1
|
Xing Y, Zhang X, Feng Z, Ni W, Xie H, Guan Y, Zhu Z, Ge S, Jiang Y. Optimizing 'Red Fuji' apple quality: Auxin-mediated calcium distribution via fruit-stalk in bagging practices. Food Chem 2025; 463:141126. [PMID: 39276559 DOI: 10.1016/j.foodchem.2024.141126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
In apples, a bottleneck effect in calcium (Ca) transport within fruit stalk has been observed. To elucidate that how auxin affects Ca forms and distribution in the apple fruit stalk, we investigated the effects of different concentrations of auxin treatment (0, 10, 20, and 30 mg·L-1) on Ca content, forms, distribution, and fruit quality during later stages of fruit expansion. The results showed that auxin treatment led to a dramatic reduction in total Ca content in stalk, while an approximately 30 % increase in fruit. Furthermore, auxin treatment effectively enhanced the functionality of xylem vessels in vascular bundles of the stalk in bagged apples. Finally, TOPSIS method was used to assess fruit quality, with treatments ranked as follows: IAA20 > NAA20 > IAA30 > IAA10 > CK > NPA. The findings lay a foundation for further studies on the bottleneck in Ca transport within stalk, uneven distribution of Ca in fruit, and provide insights into Ca utilization efficiency in bagged apples.
Collapse
Affiliation(s)
- Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Xin Zhang
- 421 Lab, Xinlianxin hemical Group Co., LTD, Henan, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Hongmei Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China; Apple technology innovation center of Shandong Province, Tai'an 271018, Shandong, China.
| |
Collapse
|
2
|
Yan R, Zhang T, Wang Y, Wang W, Sharif R, Liu J, Dong Q, Luan H, Zhang X, Li H, Guo S, Qi G, Jia P. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108707. [PMID: 38763002 DOI: 10.1016/j.plaphy.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.
Collapse
Affiliation(s)
- Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tianle Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
3
|
Sun Z, Zou Y, Xie C, Han L, Zheng X, Tian Y, Ma C, Liu X, Wang C. Brassinolide improves the tolerance of Malus hupehensis to alkaline stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1032646. [PMID: 36507405 PMCID: PMC9731795 DOI: 10.3389/fpls.2022.1032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Malus hupehensis is one of the most widely used apple rootstocks in china but is severely damaged by alkaline soil. Alkaline stress can cause more serious harmful effects on apple plants than salt stress because it also induces high pH stress except for ion toxicity, osmotic stress, and oxidative damage. Brassinolide (BL) plays important roles in plant responses to salt stress. However, its role and function mechanism in apple plants in response to alkaline stress has never been reported. This study showed that applying exogenous 0.2 mg/L BL significantly enhanced the resistance of M. hupehensis seedlings to alkaline stress. The main functional mechanisms were also explored. First, exogenous BL could decrease the rhizosphere pH and promote Ca2+ and Mg2+ absorption by regulating malic acid and citric acid contents and increasing H+ excretion. Second, exogenous BL could alleviate ion toxicity caused by alkaline stress through enhancing Na+ efflux and inhibiting K+ expel and vacuole compartmentalization. Last, exogenous BL could balance osmotic stress by accumulating proline and reduce oxidative damage through increasing the activities of antioxidant enzymes and antioxidants contents. This study provides an important theoretical basis for further analyzing the mechanism of exogenous BL in improving alkaline tolerance of apple plants.
Collapse
Affiliation(s)
- Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yawen Zou
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Cheng Xie
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Lei Han
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| |
Collapse
|
4
|
Shi C, Liu L, Wei Z, Liu J, Li M, Yan Z, Gao D. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes by Metabolomics and Transcriptomics in Sister Line Apple Cultivars. Life (Basel) 2022; 12:life12081246. [PMID: 36013425 PMCID: PMC9410521 DOI: 10.3390/life12081246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
Red coloration in apples, an important quality trait, is primarily attributed to the accumulation of anthocyanins. Centuries of breeding have produced a wide variety of apples with different levels of anthocyanins in response to genetic and environmental stimuli. The Huashuo apple shows a much darker red color than its sister line, Huarui. Thirteen different anthocyanins were detected in Huashuo and Huarui apples, of which ten were significantly more abundant in Huashuo apples, confirming that the color difference is indeed attributed to high anthocyanins accumulation rather than the types of anthocyanins. In particular, the contents of cyanidin 3-O-galactoside levels were highest among anthocyanins in both cultivars, reaching >5000 μg·g−1 at the last color transition stage in Huashuo apples, while only >3000 μg·g−1 in Huarui apples. Moreover, the expression of most structural genes, especially DFR, CHI, and 4CL associated with anthocyanin synthesis, were higher in Huashuo apples than in Huarui apples. Combined transcriptomics, metabolomics, and qRT-PCR analysis revealed that six transcription factors from the MYB and bZIP transcription factor families likely play key roles in the dark coloring of Huashuo apples. These results provide deeper insights into apple coloring and suggest a series of candidate genes for breeding anthocyanin-rich cultivars.
Collapse
|
5
|
Shao D, Zhu QH, Liang Q, Wang X, Li Y, Sun Y, Zhang X, Liu F, Xue F, Sun J. Transcriptome Analysis Reveals Differences in Anthocyanin Accumulation in Cotton ( Gossypium hirsutum L.) Induced by Red and Blue Light. FRONTIERS IN PLANT SCIENCE 2022; 13:788828. [PMID: 35432402 PMCID: PMC9009209 DOI: 10.3389/fpls.2022.788828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Many factors, including illumination, affect anthocyanin biosynthesis and accumulation in plants. light quality is the key factor affecting the process of photoinduced anthocyanin biosynthesis and accumulation. We observed that the red color of the Upland cotton accession Huiyuan with the R1 mutation turned to normal green color under light-emitting diodes (LEDs), which inspired us to investigate the effect of red and blue lights on the biosynthesis and accumulation of anthocyanins. We found that both red and blue lights elevated accumulation of anthocyanins. Comparative transcriptomic analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA, revealed that genes differentially expressed under different light conditions were enriched with the pathways of circadian rhythm, phenylpropanoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis. Not surprisingly, all the major structural genes related to biosynthesis of anthocyanins, including the key regulatory MYB transcription factor (GhPAP1D) and anthocyanin transporter (GhGSTF12), were induced by red or blue light treatment. However, LARs and MATEs related to biosynthesis of proanthocyanidins were more significantly up-regulated by red light radiation than by blue light radiation. Vice versa, the accumulation of anthocyanins under red light was not as high as that under blue light. In addition, we demonstrated a potential role of GhHY5, a key regulator in plant circadian rhythms, in regulation of anthocyanin accumulation, which could be achieved via interaction with GhPAP1D. Together, these results indicate different effect of red and blue lights on biosynthesis and accumulation of anthocyanins and a potential module including GhHY5 and GhPAP1D in regulation of anthocyanin accumulation in cotton. These results also suggest that the substrates responsible the synthesis of anthocyanins under blue light is diverted to biosynthesis of proanthocyanidin under red light.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Qian-hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
Shan C, Zhao L, Shi Y, Zhang S, Wu H, Yang M, Yang Q, Wu J. Transcriptome analyses reveal the expression profile of genes related to lignan biosynthesis in Anthriscus sylvestris L. Hoffm. Gen. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:333-346. [PMID: 35400889 PMCID: PMC8943078 DOI: 10.1007/s12298-022-01156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Anthriscus sylvestris L. Hoffm. Gen (A. sylvestris) is a perennial herb widely used for antitussive and diuretic purposes in traditional Korean and Chinese medicine. Lignans are critical secondary metabolites with widely pharmacological activities in A. sylvestris. Using transcriptome data of A. sylvestris, we identified genes related to lignan biosynthesis. In all, 123,852 unigenes were obtained from the flowers, leaves, roots, and stems of A. sylvestris with the Illumina HiSeq 4000 platform. The average length of unigenes was 1,123 bp and 91,217 (73.65%) of them were annotated in public databases. Differentially expressed genes and root-specific genes were analyzed between roots and the other three tissue types by comparing gene expression profiles. Specifically, the key enzyme genes involved in lignan biosynthesis were identified and analyzed. The expression levels of some of these genes were highest in the roots, consistent with the accumulation of deoxypodophyllotoxin. These expression levels were experimentally verified via quantitative real-time polymerase chain reaction (qRT-PCR). This research provides valuable information on the transcriptome data of A. sylvestris and the identification of candidate genes associated with the biosynthesis of lignans, laying the foundation for further research on genomics in A. sylvestris and related species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01156-w.
Collapse
Affiliation(s)
- Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Huan Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Mo Yang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Qingshan Yang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230012 China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230012 China
| |
Collapse
|
7
|
Su X, Bai C, Wang X, Liu H, Zhu Y, Wei L, Cui Z, Yao L. Potassium Sulfate Spray Promotes Fruit Color Preference via Regulation of Pigment Profile in Litchi Pericarp. FRONTIERS IN PLANT SCIENCE 2022; 13:925609. [PMID: 35774808 PMCID: PMC9237530 DOI: 10.3389/fpls.2022.925609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 05/17/2023]
Abstract
Fruit color is a decisive factor in consumers' preference. The bright red color of litchi fruit is associated with its high anthocyanin; however, poor fruit coloration is a major obstacle in litchi plantation. The role of spraying mineral nutrient salts such as KH2PO4, KCl, K2SO4, and MgSO4 on litchi pericarp pigmentation was examined by a field trial, and the relation between human visual color preference versus pericarp pigments and hue-saturation-brightness (HSB) color parameters was investigated. K2SO4-sprayed litchi fruit gained the maximum popularity for its attractive red color. Spray of K and Mg salts decreased the buildup of yellowish pigments, but increased the accumulation of red ones, with the exception of slightly reduced anthocyanins in KH2PO4-sprayed fruit, by regulating the activities of enzymes involved in anthocyanidin metabolism and decreasing pericarp pH, leading to varied pericarp pigment composition. K2SO4 spray generated the highest percentage of cyanidin-3-glucoside over all pigments in pericarp. Correlation analysis shows the percent of cyanidin-3-glucoside, superior to anthocyanin concentration and HSB color parameters, was a reliable indicator to fruit color preference. This work demonstrates that spray of suitable mineral salt can regulate pericarp pigment profile, and is an effective approach to improve fruit pigmentation and promote its popularity.
Collapse
Affiliation(s)
- Xuexia Su
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
- *Correspondence: Cuihua Bai,
| | - Xianghe Wang
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Huilin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Yongcong Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Leping Wei
- College of Arts, South China Agricultural University, Guangzhou, China
| | - Zixiao Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
- Lixian Yao,
| |
Collapse
|
8
|
Ma C, Bian C, Liu W, Sun Z, Xi X, Guo D, Liu X, Tian Y, Wang C, Zheng X. Strigolactone alleviates the salinity-alkalinity stress of Malus hupehensis seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:901782. [PMID: 35937337 PMCID: PMC9354494 DOI: 10.3389/fpls.2022.901782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 05/22/2023]
Abstract
Salinity-alkalinity stress can remarkably affect the growth and yield of apple. Strigolactone (SL) is a class of carotenoid-derived compounds that functions in stress tolerance. However, the effects and mechanism of exogenous SL on the salinity-alkalinity tolerance of apple seedlings remain unclear. Here, we assessed the effect of SL on the salinity-alkalinity stress response of Malus hupehensis seedlings. Results showed that treatment with 100 μM exogenous SL analog (GR24) could effectively alleviate salinity-alkalinity stress with higher chlorophyll content and photosynthetic rate than the apple seedlings without GR24 treatment. The mechanism was also explored: First, exogenous GR24 regulated the expression of Na+/K+ transporter genes and decreased the ratio of Na+/K+ in the cytoplasm to maintain ion homeostasis. Second, exogenous GR24 increased the enzyme activities of superoxide, peroxidase and catalase, thereby eliminating reactive oxygen species production. Third, exogenous GR24 alleviated the high pH stress by regulating the expression of H+-ATPase genes and inducing the production of organic acid. Last, exogenous GR24 application increased endogenous acetic acid, abscisic acid, zeatin riboside, and GA3 contents for co-responding to salinity-alkalinity stress indirectly. This study will provide important theoretical basis for analyzing the mechanism of exogenous GR24 in improving salinity-alkalinity tolerance of apple.
Collapse
Affiliation(s)
- Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Chuanjie Bian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Wenjie Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiangli Xi
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Dianming Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
- *Correspondence: Xiaodong Zheng,
| |
Collapse
|
9
|
Ma C, Wang X, Yu M, Zheng X, Sun Z, Liu X, Tian Y, Wang C. PpMYB36 Encodes a MYB-Type Transcription Factor That Is Involved in Russet Skin Coloration in Pear ( Pyrus pyrifolia). FRONTIERS IN PLANT SCIENCE 2021; 12:776816. [PMID: 34819942 PMCID: PMC8606883 DOI: 10.3389/fpls.2021.776816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Fruit color is one of the most important external qualities of pear (Pyrus pyrifolia) fruits. However, the mechanisms that control russet skin coloration in pear have not been well characterized. Here, we explored the molecular mechanisms that determine the russet skin trait in pear using the F1 population derived from a cross between russet skin ('Niitaka') and non-russet skin ('Dangshansu') cultivars. Pigment measurements indicated that the lignin content in the skin of the russet pear fruits was greater than that in the non-russet pear skin. Genetic analysis revealed that the phenotype of the russet skin pear is associated with an allele of the PpRus gene. Using bulked segregant analysis combined with the genome sequencing (BSA-seq), we identified two simple sequence repeat (SSR) marker loci linked with the russet-colored skin trait in pear. Linkage analysis showed that the PpRus locus maps to the scaffold NW_008988489.1: 53297-211921 on chromosome 8 in the pear genome. In the mapped region, the expression level of LOC103929640 was significantly increased in the russet skin pear and showed a correlation with the increase of lignin content during the ripening period. Genotyping results demonstrated that LOC103929640 encoding the transcription factor MYB36 is the causal gene for the russet skin trait in pear. Particularly, a W-box insertion at the PpMYB36 promoter of russet skin pears is essential for PpMYB36-mediated regulation of lignin accumulation and russet coloration in pear. Overall, these results show that PpMYB36 is involved in the regulation of russet skin trait in pear.
Collapse
Affiliation(s)
- Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Xu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Mengyuan Yu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| |
Collapse
|
10
|
Li S, Chen K, Grierson D. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 2021; 10:1136. [PMID: 34066675 PMCID: PMC8151651 DOI: 10.3390/cells10051136] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
This article focuses on the molecular and hormonal mechanisms underlying the control of fleshy fruit ripening and quality. Recent research on tomato shows that ethylene, acting through transcription factors, is responsible for the initiation of tomato ripening. Several other hormones, including abscisic acid (ABA), jasmonic acid (JA) and brassinosteroids (BR), promote ripening by upregulating ethylene biosynthesis genes in different fruits. Changes to histone marks and DNA methylation are associated with the activation of ripening genes and are necessary for ripening initiation. Light, detected by different photoreceptors and operating through ELONGATED HYPOCOTYL 5(HY5), also modulates ripening. Re-evaluation of the roles of 'master regulators' indicates that MADS-RIN, NAC-NOR, Nor-like1 and other MADS and NAC genes, together with ethylene, promote the full expression of genes required for further ethylene synthesis and change in colour, flavour, texture and progression of ripening. Several different types of non-coding RNAs are involved in regulating expression of ripening genes, but further clarification of their diverse mechanisms of action is required. We discuss a model that integrates the main hormonal and genetic regulatory interactions governing the ripening of tomato fruit and consider variations in ripening regulatory circuits that operate in other fruits.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
11
|
Ding T, Zhang R, Zhang H, Zhou Z, Liu C, Wu M, Wang H, Dong H, Liu J, Yao JL, Yan Z. Identification of gene co-expression networks and key genes regulating flavonoid accumulation in apple (Malus × domestica) fruit skin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110747. [PMID: 33568292 DOI: 10.1016/j.plantsci.2020.110747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Anthocyanin provides a red color for apple and health benefit for human. To better understand the molecular mechanisms of regulating apple color formation, we analyzed 27 transcriptomes of fruit skin from three cultivars 'Huashuo' (red-skinned), 'Hongcuibao' (red-skinned), and 'Golden Delicious' (yellow-skinned) at 0, 2, and 6 days after bag removal. Using pairwise comparisons and weighted gene co-expression network analyses (WGCNA), we constructed 17 co-expression modules. Among them, a specific module was negatively correlated to anthocyanin accumulation. The genes in the module are enriched in flavonoid biosynthesis pathways. These pathway genes were used to construct gene co-expression network of anthocyanin accumulation. Finally, a R2R3-MYB repressor designated MdMYB28 was identified as a key hub gene in the anthocyanin metabolism network. During the anthocyanin accumulation of apple fruit skin reaching a peak, MdMYB28 expression level was negatively correlated with the anthocyanin content. MdMYB28 was shown to directly bind to the promoter of MdMYB10 in yeast one-hybrid analyses. Over-expression of MdMYB28 decreased the anthocyanin biosynthesis in tobacco flower petals, suggesting that MdMYB28 acts as a negatively regulator of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Mengmeng Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Haiqing Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China
| | - Jihong Liu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China; The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
12
|
Ali MM, Anwar R, Yousef AF, Li B, Luvisi A, De Bellis L, Aprile A, Chen F. Influence of Bagging on the Development and Quality of Fruits. PLANTS (BASEL, SWITZERLAND) 2021; 10:358. [PMID: 33668522 PMCID: PMC7918571 DOI: 10.3390/plants10020358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Fruit quality is certainly influenced by biotic and abiotic factors, and a main quality attribute is the external appearance of the fruit. Various possible agronomical approaches are able to regulate the fruit microenvironment and, consequently, improve fruit quality and market value. Among these, fruit bagging has recently become an integral part of fruits' domestic and export markets in countries such as Japan, China, Korea Australia and the USA because it is a safe and eco-friendly technique to protect fruits from multiple stresses, preserving or improving the overall quality. Despite increasing global importance, the development of suitable bagging materials and, above all, their use in the field is quite laborious, so that serious efforts are required to enhance and standardize bagging material according to the need of the crops/fruits. This review provides information about the effects of bagging technique on the fruit aspect and texture, which are the main determinants of consumer choice.
Collapse
Affiliation(s)
- Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan;
| | - Raheel Anwar
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan;
| | - Ahmed F. Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
- Department of Horticulture, College of Agriculture, University of Al-Azhar (branch Assiut), Assiut 71524, Egypt
| | - Binqi Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
| | - Andrea Luvisi
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (A.L.); (A.A.)
| | - Luigi De Bellis
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (A.L.); (A.A.)
| | - Alessio Aprile
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (A.L.); (A.A.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
| |
Collapse
|
13
|
Chen Y, An X, Zhao D, Li E, Ma R, Li Z, Cheng C. Transcription profiles reveal sugar and hormone signaling pathways mediating tree branch architecture in apple (Malus domestica Borkh.) grafted on different rootstocks. PLoS One 2020; 15:e0236530. [PMID: 32706831 PMCID: PMC7380599 DOI: 10.1371/journal.pone.0236530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
Apple trees grafted on different rootstock types, including vigorous rootstock (VR), dwarfing interstock (DIR), and dwarfing self-rootstock (DSR), are widely planted in production, but the molecular determinants of tree branch architecture growth regulation induced by rootstocks are still not well known. In this study, the branch growth phenotypes of three combinations of ‘Fuji’ apple trees grafted on different rootstocks (VR: Malus baccata; DIR: Malus baccata/T337; DSR: T337) were investigated. The VR trees presented the biggest branch architecture. The results showed that the sugar content, sugar metabolism-related enzyme activities, and hormone content all presented obvious differences in the tender leaves and buds of apple trees grafted on these rootstocks. Transcriptomic profiles of the tender leaves adjacent to the top buds allowed us to identify genes that were potentially involved in signaling pathways that mediate the regulatory mechanisms underlying growth differences. In total, 3610 differentially expressed genes (DEGs) were identified through pairwise comparisons. The screened data suggested that sugar metabolism-related genes and complex hormone regulatory networks involved the auxin (IAA), cytokinin (CK), abscisic acid (ABA) and gibberellic acid (GA) pathways, as well as several transcription factors, participated in the complicated growth induction process. Overall, this study provides a framework for analysis of the molecular mechanisms underlying differential tree branch growth of apple trees grafted on different rootstocks.
Collapse
Affiliation(s)
- Yanhui Chen
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Xiuhong An
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Deying Zhao
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Enmao Li
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Renpeng Ma
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Zhuang Li
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
| | - Cungang Cheng
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Institute of Pomology, Chinese Academy of Agricultrual Sciences, Xingcheng, Liaoning, P. R. China
- * E-mail:
| |
Collapse
|
14
|
Liu C, Yao X, Li G, Huang L, Xie Z. Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. PeerJ 2020; 8:e8870. [PMID: 32411510 PMCID: PMC7207213 DOI: 10.7717/peerj.8870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Purple Broccoli (Brassica oleracea L. var italica) attracts growing attention as a functional food. Its purple coloration is due to high anthocyanin amounts. Light represents a critical parameter affecting anthocyanins biosynthesis. In this study, 'Purple Broccoli', a light-responding pigmentation cultivar, was assessed for exploring the mechanism underlying light-induced anthocyanin biosynthesis by RNA-Seq. Cyanidin, delphinidin and malvidin derivatives were detected in broccoli head samples. Shading assays and RNA-seq analysis identified the flower head as more critical organ compared with leaves. Anthocyanin levels were assessed at 0, 7 and 11 days, respectively, with further valuation by RNA-seq under head-shading and light conditions. RNA sequences were de novo assembled into 50,329 unigenes, of which 38,701 were annotated against four public protein databases. Cluster analysis demonstrated that anthocyanin/phenylpropanoid biosynthesis, photosynthesis, and flavonoid biosynthesis in cluster 8 were the main metabolic pathways regulated by light and had showed associations with flower head growth. A total of 2,400 unigenes showed differential expression between the light and head-shading groups in cluster 8, including 650 co-expressed, 373 specifically expressed under shading conditions and 1,377 specifically expressed under normal light. Digital gene expression (DGE) analysis demonstrated that light perception and the signal transducers CRY3 and HY5 may control anthocyanin accumulation. Following shading, 15 structural genes involved in anthocyanin biosynthesis were downregulated, including PAL, C4H, 4CL, CHS, CHI, F3H and DFR. Moreover, six BoMYB genes (BoMYB6-1, BoMYB6-2, BoMYB6-3, BoMYB6-4, BoMYBL2-1 and BoMYBL2-2) and three BobHLH genes (BoTT8_5-1, BoTT8_5-2 and BoEGL5-3) were critical transcription factors controlling anthocyanin accumulation under light conditions. Based on these data, a light-associated anthocyanin biosynthesis pathway in Broccoli was proposed. This information could help improve broccoli properties, providing novel insights into the molecular mechanisms underpinning light-associated anthocyanin production in purple vegetables.
Collapse
Affiliation(s)
- Chunqing Liu
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| | - Xueqin Yao
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| | - Guangqing Li
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| | - Lei Huang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhujie Xie
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| |
Collapse
|