1
|
Maxman G, van Marle-Köster E, Lashmar SF, Visser C. Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds. Trop Anim Health Prod 2024; 57:13. [PMID: 39729174 DOI: 10.1007/s11250-024-04265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.09 ± 12.82 (NGI) to 51.82 ± 21.01 (DRB), and the mean ROH length per breed ranged between 2.31 Mb (NGI) and 3.90 Mb (DRB). The smallest length categories i.e., ROH < 4 Mb were most frequent, indicating historic inbreeding effects for all breeds. The ROH based inbreeding coefficients (FROH) ranged between 0.033 ± 0.024 (NGI) and 0.081 ± 0.046 (DRB). Genes mapped to candidate regions were associated with immunity (ADAMTS12, LY96, WDPCP) and adaptation (FKBP4, CBFA2T3, TUBB3) in cattle and genes previously only reported for immunity in mice and human (EXOC3L1, MYO1G). The present study contributes to the understanding of the genetic mechanisms of adaptation, providing information for potential molecular application in genetic evaluation and selection programs.
Collapse
Affiliation(s)
- Gomo Maxman
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Este van Marle-Köster
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Carina Visser
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
3
|
Wei X, Li S, Yan H, Chen S, Li R, Zhang W, Chao S, Guo W, Li W, Ahmed Z, Lei C, Ma Z. Unraveling genomic diversity and positive selection signatures of Qaidam cattle through whole-genome re-sequencing. Anim Genet 2024; 55:362-376. [PMID: 38480515 DOI: 10.1111/age.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 05/04/2024]
Abstract
Qaidam cattle are a typical Chinese native breed inhabiting northwest China. They bear the characteristics of high cold and roughage tolerance, low-oxygen adaptability and good meat quality. To analyze the genetic diversity of Qaidam cattle, 60 samples were sequenced using whole-genome resequencing technology, along with 192 published sets of whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, North Chinese cattle breeds, East Asian taurine cattle, Eurasian taurine cattle and European taurine cattle as controls. It was found that Qaidam cattle have rich genetic diversity in Bos taurus, but the degree of inbreeding is also high, which needs further protection. The phylogenetic analysis, principal component analysis and ancestral component analysis showed that Qaidam cattle mainly originated from East Asian taurine cattle. Qaidam cattle had a closer genetic relationship with the North Chinese cattle breeds and the least differentiation from Mongolian cattle. Annotating the selection signals obtained by composite likelihood ratio, nucleotide diversity analysis, integrated haplotype score, genetic differentiation index, genetic diversity ratio and cross-population extended haplotype homozygosity methods, several genes associated with immunity, reproduction, meat, milk, growth and adaptation showed strong selection signals. In general, this study provides genetic evidence for understanding the germplasm characteristics of Qaidam cattle. At the same time, it lays a foundation for the scientific and reasonable protection and utilization of genetic resources of Chinese local cattle breeds, which has great theoretical and practical significance.
Collapse
Affiliation(s)
- Xudong Wei
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Shuang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huixuan Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shengmei Chen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Ruizhe Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Weizhong Zhang
- Golmud Animal Husbandry and Veterinary Station of Qinghai Province, Golmud, China
| | - Shengyu Chao
- Agro-Technical Extension and Service Center in Haixi Prefecture of Qinghai Province, Delingha, China
| | - Weixing Guo
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhijie Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| |
Collapse
|
4
|
Atashi H, Chen Y, Wilmot H, Vanderick S, Hubin X, Soyeurt H, Gengler N. Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows. J Dairy Sci 2023; 106:6299-6315. [PMID: 37479585 DOI: 10.3168/jds.2022-22432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (F.R.S.-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - H Soyeurt
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
5
|
Wang W, Zhang Y, Zhang X, Li C, Yuan L, Zhang D, Zhao Y, Li X, Cheng J, Lin C, Zhao L, Wang J, Xu D, Yue X, Li W, Wen X, Jiang Z, Ding X, Salekdeh GH, Li F. Heritability and recursive influence of host genetics on the rumen microbiota drive body weight variance in male Hu sheep lambs. MICROBIOME 2023; 11:197. [PMID: 37644504 PMCID: PMC10463499 DOI: 10.1186/s40168-023-01642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Heritable rumen microbiota is an important modulator of ruminant growth performance. However, no information exists to date on host genetics-rumen microbiota interactions and their association with phenotype in sheep. To solve this, we curated and analyzed whole-genome resequencing genotypes, 16S rumen-microbiota data, and longitudinal body weight (BW) phenotypes from 1150 sheep. RESULTS A variance component model indicated significant heritability of rumen microbial community diversity. Genome-wide association studies (GWAS) using microbial features as traits identified 411 loci-taxon significant associations (P < 10-8). We found a heritability of 39% for 180-day-old BW, while also the rumen microbiota likely played a significant role, explaining that 20% of the phenotypic variation. Microbiota-wide association studies (MWAS) and GWAS identified four marker genera (Bonferroni corrected P < 0.05) and five novel genetic variants (P < 10-8) that were significantly associated with BW. Integrative analysis identified the mediating role of marker genera in genotype influencing phenotype and unravelled that the same genetic markers have direct and indirect effects on sheep weight. CONCLUSIONS This study reveals a reciprocal interplay among host genetic variations, the rumen microbiota and the body weight traits of sheep. The information obtained provide insights into the diverse microbiota characteristics of rumen and may help in designing precision microbiota management strategies for controlling and manipulating sheep rumen microbiota to increase productivity. Video Abstract.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiuxiu Wen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University (WSU), Pullman, WA, 99164, USA
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | | | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
6
|
Adhikari M, Kantar MB, Longman RJ, Lee CN, Oshiro M, Caires K, He Y. Genome-wide association study for carcass weight in pasture-finished beef cattle in Hawai'i. Front Genet 2023; 14:1168150. [PMID: 37229195 PMCID: PMC10203587 DOI: 10.3389/fgene.2023.1168150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Genome-wide association studies (GWAS) have identified genetic markers for cattle production and reproduction traits. Several publications have reported Single Nucleotide Polymorphisms (SNPs) for carcass-related traits in cattle, but these studies were rarely conducted in pasture-finished beef cattle. Hawai'i, however, has a diverse climate, and 100% of its beef cattle are pasture-fed. Methods: Blood samples were collected from 400 cattle raised in Hawai'i islands at the commercial harvest facility. Genomic DNA was isolated, and 352 high-quality samples were genotyped using the Neogen GGP Bovine 100 K BeadChip. SNPs that did not meet the quality control standards were removed using PLINK 1.9, and 85 k high-quality SNPs from 351 cattle were used for association mapping with carcass weight using GAPIT (Version 3.0) in R 4.2. Four models were used for the GWAS analysis: General Linear Model (GLM), the Mixed Linear Model (MLM), the Fixed and Random Model Circulating Probability Unification (FarmCPU), the Bayesian-Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK). Results and Discussion: Our results indicated that the two multi-locus models, FarmCPU and BLINK, outperformed single-locus models, GLM and MLM, in beef herds in this study. Specifically, five significant SNPs were identified using FarmCPU, while BLINK and GLM each identified the other three. Also, three of these eleven SNPs ("BTA-40510-no-rs", "BovineHD1400006853", and "BovineHD2100020346") were shared by multiple models. The significant SNPs were mapped to genes such as EIF5, RGS20, TCEA1, LYPLA1, and MRPL15, which were previously reported to be associated with carcass-related traits, growth, and feed intake in several tropical cattle breeds. This confirms that the genes identified in this study could be candidate genes for carcass weight in pasture-fed beef cattle and can be selected for further breeding programs to improve the carcass yield and productivity of pasture-finished beef cattle in Hawai'i and beyond.
Collapse
Affiliation(s)
- Mandeep Adhikari
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Ryan J. Longman
- East West Center, Honolulu, HI, United States
- Department of Geography and Environment, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - C. N. Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Melelani Oshiro
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Kyle Caires
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Yanghua He
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
7
|
Identification of Candidate Genes and Functional Pathways Associated with Body Size Traits in Chinese Holstein Cattle Based on GWAS Analysis. Animals (Basel) 2023; 13:ani13060992. [PMID: 36978532 PMCID: PMC10044097 DOI: 10.3390/ani13060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Body size is one of the most economically important traits of dairy cattle, as it is significantly associated with cow longevity, production, health, fertility, and environmental adaptation. The identification and application of genetic variants using a novel genetic approach, such as genome-wide association studies (GWASs), may give more insights into the genetic architecture of complex traits. The identification of genes, single nucleotide polymorphisms (SNPs), and pathways associated with the body size traits may offer a contribution to genomic selection and long-term planning for selection in dairy cows. In this study, we performed GWAS analysis to identify the genetic markers and genes associated with four body size traits (body height, body depth, chest width, and angularity) in 1000 Chinese Holstein cows. We performed SNPs genotyping in 1000 individuals, based on the GeneSeek Genomic Profiler Bovine 100 K. In total, we identified 11 significant SNPs in association with body size traits at the threshold of Bonferroni correction (5.90 × 10−7) using the fixed and random model circulating probability unification (FarmCPU) model. Several genes within 200 kb distances (upstream or downstream) of the significant SNPs were identified as candidate genes, including MYH15, KHDRBS3, AIP, DCC, SQOR, and UBAP1L. Moreover, genes within 200 kb of the identified SNPs were significantly enriched (p ≤ 0.05) in 25 Gene Ontology terms and five Kyoto Encyclopedia of Genes and Genomes pathways. We anticipate that these results provide a foundation for understanding the genetic architecture of body size traits. They will also contribute to breeding programs and genomic selection work on Chinese Holstein cattle.
Collapse
|
8
|
Ramos Z, Garrick DJ, Blair HT, Vera B, Ciappesoni G, Kenyon PR. Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep. Genes (Basel) 2023; 14:167. [PMID: 36672908 PMCID: PMC9858812 DOI: 10.3390/genes14010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to identify genomic regions and genes associated with the fiber diameter (FD), clean fleece weight (CFW), live weight (LW), body condition score (BCS), pregnancy rate (PR) and lambing potential (LP) of Uruguayan Merino sheep. Phenotypic records of approximately 2000 mixed-age ewes were obtained from a Merino nucleus flock. Genome-wide association studies were performed utilizing single-step Bayesian analysis. For wool traits, a total of 35 genomic windows surpassed the significance threshold (PVE ≥ 0.25%). The proportion of the total additive genetic variance explained by those windows was 4.85 and 9.06% for FD and CFW, respectively. There were 42 windows significantly associated with LWM, which collectively explained 43.2% of the additive genetic variance. For BCS, 22 relevant windows accounted for more than 40% of the additive genetic variance, whereas for the reproduction traits, 53 genomic windows (24 and 29 for PR and LP, respectively) reached the suggestive threshold of 0.25% of the PVE. Within the top 10 windows for each trait, we identified several genes showing potential associations with the wool (e.g., IGF-1, TGFB2R, PRKCA), live weight (e.g., CAST, LAP3, MED28, HERC6), body condition score (e.g., CDH10, TMC2, SIRPA, CPXM1) or reproduction traits (e.g., ADCY1, LEPR, GHR, LPAR2) of the mixed-age ewes.
Collapse
Affiliation(s)
- Zully Ramos
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Dorian J. Garrick
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Hugh T. Blair
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Brenda Vera
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Gabriel Ciappesoni
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Paul R. Kenyon
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
9
|
Machado PC, Brito LF, Martins R, Pinto LFB, Silva MR, Pedrosa VB. Genome-Wide Association Analysis Reveals Novel Loci Related with Visual Score Traits in Nellore Cattle Raised in Pasture-Based Systems. Animals (Basel) 2022; 12:ani12243526. [PMID: 36552446 PMCID: PMC9774243 DOI: 10.3390/ani12243526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Body conformation traits assessed based on visual scores are widely used in Zebu cattle breeding programs. The aim of this study was to identify genomic regions and biological pathways associated with body conformation (CONF), finishing precocity (PREC), and muscling (MUSC) in Nellore cattle. The measurements based on visual scores were collected in 20,807 animals raised in pasture-based systems in Brazil. In addition, 2775 animals were genotyped using a 35 K SNP chip, which contained 31,737 single nucleotide polymorphisms after quality control. Single-step GWAS was performed using the BLUPF90 software while candidate genes were identified based on the Ensembl Genes 69. PANTHER and REVIGO platforms were used to identify key biological pathways and STRING to create gene networks. Novel candidate genes were revealed associated with CONF, including ALDH9A1, RXRG, RAB2A, and CYP7A1, involved in lipid metabolism. The genes associated with PREC were ELOVL5, PID1, DNER, TRIP12, and PLCB4, which are related to the synthesis of long-chain fatty acids, lipid metabolism, and muscle differentiation. For MUSC, the most important genes associated with muscle development were SEMA6A, TIAM2, UNC5A, and UIMC1. The polymorphisms identified in this study can be incorporated in commercial genotyping panels to improve the accuracy of genomic evaluations for visual scores in beef cattle.
Collapse
Affiliation(s)
- Pamela C. Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luis Fernando B. Pinto
- Department of Animal Science, Federal University of Bahia, Av. Adhemar de Barros 500, Ondina, Salvador 40170-110, BA, Brazil
| | - Marcio R. Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes 16700-000, SP, Brazil
| | - Victor B. Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
10
|
Cis-eQTL Analysis and Functional Validation of Candidate Genes for Carcass Yield Traits in Beef Cattle. Int J Mol Sci 2022; 23:ijms232315055. [PMID: 36499383 PMCID: PMC9736101 DOI: 10.3390/ijms232315055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carcass yield traits are of considerable economic importance for farm animals, which act as a major contributor to the world’s food supply. Genome-wide association studies (GWASs) have identified many genetic variants associated with carcass yield traits in beef cattle. However, their functions are not effectively illustrated. In this study, we performed an integrative analysis of gene-based GWAS with expression quantitative trait locus (eQTL) analysis to detect candidate genes for carcass yield traits and validate their effects on bovine skeletal muscle satellite cells (BSCs). The gene-based GWAS and cis-eQTL analysis revealed 1780 GWAS and 1538 cis-expression genes. Among them, we identified 153 shared genes that may play important roles in carcass yield traits. Notably, the identified cis-eQTLs of PON3 and PRIM2 were significantly (p < 0.001) enriched in previous GWAS loci for carcass traits. Furthermore, overexpression of PON3 and PRIM2 promoted the BSCs’ proliferation, increased the expression of MYOD and downregulated the expression of MYOG, which indicated that these genes may inhibit myogenic differentiation. In contrast, PON3 and PRIM2 were significantly downregulated during the differentiation of BSCs. These findings suggested that PON3 and PRIM2 may promote the proliferation of BSCs and inhibit them in the pre-differentiation stage. Our results further contribute to the understanding of the molecular mechanisms of carcass yield traits in beef cattle.
Collapse
|
11
|
Sölzer N, May K, Yin T, König S. Genomic analyses of claw disorders in Holstein cows: Genetic parameters, trait associations, and genome-wide associations considering interactions of SNP and heat stress. J Dairy Sci 2022; 105:8218-8236. [PMID: 36028345 DOI: 10.3168/jds.2022-22087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
The aim of the present study was an in-depth genomic analysis to understand the genomic mechanisms of the 3 claw disorders dermatitis digitalis (DD), interdigital hyperplasia (HYP), and sole ulcer (SU). In this regard, we estimated genetic parameters based on genomic relationship matrices, performed genome-wide association studies, annotated potential candidate genes, and inferred genetic associations with breeding goal traits considering the most important chromosomal segments. As a further novelty of this study, we inferred possible SNP × heat stress interactions for claw disorders. The study consisted of 17,264 first-lactation Holstein Friesian cows kept in 50 large-scale contract herds. The disease prevalence was 15.96, 2.36, and 8.20% for DD, HYP, and SU, respectively. The remaining breeding goal traits consisted of type traits of the feet and leg composite, female fertility, health traits, and 305-d production traits. The final genotype data set included 44,474 SNPs from the 17,264 genotyped cows. Heritabilities for DD, HYP, and SU were estimated in linear and threshold models considering the genomic relationship matrix (G matrix). Genetic correlations with breeding goal traits based on G were estimated in a series of bivariate linear models, which were verified via SNP effect correlations for specific chromosome segments (i.e., segments harboring potential candidate genes for DD, HYP, and SU). Genome-wide association studies were performed for all traits in a case-control design by applying a single SNP linear mixed model. Furthermore, for DD, HYP, and SU, we modeled SNP × heat stress interactions in genome-wide association studies. Single nucleotide polymorphism-based heritabilities were 0.04 and 0.08 for DD, 0.03 and 0.10 for SU, and 0.03 and 0.23 for HYP from linear and threshold models, respectively. The genetic correlations between DD, HYP, and SU with conformation traits from the feet and leg composite were positive throughout, indicating the value of indirect selection on conformation traits to improve claw health. Genetic correlations between DD, SU, and HYP with other breeding goal traits indicated impaired female fertility, impaired udder health status, and productivity decline of diseased cows. Genetic correlations among DD, SU, and HYP were moderate to large, indicating that different claw disorders have similar genetic mechanisms. Nevertheless, we identified disease-specific potential candidate genes, and genetic associations based on the surrounding SNPs partly differed from the genetic correlations. Especially for candidate genes contributing to 2 traits simultaneously, correlations based on SNP effects from the respective chromosome segment were close to 1 or to -1. In this regard, we annotated the candidate genes KRT33A and KRT33B for HYP and DD, KIF27 for HYP and calving to first insemination, and MAN1A1 for SU and the production traits. For SNP × heat stress interactions, we identified significant SNPs on BTA 2, 4, 5, 7, 8, 9, 13, 22, 25, and 28, and we annotated the potential candidate genes FSIP2, CLCN1, ADGRV1, DOP1A, THBD, and RHOBTB1. Results indicate gene-specific mechanisms of the claw disorders only in specific environments.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany.
| |
Collapse
|
12
|
Mohammadi A, Alijani S, Rafat S, Abdollahi-Arpanahi R. Single-step genome-wide association study and candidate genes networks affecting reproductive traits in Iranian Holstein cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Schwartz JC, Maccari G, Heimeier D, Hammond JA. Highly-contiguous bovine genomes underpin accurate functional analyses and updated nomenclature of MHC class I. HLA 2021; 99:167-182. [PMID: 34802191 DOI: 10.1111/tan.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) class I region of cattle is both highly polymorphic and, unlike many species, highly variable in gene content between haplotypes. Cattle MHC class I alleles were historically grouped by sequence similarity in the more conserved 3' end of the coding sequence to form phylogenetic allele groups. This has formed the basis of current cattle MHC class I nomenclature. We presently describe and compare five fully assembled MHC class I haplotypes using the latest cattle and yak genome assemblies. Of the five previously described "pseudogenes" in the cattle MHC class I region, Pseudogene 3 is putatively functional in all haplotypes and Pseudogene 6 and Pseudogene 7 are putatively functional in some haplotypes. This was reinforced by evidence of transcription. Based on full gene sequences as well as 3' coding sequence, we identified distinct subgroups of BoLA-3 and BoLA-6 that represent distinct genetic loci. We further examined allele-specific expression using transcriptomic data revealing that certain alleles are consistently weakly expressed compared to others. These observations will help to inform further studies into how MHC class I region variability influences T cell and natural killer cell functions in cattle.
Collapse
Affiliation(s)
| | - Giuseppe Maccari
- The Pirbright Institute, Pirbright, UK.,Anthony Nolan Research Institute, London, UK
| | | | | |
Collapse
|
14
|
Abousoliman I, Reyer H, Oster M, Murani E, Mohamed I, Wimmers K. Genome-Wide Analysis for Early Growth-Related Traits of the Locally Adapted Egyptian Barki Sheep. Genes (Basel) 2021; 12:1243. [PMID: 34440417 PMCID: PMC8394750 DOI: 10.3390/genes12081243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Sheep play a critical role in the agricultural and livestock sector in Egypt. For sheep meat production, growth traits such as birth and weaning weights are very important and determine the supply and income of local farmers. The Barki sheep originates from the northeastern coastal zone of Africa, and due to its good adaptation to the harsh environmental conditions, it contributes significantly to the meat production in these semi-arid regions. This study aimed to use a genome-wide SNP panel to identify genomic regions that are diversified between groups of individuals of Egyptian Barki sheep with high and low growth performance traits. In this context, from a phenotyped population of 140 lambs of Barki sheep, 69 lambs were considered for a genome-wide scan with the Illumina OvineSNP50 V2 BeadChip. The selected lambs were grouped into divergent subsets with significantly different performance for birth weight and weaning weight. After quality control, 63 animals and 40,383 SNPs were used for analysis. The fixation index (FST) for each SNP was calculated between the groups. The results verified genomic regions harboring some previously proposed candidate genes for traits related to body growth, i.e., EYA2, GDF2, GDF10, MEF2B, SLC16A7, TBX15, TFAP2B, and TNNC2. Moreover, novel candidate genes were proposed with known functional implications on growth processes such as CPXM2 and LRIG3. Subsequent association analysis showed significant effects of the considered SNPs on birth and weaning weights. Results highlight the genetic diversity associated with performance traits and thus the potential to improve growth traits in the Barki sheep breed.
Collapse
Affiliation(s)
- Ibrahim Abousoliman
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
- Desert Research Center, Department of Animal and Poultry Breeding, 1 Mathaf El-Matareya St., El-Matareya, Cairo 11753, Egypt;
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Ismail Mohamed
- Desert Research Center, Department of Animal and Poultry Breeding, 1 Mathaf El-Matareya St., El-Matareya, Cairo 11753, Egypt;
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 7, 18059 Rostock, Germany
| |
Collapse
|
15
|
Genome-Wide Association Study Identifies Candidate Genes Associated with Feet and Leg Conformation Traits in Chinese Holstein Cattle. Animals (Basel) 2021; 11:ani11082259. [PMID: 34438715 PMCID: PMC8388412 DOI: 10.3390/ani11082259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Feet and leg problems are among the major reasons for dairy cows leaving the herd, as well as having direct association with production and reproduction efficiency, health (e.g., claw disorders and lameness) and welfare. Hence, understanding the genetic architecture underlying feet and conformation traits in dairy cattle offers new opportunities toward the genetic improvement and long-term selection. Through a genome-wide association study on Chinese Holstein cattle, we identified several candidate genes associated with feet and leg conformation traits. These results could provide useful information about the molecular breeding basis of feet and leg traits, thus improving the longevity and productivity of dairy cattle. Abstract Feet and leg conformation traits are considered one of the most important economical traits in dairy cattle and have a great impact on the profitability of milk production. Therefore, identifying the single nucleotide polymorphisms (SNPs), genes and pathways analysis associated with these traits might contribute to the genomic selection and long-term plan selection for dairy cattle. We conducted genome-wide association studies (GWASs) using the fixed and random model circulating probability unification (FarmCPU) method to identify SNPs associated with bone quality, heel depth, rear leg side view and rear leg rear view of Chinese Holstein cows. Phenotypic measurements were collected from 1000 individuals of Chinese Holstein cattle and the GeneSeek Genomic Profiler Bovine 100 K SNP chip was utilized for individual genotyping. After quality control, 984 individual cows and 84,906 SNPs remained for GWAS work; as a result, we identified 20 significant SNPs after Bonferroni correction. Several candidate genes were identified within distances of 200 kb upstream or downstream to the significant SNPs, including ADIPOR2, INPP4A, DNMT3A, ALDH1A2, PCDH7, XKR4 and CADPS. Further bioinformatics analyses showed 34 gene ontology terms and two signaling pathways were significantly enriched (p ≤ 0.05). Many terms and pathways are related to biological quality, metabolism and development processes; these identified SNPs and genes could provide useful information about the genetic architecture of feet and leg traits, thus improving the longevity and productivity of Chinese Holstein dairy cattle.
Collapse
|
16
|
Impact of prenatal maternal nutrition and parental residual feed intake (RFI) on mRNA abundance of metabolic drivers of growth and development in young Angus bulls. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Londoño-Gil M, Rincón Flórez JC, Lopez-Herrera A, Gonzalez-Herrera LG. GENOME-WIDE ASSOCIATION STUDY FOR GROWTH TRAITS IN BLANCO OREJINERO (BON) CATTLE FROM COLOMBIA. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Zinovieva NA, Dotsev AV, Sermyagin AA, Deniskova TE, Abdelmanova AS, Kharzinova VR, Sölkner J, Reyer H, Wimmers K, Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS One 2020; 15:e0242200. [PMID: 33196682 PMCID: PMC7668599 DOI: 10.1371/journal.pone.0242200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Native cattle breeds can carry specific signatures of selection reflecting their adaptation to the local environmental conditions and response to the breeding strategy used. In this study, we comprehensively analysed high-density single nucleotide polymorphism (SNP) genotypes to characterise the population structure and detect the selection signatures in Russian native Yaroslavl and Kholmogor dairy cattle breeds, which have been little influenced by introgression with transboundary breeds. Fifty-six samples of pedigree-recorded purebred animals, originating from different breeding farms and representing different sire lines, of the two studied breeds were genotyped using a genome-wide bovine genotyping array (Bovine HD BeadChip). Three statistical analyses—calculation of fixation index (FST) for each SNP for the comparison of the pairs of breeds, hapFLK analysis, and estimation of the runs of homozygosity (ROH) islands shared in more than 50% of animals—were combined for detecting the selection signatures in the genome of the studied cattle breeds. We confirmed nine and six known regions under putative selection in the genomes of Yaroslavl and Kholmogor cattle, respectively; the flanking positions of most of these regions were elucidated. Only two of the selected regions (localised on BTA 14 at 24.4–25.1 Mbp and on BTA 16 at 42.5–43.5 Mb) overlapped in Yaroslavl, Kholmogor and Holstein breeds. In addition, we detected three novel selection sweeps in the genome of Yaroslavl (BTA 4 at 4.74–5.36 Mbp, BTA 15 at 17.80–18.77 Mbp, and BTA 17 at 45.59–45.61 Mbp) and Kholmogor breeds (BTA 12 at 82.40–81.69 Mbp, BTA 15 at 16.04–16.62 Mbp, and BTA 18 at 0.19–1.46 Mbp) by using at least two of the above-mentioned methods. We expanded the list of candidate genes associated with the selected genomic regions and performed their functional annotation. We discussed the possible involvement of the identified candidate genes in artificial selection in connection with the origin and development of the breeds. Our findings on the Yaroslavl and Kholmogor breeds obtained using high-density SNP genotyping and three different statistical methods allowed the detection of novel putative genomic regions and candidate genes that might be under selection. These results might be useful for the sustainable development and conservation of these two oldest Russian native cattle breeds.
Collapse
Affiliation(s)
- Natalia Anatolievna Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
- * E-mail:
| | - Arsen Vladimirovich Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Alexander Alexandrovich Sermyagin
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Tatiana Evgenievna Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Alexandra Sergeevna Abdelmanova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Veronika Ruslanovna Kharzinova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology [FBN], Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology [FBN], Dummerstorf, Germany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine [VMU], Vienna, Austria
| |
Collapse
|
19
|
Vanvanhossou SFU, Scheper C, Dossa LH, Yin T, Brügemann K, König S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020; 21:783. [PMID: 33176675 PMCID: PMC7656759 DOI: 10.1186/s12864-020-07170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.
Collapse
Affiliation(s)
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
| |
Collapse
|
20
|
Genome-Wide Assessment of Runs of Homozygosity in Chinese Wagyu Beef Cattle. Animals (Basel) 2020; 10:ani10081425. [PMID: 32824035 PMCID: PMC7460448 DOI: 10.3390/ani10081425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous regions that generally exist in the DNA sequence of diploid organisms. Identifications of ROH leading to reduction in performance can provide valuable insight into the genetic architecture of complex traits. Here, we evaluated genome-wide patterns of homozygosity and their association with important traits in Chinese Wagyu beef cattle. We identified a total of 29,271 ROH segments from 462 animals. Within each animal, an average number of ROH was 63.36 while an average length was 62.19 Mb. To evaluate the enrichment of ROH across genomes, we initially identified 280 ROH regions by merging ROH events across all individuals. Of these, nine regions containing 154 candidate genes, were significantly associated with six traits (body height, chest circumference, fat coverage, backfat thickness, ribeye area, and carcass length; p < 0.01). Moreover, we found 26 consensus ROH regions with frequencies exceeding 10%, and several regions overlapped with QTLs, which are associated with body weight, calving ease, and stillbirth. Among them, we observed 41 candidate genes, including BCKDHB, MAB21L1, SLC2A13, FGFR3, FGFRL1, CPLX1, CTNNA1, CORT, CTNNBIP1, and NMNAT1, which have been previously reported to be related to body conformation, meat quality, susceptibility, and reproductive traits. In summary, we assessed genome-wide autozygosity patterns and inbreeding levels in Chinese Wagyu beef cattle. Our study identified many candidate regions and genes overlapped with ROH for several important traits, which could be unitized to assist the design of a selection mating strategy in beef cattle.
Collapse
|