C may be related to precocious puberty in sheep. PLGF (Down-regulated lncRNA MSTRG.146618 and MSTRG.247208) and CDKN1A (Up-regulated lncRNA MSTRG.203610 and MSTRG.129663) are involved in the growth and differentiation of placental and retinal vessels, and SEMA7A (Up-regulated lncRNA MSTRG.250579) is essential for the development of gonadotropin-releasing hormone (GnRH) neurons. These results identify novel candidate genes that may regulate sheep seasonality and may lead to new methods for the management of sheep reproduction. This study provides a basis for further explanation of the basic molecular mechanism of the adrenal gland, but also provides a new idea for a comprehensive understanding of seasonal estrus characteristics in Sunite sheep.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingqing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu
| |
Collapse
|
14
|
Häfliger IM, Spengeler M, Seefried FR, Drögemüller C. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Sci Rep 2022; 12:5435. [PMID: 35361830 PMCID: PMC8971413 DOI: 10.1038/s41598-022-09403-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Mendelian variants can determine both insemination success and neonatal survival and thus influence fertility and rearing success of cattle. We present 24 deficient homozygous haplotype regions in the Holstein population of Switzerland and provide an overview of the previously identified haplotypes in the global Holstein breed. This study encompasses massive genotyping, whole-genome sequencing (WGS) and phenotype association analyses. We performed haplotype screenings on almost 53 thousand genotyped animals including 114 k SNP data with two different approaches. We revealed significant haplotype associations to several survival, birth and fertility traits. Within haplotype regions, we mined WGS data of hundreds of bovine genomes for candidate causal variants, which were subsequently evaluated by using a custom genotyping array in several thousand breeding animals. With this approach, we confirmed the known deleterious SMC2:p.Phe1135Ser missense variant associated with Holstein haplotype (HH) 3. For two previously reported deficient homozygous haplotypes that show negative associations to female fertility traits, we propose candidate causative loss-of-function variants: the HH13-related KIR2DS1:p.Gln159* nonsense variant and the HH21-related NOTCH3:p.Cys44del deletion. In addition, we propose the RIOX1:p.Ala133_Glu142del deletion as well as the PCDH15:p.Leu867Val missense variant to explain the unexpected low number of homozygous haplotype carriers for HH25 and HH35, respectively. In conclusion, we demonstrate that with mining massive SNP data in combination with WGS data, we can map several haplotype regions and unravel novel recessive protein-changing variants segregating at frequencies of 1 to 5%. Our findings both confirm previously identified loci and expand the spectrum of undesired alleles impairing reproduction success in Holstein cattle, the world's most important dairy breed.
Collapse
Affiliation(s)
- Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | | | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
15
|
Candidate Genes in Bull Semen Production Traits: An Information Approach Review. Vet Sci 2022; 9:vetsci9040155. [PMID: 35448653 PMCID: PMC9028852 DOI: 10.3390/vetsci9040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Semen quality plays a crucial role in the successful implementation of breeding programs, especially where artificial insemination (AI) is practiced. Bulls with good semen traits have good fertility and can produce a volume of high semen per ejaculation. The aim of this review is to use an information approach to highlight candidate genes and their relation to bull semen production traits. The use of genome-wide association studies (GWAS) has been demonstrated to be successful in identifying genomic regions and individual variations associated with production traits. Studies have reported over 40 genes associated with semen traits using Illumina BeadChip single-nucleotide polymorphism (SNPs).
Collapse
|
16
|
Cai Z, Christensen OF, Lund MS, Ostersen T, Sahana G. Large-scale association study on daily weight gain in pigs reveals overlap of genetic factors for growth in humans. BMC Genomics 2022; 23:133. [PMID: 35168569 PMCID: PMC8845347 DOI: 10.1186/s12864-022-08373-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background Imputation from genotyping array to whole-genome sequence variants using resequencing of representative reference populations enhances our ability to map genetic factors affecting complex phenotypes in livestock species. The accumulation of knowledge about gene function in human and laboratory animals can provide substantial advantage for genomic research in livestock species. Results In this study, 201,388 pigs from three commercial Danish breeds genotyped with low to medium (8.5k to 70k) SNP arrays were imputed to whole genome sequence variants using a two-step approach. Both imputation steps achieved high accuracies, and in total this yielded 26,447,434 markers on 18 autosomes. The average estimated imputation accuracy of markers with minor allele frequency ≥ 0.05 was 0.94. To overcome the memory consumption of running genome-wide association study (GWAS) for each breed, we performed within-breed subpopulation GWAS then within-breed meta-analysis for average daily weight gain (ADG), followed by a multi-breed meta-analysis of GWAS summary statistics. We identified 15 quantitative trait loci (QTL). Our post-GWAS analysis strategy to prioritize of candidate genes including information like gene ontology, mammalian phenotype database, differential expression gene analysis of high and low feed efficiency pig and human GWAS catalog for height, obesity, and body mass index, we proposed MRAP2, LEPROT, PMAIP1, ENSSSCG00000036234, BMP2, ELFN1, LIG4 and FAM155A as the candidate genes with biological support for ADG in pigs. Conclusion Our post-GWAS analysis strategy helped to identify candidate genes not just by distance to the lead SNP but also by multiple sources of biological evidence. Besides, the identified QTL overlap with genes which are known for their association with human growth-related traits. The GWAS with this large data set showed the power to map the genetic factors associated with ADG in pigs and have added to our understanding of the genetics of growth across mammalian species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08373-3.
Collapse
Affiliation(s)
- Zexi Cai
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark.
| | | | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Tage Ostersen
- SEGES Danish Pig Research Centre, Agro Food Park 15, 8200, Aarhus N, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
17
|
Butler ML, Hartman AR, Bormann JM, Weaber RL, Grieger DM, Rolf MM. Genome-wide association study of beef bull semen attributes. BMC Genomics 2022; 23:74. [PMID: 35065600 PMCID: PMC8784002 DOI: 10.1186/s12864-021-08256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Cattle production is dependent upon fertility because it results in producing offspring to offset production costs. A number of semen attributes are believed to affect fertility and are frequently measured as part of routine breeding soundness exams or semen collection procedures. The objective of this study was to perform a single-step genome-wide association study (ssGWAS) for beef bull semen attributes. Beef bull fertility phenotypes including volume (VOL), concentration (CONC), number of spermatozoa (NSP), initial motility (IMot), post-thaw motility (PTMot), three-hour post-thaw motility (3HRPTMot), percentage of normal spermatozoa (%NORM), primary abnormalities (PRIM), and secondary abnormalities (SEC) were obtained from two artificial insemination (AI) centers. A total of 1819 Angus bulls with 50,624 collection records were used for ssGWAS. A five-generation pedigree was obtained from the American Angus Association and consisted of 6521 sires and 17,136 dams. Genotypes on 1163 bulls were also obtained from the American Angus Association and utilized in ssGWAS.
Results
A multi-trait animal model was used for the estimation of single nucleotide polymorphism (SNP) effects. Significant SNP were those with a -log10P-value threshold greater than 4.0. Volume, CONC, NSP, IMot, PTMot, 3HRPTMot, %NORM, PRIM, and SEC have five, three, six, seven, two, six, six, and two genome-wide significant SNP, respectively.
Conclusions
Several significant SNP were determined to be near or within quantitative trait loci (QTL) associated with beef bull semen attributes. In addition, genes associated with fertility were found to contain or be near the significant SNP found in the study. The results indicate there are regions of the genome that impact fertility, proving inclusion of genomic information into genetic evaluation should be advantageous for genetic improvement of male fertility traits.
Collapse
|
18
|
Crum TE, Schnabel RD, Decker JE, Taylor JF. Taurine and Indicine Haplotype Representation in Advanced Generation Individuals From Three American Breeds. Front Genet 2021; 12:758394. [PMID: 34733318 PMCID: PMC8558500 DOI: 10.3389/fgene.2021.758394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × ¼ Shorthorn × ¼ Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage.
Collapse
Affiliation(s)
- Tamar E Crum
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Demenkov PS, Oshchepkova ЕА, Demenkov PS, Ivanisenko TV, Ivanisenko VA. Prioritization of biological processes based on the reconstruction and analysis of associative gene networks describing the response of plants to adverse environmental factors. Vavilovskii Zhurnal Genet Selektsii 2021; 25:580-592. [PMID: 34723066 PMCID: PMC8543060 DOI: 10.18699/vj21.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Methods for prioritizing or ranking candidate genes according to their importance based on specif ic criteria
via the analysis of gene networks are widely used in biomedicine to search for genes associated with diseases and to
predict biomarkers, pharmacological targets and other clinically relevant molecules. These methods have also been
used in other f ields, particularly in crop production. This is largely due to the development of technologies to solve
problems in marker-oriented and genomic selection, which requires knowledge of the molecular genetic mechanisms
underlying the formation of agriculturally valuable traits. A new direction for the study of molecular genetic mechanisms
is the prioritization of biological processes based on the analysis of associative gene networks. Associative gene
networks are heterogeneous networks whose vertices can depict both molecular genetic objects (genes, proteins, metabolites,
etc.) and the higher-level factors (biological processes, diseases, external environmental factors, etc.) related
to regulatory, physicochemical or associative interactions. Using a previously developed method, biological processes
involved in plant responses to increased cadmium content, saline stress and drought conditions were prioritized according
to their degree of connection with the gene networks in the SOLANUM TUBEROSUM knowledge base. The
prioritization results indicate that fundamental processes, such as gene expression, post-translational modif ications,
protein degradation, programmed cell death, photosynthesis, signal transmission and stress response play important
roles in the common molecular genetic mechanisms for plant response to various adverse factors. On the other hand, a
group of processes related to the development of seeds (“seeding development”) was revealed to be drought specif ic,
while processes associated with ion transport (“ion transport”) were included in the list of responses specif ic to salt
stress and processes associated with the metabolism of lipids were found to be involved specif ically in the response to
cadmium.
Collapse
Affiliation(s)
- P S Demenkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - Е А Oshchepkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P S Demenkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - T V Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Ivanisenko
- Novosibirsk State University, Novosibirsk, Russiavosibirsk, Russia Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| |
Collapse
|
20
|
Klein SL, Yin T, Swalve HH, König S. Single-step genomic best linear unbiased predictor genetic parameter estimations and genome-wide associations for milk fatty acid profiles, interval from calving to first insemination, and ketosis in Holstein cattle. J Dairy Sci 2021; 104:10921-10933. [PMID: 34334206 DOI: 10.3168/jds.2021-20416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Milk fatty acids (FA) have been suggested as biomarkers for early-lactation metabolic diseases and for female fertility status. The aim of the present study was to infer associations between FA, the metabolic disorder ketosis (KET), and the interval from calving to first insemination (ICF) genetically and genomically. In this regard, we focused on a single-step genomic BLUP approach, allowing consideration of genotyped and ungenotyped cows simultaneously. The phenotypic data set considered 38,375 first-lactation Holstein cows, kept in 45 large-scale co-operator herds from 2 federal states in Germany. The calving years for these cows were from 2014 to 2017. Concentrations in milk from the first official milk recording test-day for saturated, unsaturated (UFA), monounsaturated (MUFA), polyunsaturated, palmitic, and stearic (C18:0) FA were determined via Fourier-transform infrared spectroscopy. Ketosis was defined as a binary trait according to a veterinarian diagnosis key, considering diagnoses within a 6-wk interval after calving. A subset of 9,786 cows was genotyped for 40,989 SNP markers. Variance components and heritabilities for all Gaussian distributed FA and for ICF, and for binary KET were estimated by applying single-step genomic BLUP single-trait linear and threshold models, respectively. Genetic correlations were estimated in series of bivariate runs. Genomic breeding values for the single-step genomic BLUP estimations were dependent traits in single-step GWAS. Heritabilities for FA were moderate in the range from 0.09 to 0.20 (standard error = 0.02-0.03), but quite small for ICF (0.08, standard error = 0.01) and for KET (0.05 on the underlying liability scale, posterior standard deviation = 0.02). Genetic correlations between KET and UFA, MUFA, and C18:0 were large (0.74 to 0.85, posterior standard deviation = 0.14-0.19), and low positive between KET and ICF (0.17, posterior standard deviation = 0.22). Genetic correlations between UFA, MUFA, and C18:0 with ICF ranged from 0.34 to 0.46 (standard error = 0.12). In single-step GWAS, we identified a large proportion of overlapping genomic regions for the different FA, especially for UFA and MUFA, and for saturated and palmitic FA. One identical significantly associated SNP was identified for C18:0 and KET on BTA 15. However, there was no genomic segment simultaneously significantly affecting all trait categories ICF, FA, and KET. Nevertheless, some of the annotated potential candidate genes DGKA, IGFBP4, and CXCL8 play a role in lipid metabolism and fertility mechanisms, and influence production diseases in early lactation. Genetic and genomic associations indicate that Fourier-transform infrared spectroscopy FA concentrations in milk from the first official test-day are valuable predictors for KET and for ICF.
Collapse
Affiliation(s)
- S-L Klein
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - H H Swalve
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
21
|
Fertility-Associated Polymorphism within Bovine ITGβ5 and Its Significant Correlations with Ovarian and Luteal Traits. Animals (Basel) 2021; 11:ani11061579. [PMID: 34071201 PMCID: PMC8228251 DOI: 10.3390/ani11061579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The fertility of bovines is essential for cattle husbandry. ITGβ5, which is suggested to be closely related to fertility, is known to mediate cell adhesion and affect a variety of cellular activities. To investigate the relationship between the ITGβ5 gene and the fertility of bovines, 696 ovarian samples were collected and six potential indel (insertion/deletion) within ITGβ5 were analysed, from which a deletion mutation was found to be polymorphic. The genotype frequency and allele frequency of this locus in the investigated population were calculated and the population genetic parameters analyzed. In addition, this locus was found to be significantly correlated with ovarian width and corpus luteum diameter. Considering the importance of ovary and corpus luteum in reproduction, it is tempting to speculate the crucial effects of ITGβ5 on bovine fertility, which still need further validation. The results of our study might provide a theoretical basis for future breeding to enhance bovine reproduction. Abstract There is an urgent need to improve bovine fertility, and molecular marker-assisted selection (MAS) can accelerate this process. Genome-wide association studies suggest that Integrin β5 (ITGβ5) might affect fertility in bovines. As a member of the integrins family, ITGβ5 can bind to the extracellular matrix and mediate various cellular processes. In our study, primers spanning six potential insertion/deletion (indel) polymorphisms within the ITGβ5 gene were designed and 696 ovary samples from different individuals, the vast majority not in oestrum were collected for genetic variation detection. A deletion locus, rs522759246, namely P1-D13-bp, was found to be polymorphic. The allele D frequency was 0.152 and the polymorphism information content (PIC) value was 0.224, indicating a low-degree PIC. This locus did not follow the Hardy–Weinberg equilibrium (p = 1.200E-23). Importantly, associations between P1-D13-bp and ovarian morphological traits were established. Polymorphisms of this locus had significant correlations with ovarian width (p = 0.015). The corpus luteum is also linked to fertility and P1-D13-bp was significantly correlated with corpus luteum diameter (p = 0.005). In conclusion, an indel mutation within the bovine ITGβ5 gene was identified, which was significantly associated with several ovarian and luteal traits.
Collapse
|
22
|
Macciotta NPP, Colli L, Cesarani A, Ajmone-Marsan P, Low WY, Tearle R, Williams JL. The distribution of runs of homozygosity in the genome of river and swamp buffaloes reveals a history of adaptation, migration and crossbred events. Genet Sel Evol 2021; 53:20. [PMID: 33639853 PMCID: PMC7912491 DOI: 10.1186/s12711-021-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Water buffalo is one of the most important livestock species in the world. Two types of water buffalo exist: river buffalo (Bubalus bubalis bubalis) and swamp buffalo (Bubalus bubalis carabanensis). The buffalo genome has been recently sequenced, and thus a new 90 K single nucleotide polymorphism (SNP) bead chip has been developed. In this study, we investigated the genomic population structure and the level of inbreeding of 185 river and 153 swamp buffaloes using runs of homozygosity (ROH). Analyses were carried out jointly and separately for the two buffalo types. Results The SNP bead chip detected in swamp about one-third of the SNPs identified in the river type. In total, 18,116 ROH were detected in the combined data set (17,784 SNPs), and 16,251 of these were unique. ROH were present in both buffalo types mostly detected (~ 59%) in swamp buffalo. The number of ROH per animal was larger and genomic inbreeding was higher in swamp than river buffalo. In the separated datasets (46,891 and 17,690 SNPs for river and swamp type, respectively), 19,760 and 10,581 ROH were found in river and swamp, respectively. The genes that map to the ROH islands are associated with the adaptation to the environment, fitness traits and reproduction. Conclusions Analysis of ROH features in the genome of the two water buffalo types allowed their genomic characterization and highlighted differences between buffalo types and between breeds. A large ROH island on chromosome 2 was shared between river and swamp buffaloes and contained genes that are involved in environmental adaptation and reproduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00616-3.
Collapse
Affiliation(s)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca sulla Biodiversità e sul DNA Antico-BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italia. .,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca Nutrigenomica e Proteomica-PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Wai Y Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| |
Collapse
|
23
|
da Cruz AS, Silva DC, Minasi LB, de Farias Teixeira LK, Rodrigues FM, da Silva CC, do Carmo AS, da Silva MVGB, Utsunomiya YT, Garcia JF, da Cruz AD. Single-Nucleotide Polymorphism Variations Associated With Specific Genes Putatively Identified Enhanced Genetic Predisposition for 305-Day Milk Yield in the Girolando Crossbreed. Front Genet 2021; 11:573344. [PMID: 33584786 PMCID: PMC7876550 DOI: 10.3389/fgene.2020.573344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
Milk production phenotypes are the main focus of genetic selection in dairy herds, and although there are many genes identified as related to the biology of these traits in pure breeds, little is known about crossbreed animals. This study aimed to identify potential genes associated with the 305-day milk yield in 337 crossbreed Gir × Holstein (Girolando) animals. Milk production records were genotyped for 45,613 single-nucleotide polymorphisms (SNPs). This dataset was used for a genome-wide association study (GWAS) using the 305-day milk yield adjusted for the fixed effects of herd and year and linear and quadratic effects of age at calving (in days) and calving factor averaged per animal. Genes within the significant SNPs were retrieved from the Bos taurus ARS-UCD1.2 assembly (bosTau9) for gene ontology analysis. In summary, the GWAS identified 52 SNPs associated [p ≤ 10–4, false discovery rate (FDR) = 8.77%] with milk production, including NUB1 and SLC24A2, which were previously described as related to milk production traits in cattle. The results suggest that SNPs associated mainly with NUB1 and SLC24A2 could be useful to understand milk production in Girolando and used as predictive markers for selecting genetic predisposition for milk yield in Girolando.
Collapse
Affiliation(s)
- Alex Silva da Cruz
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Danilo Conrado Silva
- Curso de Graduação em Medicina Veterinária, Instituto Acadêmico de Ciências Agrárias e Sustentabilidade, Universidade Estadual de Goiás, São Luís de Montes Belos, Brazil
| | - Lysa Bernardes Minasi
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Larissa Kamídia de Farias Teixeira
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Flávia Melo Rodrigues
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Claudio Carlos da Silva
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Adriana Santana do Carmo
- Escola de Veterinária e Zootecnia, Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Yuri Tani Utsunomiya
- Departamento de Apoio a Produção e Saúde Animal, Faculdade de Medicina Veterinária, Universidade Estadual Paulista Júlio de Mesquita Filho, Araçatuba, Brazil
| | - José Fernando Garcia
- Departamento de Apoio a Produção e Saúde Animal, Faculdade de Medicina Veterinária, Universidade Estadual Paulista Júlio de Mesquita Filho, Araçatuba, Brazil
| | - Aparecido Divino da Cruz
- Mestrado em Genética, Núcleo de Pesquisas Replicon, Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| |
Collapse
|
24
|
Cai Z, Sarup P, Ostersen T, Nielsen B, Fredholm M, Karlskov-Mortensen P, Sørensen P, Jensen J, Guldbrandtsen B, Lund MS, Christensen OF, Sahana G. Genomic diversity revealed by whole-genome sequencing in three Danish commercial pig breeds. J Anim Sci 2020; 98:5873883. [PMID: 32687196 DOI: 10.1093/jas/skaa229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 01/04/2023] Open
Abstract
Whole-genome sequencing of 217 animals from three Danish commercial pig breeds (Duroc, Landrace [LL], and Yorkshire [YY]) was performed. Twenty-six million single-nucleotide polymorphisms (SNPs) and 8 million insertions or deletions (indels) were uncovered. Among the SNPs, 493,099 variants were located in coding sequences, and 29,430 were predicted to have a high functional impact such as gain or loss of stop codon. Using the whole-genome sequence dataset as the reference, the imputation accuracy for pigs genotyped with high-density SNP chips was examined. The overall average imputation accuracy for all biallelic variants (SNP and indel) was 0.69, while it was 0.83 for variants with minor allele frequency > 0.1. This study provides whole-genome reference data to impute SNP chip-genotyped animals for further studies to fine map quantitative trait loci as well as improving the prediction accuracy in genomic selection. Signatures of selection were identified both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during breed development or subsequent divergent selection. However, the fixation indices did not indicate a strong divergence among these three breeds. In LL and YY, the integrated haplotype score identified genomic regions under recent selection. These regions contained genes for olfactory receptors and oxidoreductases. Olfactory receptor genes that might have played a major role in the domestication were previously reported to have been under selection in several species including cattle and swine.
Collapse
Affiliation(s)
- Zexi Cai
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Pernille Sarup
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Tage Ostersen
- SEGES Danish Pig Research Centre, Copenhagen, Denmark
| | | | - Merete Fredholm
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Just Jensen
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Ole Fredslund Christensen
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
25
|
Khan MZ, Khan A, Xiao J, Ma Y, Ma J, Gao J, Cao Z. Role of the JAK-STAT Pathway in Bovine Mastitis and Milk Production. Animals (Basel) 2020; 10:ani10112107. [PMID: 33202860 PMCID: PMC7697124 DOI: 10.3390/ani10112107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The cytokine-activated Janus kinase (JAK)—signal transducer and activator of transcription (STAT) pathway has an important role in the regulation of immunity and inflammation. In addition, the signaling of this pathway has been reported to be associated with mammary gland development and milk production. Because of such important functions, the JAK-STAT pathway has been widely targeted in both human and animal diseases as a therapeutic agent. Recently, the JAK2, STATs, and inhibitors of the JAK-STAT pathway, especially cytokine signaling suppressors (SOCSs), have been reported to be associated with milk production and mastitis-resistance phenotypic traits in dairy cattle. Thus, in the current review, we attempt to overview the development of the JAK-STAT pathway role in bovine mastitis and milk production. Abstract The cytokine-activated Janus kinase (JAK)—signal transducer and activator of transcription (STAT) pathway is a sequence of communications between proteins in a cell, and it is associated with various processes such as cell division, apoptosis, mammary gland development, lactation, anti-inflammation, and immunity. The pathway is involved in transferring information from receptors on the cell surface to the cell nucleus, resulting in the regulation of genes through transcription. The Janus kinase 2 (JAK2), signal transducer and activator of transcription A and B (STAT5 A & B), STAT1, and cytokine signaling suppressor 3 (SOCS3) are the key members of the JAK-STAT pathway. Interestingly, prolactin (Prl) also uses the JAK-STAT pathway to regulate milk production traits in dairy cattle. The activation of JAK2 and STATs genes has a critical role in milk production and mastitis resistance. The upregulation of SOCS3 in bovine mammary epithelial cells inhibits the activation of JAK2 and STATs genes, which promotes mastitis development and reduces the lactational performance of dairy cattle. In the current review, we highlight the recent development in the knowledge of JAK-STAT, which will enhance our ability to devise therapeutic strategies for bovine mastitis control. Furthermore, the review also explores the role of the JAK-STAT pathway in the regulation of milk production in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (Y.M.); (J.M.)
- Correspondence: ; Tel.: +86-10-62733746
| |
Collapse
|
26
|
Stolpovsky YA, Piskunov AK, Svishcheva GR. Genomic Selection. I: Latest Trends and Possible Ways of Development. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Li J, Shen C, Zhang K, Niu Z, Liu Z, Zhang S, Wang Y, Lan X. Polymorphic variants of bovine ADCY5 gene identified in GWAS analysis were significantly associated with ovarian morphological related traits. Gene 2020; 766:145158. [PMID: 32949694 DOI: 10.1016/j.gene.2020.145158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The reproductive performance (e.g. fertility) of dairy cows, which declined over past few decades due to the intense and intensive selection, needs to be improved. Previous genome-wide association study (GWAS) of female Holstein screened the Adenylate cyclase 5 (ADCY5) as the candidate gene for cow fertility. As a member of the adenylyl cyclases family, adenylate cyclase 5 (ADCY5) is famous for regulating extrapyramidal motor system related various neuropsychiatric diseases, and its genetic variant is reported to associate with lower birth and placenta weight which leads to asymmetric fetal growth restriction. It was hypothesized that ADCY5 may affect the fertility of cows by regulating the processes of ovarian development. Herein, genomic DNA from 768 ovaries samples of healthy unrelated Holstein cow were used to screen potential insertion/deletion (indel) mutations using eight pairs of primers, and we found three novel polymorphic indel variants, namely, rs385624978 (P3-D11-bp), rs433028962 (P5-I19-bp) and rs382393457 (P8-D19-bp). The minor allelic frequencies (MAF) of P3-D11-bp, P5-I19-bp and P8-D19-bp loci were 0.188, 0.365 and 0.06, respectively, and there were 7 different haplotypes. Additionally, linkage disequilibrium analysis demonstrated no linkage among them. Importantly, P3-D11-bp locus was significantly related to both ovarian width (P = 1.0E-6) and corpus luteum diameter (P = 0.015); P5-I19-bp locus had a significant relation with corpus albicans diameter (P = 0.030) and ovaries with mutational homozygous genotype produced a superior corpus albicans diameter than those with other genotypes. Briefly, three novel indel mutations of bovine ADCY5 gene were identified and two of them were uncovered to be significantly correlated with ovarian phenotypic traits or corpus luteum or albicans traits. These findings contributed to the application of molecular marker-assisted selection (MAS) in improving female fertility in cattle, which could accelerate the development of the cattle industry.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chenglong Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kaijuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhihan Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhengqing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shaoli Zhang
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xianyong Lan
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
28
|
Kiyici JM, Akyüz B, Kaliber M, Arslan K, Aksel EG, Cinar MU. Association of GH, STAT5A, MYF5 gene polymorphisms with milk somatic cell count, EC and pH levels of Holstein dairy cattle. Anim Biotechnol 2020; 33:401-407. [PMID: 32749185 DOI: 10.1080/10495398.2020.1800483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study was conducted to ivnestigate the associations of GH-AluI, STAT5A-AvaI and MYF5-TaqI gene polymorphisms with milk somatic cell count (SCC), electrical conductivity (EC) and pH levels in Holstein dairy cows. For this purpose, 167 blood and 1670 milk samples of 167 Holstein cows in their 2nd lactation were used. There were significant relationships between GH-AluI genotypes and milk EC (p < 0.001) and between STAT5A-AvaI genotypes and milk EC (p = 0.007), but there were not any significant relationships between MYF5 gene polymorphism and the investigated traits (p > 0.05). The greatest EC values were observed in GH-AluI-LV and STAT5A-AvaI-TT-genotyped individuals. Just because of association of EC with mastitis, it was concluded that present GH-AluI and STAT5A-AvaI polymorphisms could be used in further studies to be conducted to improve mastitis resistance and milk quality traits of Holstein dairy cows.
Collapse
Affiliation(s)
- Jale Metin Kiyici
- Faculty of Agriculture, Department of Animal Science, Erciyes University, Kayseri, Turkey
| | - Bilal Akyüz
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Mahmut Kaliber
- Faculty of Agriculture, Department of Animal Science, Erciyes University, Kayseri, Turkey
| | - Korhan Arslan
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Mehmet Ulaş Cinar
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey.,Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
29
|
Genome-Wide Association Study and Pathway Analysis for Female Fertility Traits in Iranian Holstein Cattle. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
Female fertility is an important trait that contributes to cow’s profitability and it can be improved by genomic information. The objective of this study was to detect genomic regions and variants affecting fertility traits in Iranian Holstein cattle. A data set comprised of female fertility records and 3,452,730 pedigree information from Iranian Holstein cattle were used to predict the breeding values, which were then employed to estimate the de-regressed proofs (DRP) of genotyped animals. A total of 878 animals with DRP records and 54k SNP markers were utilized in the genome-wide association study (GWAS). The GWAS was performed using a linear regression model with SNP genotype as a linear covariate. The results showed that an SNP on BTA19, ARS-BFGL-NGS-33473, was the most significant SNP associated with days from calving to first service. In total, [69] significant SNPs were located within 27 candidate genes. Novel potential candidate genes include OSTN, DPP6, EphA5, CADPS2, Rfc1, ADGRB3, Myo3a, C10H14orf93, KIAA1217, RBPJL, SLC18A2, GARNL3, NCALD, ASPH, ASIC2, OR3A1, CHRNB4, CACNA2D2, DLGAP1, GRIN2A and ME3. These genes are involved in different pathways relevant to female fertility and other characteristics in mammals. Gene set enrichment analysis showed that thirteen GO terms had significant overrepresentation of genes statistically associated with female fertility traits. The results of network analysis identified CCNB1 gene as a hub gene in the progesterone-mediated oocyte maturation pathway, significantly associated with age at first calving. The candidate genes identified in this study can be utilized in genomic tests to improve reproductive performance in Holstein cattle.
Collapse
|