1
|
Ćuković KB, Todorović SI, Savić JM, Bogdanović MD. Transcriptome and Gene Expression Analysis Revealed CeNA1: A Potential New Marker for Somatic Embryogenesis in Common Centaury ( Centaurium erythraea Rafn.). Int J Mol Sci 2024; 25:13531. [PMID: 39769294 PMCID: PMC11677695 DOI: 10.3390/ijms252413531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Centaurium erythraea Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity. Although SE is the most common method of centaury regeneration, the genes involved in this have not yet been identified. The aim of this study was to identify the differentially expressed genes (DEGs) during key stages of SE and organogenesis using transcriptome data, with a focus on novel SE-related genes. The transcriptomic analysis revealed a total of 4040 DEGs during SE and 12,708 during organogenesis. Gene Ontology (GO) annotation showed that the highest number of SE-related genes was involved in defense responses. The expression of fifteen selected SE-related candidate genes was assessed by RT-qPCR across nine centaury developmental stages, including embryogenic tissues. Notably, a newly reported transcript, named CeNA1, was specifically activated during embryogenic callus (ec) induction, making it a potential novel marker for early SE. These findings provide, for the first time, insight into SE-related transcriptional patterns, representing a step closer to uncovering the molecular basis of centaury's developmental plasticity.
Collapse
Affiliation(s)
- Katarina B. Ćuković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.I.T.); (J.M.S.); (M.D.B.)
| | | | | | | |
Collapse
|
2
|
Yakovleva DV, Efremova EP, Smirnov KV, Simonova VY, Konstantinov ZS, Tvorogova VE, Lutova LA. The WOX Genes from the Intermediate Clade: Influence on the Somatic Embryogenesis in Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2024; 13:223. [PMID: 38256776 PMCID: PMC10819790 DOI: 10.3390/plants13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Transcription factors from the WOX family are well-known regulators of cell proliferation and differentiation in plants. Herein, we focused on several WOX genes from the intermediate clade and checked their impact on somatic embryogenesis using the model legume object Medicago truncatula. As a result, we show that MtWOX9-1 overexpression not only stimulates somatic embryogenesis in the embryogenic M. truncatula line, as it was shown previously, but can also induce somatic embryogenesis in the non-embryogenic line. Other intermediate clade WOX, including the close paralog of MtWOX9-1, as well as WOX11 homologs, did not have any significant impact on somatic embryogenesis in our in vitro cultivation system. Together, our results give new information about the diversity of the WOX family proteins and their specific functions. These data can be used for the search of new regeneration stimulators.
Collapse
Affiliation(s)
- Daria V. Yakovleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya emb, Saint Petersburg 199034, Russia; (D.V.Y.); (E.P.E.); (L.A.L.)
| | - Elena P. Efremova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya emb, Saint Petersburg 199034, Russia; (D.V.Y.); (E.P.E.); (L.A.L.)
| | - Kirill V. Smirnov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, Saint Petersburg 196608, Russia;
| | - Veronika Y. Simonova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia; (V.Y.S.); (Z.S.K.)
| | - Zakhar S. Konstantinov
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia; (V.Y.S.); (Z.S.K.)
| | - Varvara E. Tvorogova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya emb, Saint Petersburg 199034, Russia; (D.V.Y.); (E.P.E.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia; (V.Y.S.); (Z.S.K.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, Saint Petersburg 190000, Russia
| | - Ludmila A. Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya emb, Saint Petersburg 199034, Russia; (D.V.Y.); (E.P.E.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia; (V.Y.S.); (Z.S.K.)
| |
Collapse
|
3
|
Zheng K, Lu J, He X, Lan S, Zhai T, Cao S, Lin Y. Genome-Wide Identification and Expression Analysis of GATA Family Genes in Dimocarpus longan Lour. Int J Mol Sci 2024; 25:731. [PMID: 38255805 PMCID: PMC10815313 DOI: 10.3390/ijms25020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 μmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiayue Lu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinyu He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shuoxian Lan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
4
|
Quintana-Escobar AO, Loyola-Vargas VM. Transcriptomic Analysis During the Induction of Somatic Embryogenesis in Coffea canephora. Methods Mol Biol 2024; 2827:363-376. [PMID: 38985282 DOI: 10.1007/978-1-0716-3954-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Omic tools have changed the way of doing research in experimental biology. The somatic embryogenesis (SE) study has not been immune to this benefit. The transcriptomic tools have been used to compare the genes expressed during the induction of SE with the genes expressed in zygotic embryogenesis or to compare the development of the different stages embryos go through. It has also been used to compare the expression of genes during the development of calli from which SE is induced, as well as many other applications. The protocol described here is employed in our laboratory to extract RNA and generate several transcriptomes for the study of SE on Coffea canephora.
Collapse
Affiliation(s)
- Ana O Quintana-Escobar
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Chuburna, Merida, CP, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Chuburna, Merida, CP, Mexico.
| |
Collapse
|
5
|
Loyola-Vargas VM, Ochoa-Alejo N. An Introduction to Plant Cell, Tissue, and Organ Culture: Current Status and Perspectives. Methods Mol Biol 2024; 2827:1-13. [PMID: 38985259 DOI: 10.1007/978-1-0716-3954-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.
Collapse
Affiliation(s)
- Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
6
|
Krasnoperova EY, Tvorogova VE, Smirnov KV, Efremova EP, Potsenkovskaia EA, Artemiuk AM, Konstantinov ZS, Simonova VY, Brynchikova AV, Yakovleva DV, Pavlova DB, Lutova LA. MtWOX2 and MtWOX9-1 Effects on the Embryogenic Callus Transcriptome in Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2023; 13:102. [PMID: 38202410 PMCID: PMC10780917 DOI: 10.3390/plants13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
WOX family transcription factors are well-known regulators of plant development, controlling cell proliferation and differentiation in diverse organs and tissues. Several WOX genes have been shown to participate in regeneration processes which take place in plant cell cultures in vitro, but the effects of most of them on tissue culture development have not been discovered yet. In this study, we evaluated the effects of MtWOX2 gene overexpression on the embryogenic callus development and transcriptomic state in Medicago truncatula. According to our results, overexpression of MtWOX2 leads to an increase in callus weight. Furthermore, transcriptomic changes in MtWOX2 overexpressing calli are, to a large extent, opposite to the changes caused by overexpression of MtWOX9-1, a somatic embryogenesis stimulator. These results add new information about the mechanisms of interaction between different WOX genes and can be useful for the search of new regeneration regulators.
Collapse
Affiliation(s)
- Elizaveta Y. Krasnoperova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Varvara E. Tvorogova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia
| | - Kirill V. Smirnov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia;
| | - Elena P. Efremova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Elina A. Potsenkovskaia
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia
| | - Anastasia M. Artemiuk
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Zakhar S. Konstantinov
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| | - Veronika Y. Simonova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| | - Anna V. Brynchikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| | - Daria V. Yakovleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Daria B. Pavlova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Ludmila A. Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| |
Collapse
|
7
|
Quintana-Escobar AO, Bojórquez-Velázquez E, Ruiz-May E, Loyola-Vargas VM. Proteomic Approach during the Induction of Somatic Embryogenesis in Coffea canephora. PLANTS (BASEL, SWITZERLAND) 2023; 12:4095. [PMID: 38140424 PMCID: PMC10748034 DOI: 10.3390/plants12244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Plant growth regulators (PGR) are essential for somatic embryogenesis (SE) in different species, and Coffea canephora is no exception. In our study model, previously, we have been able to elucidate the participation of various genes involved in SE by using different strategies; however, until now, we have not used a proteomic approach. This research seeks to contribute to understanding the primary cellular pathways involved in developing SE in C. canephora. The process of our model consists of two stages: (1) preconditioning in MS medium with auxin (NAA) and cytokinin (KIN), and (2) induction in Yasuda liquid medium added with cytokinin (BA). Therefore, in this study, we analyzed different days of the SE induction process using shotgun label-free proteomics. An amount of 1630 proteins was found among different sampling days of the process, of which the majority were accumulated during the induction stage. We found that some of the most enriched pathways during this process were the biosynthesis of amino acids and secondary metabolites. Eighteen proteins were found related to auxin homeostasis and two to cytokinin metabolism, such as ABC, BIG, ILR, LOG, and ARR. Ten proteins and transcription factors related to SE were also identified, like SERK1, SKP1, nuclear transcription factor Y, MADS-box, and calreticulin, and 19 related to other processes of plant development, among which the 14-3-3 and PP2A proteins stand out. This is the first report on the proteomic approach to elucidate the mechanisms that operate during the induction of SE in C. canephora. So, our findings provide the groundwork for future, more in-depth research. Data are available via ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD047172.
Collapse
Affiliation(s)
- Ana Odetth Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 x 32 y 34, Mérida CP 97205, Yucatán, Mexico;
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, Xalapa CP 91070, Veracruz, Mexico; (E.B.-V.); (E.R.-M.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, Xalapa CP 91070, Veracruz, Mexico; (E.B.-V.); (E.R.-M.)
| | - Víctor Manuel Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 x 32 y 34, Mérida CP 97205, Yucatán, Mexico;
| |
Collapse
|
8
|
Lai RL, Xu XP, Qi F, Zhang CY, Guan QX, Cui J, XuHan X, Lin YL, Lai ZX. Integrated Metabolomic and Transcriptomic Analyses Reveal the Potential Regulation of Flavonoids in the Production of Embryogenic Cultures during Early Somatic Embryogenesis of Longan ( Dimocarpus longan Lour.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18622-18635. [PMID: 37976371 DOI: 10.1021/acs.jafc.3c06399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Embryogenic cultures of longan (Dimocarpus longan Lour.) contain various metabolites with pharmacological properties that may function in the regulation of somatic embryogenesis (SE). In this study, based on widely targeted metabolomics, 501 metabolites were obtained from the embryogenic calli, incomplete compact proembryogenic cultures, and globular embryos during early SE of longan, among which 41 flavonoids were differentially accumulated during the SE. Using RNA sequencing, 36 flavonoid-biosynthesis-related genes and 43 MYB and 52 bHLH transcription factors were identified as differentially expressed genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the flavonoid metabolism-related pathways were significantly enriched during the early SE. These results suggested that the changes in flavonoid levels in the embryogenic cultures of longan were mediated by MYBs and bHLHs via regulating flavonoid-biosynthesis-related genes, thus potentially regulating early SE. The identified metabolites in the embryogenic cultures of longan can be used to develop pharmaceutical ingredients.
Collapse
Affiliation(s)
- Rui-Lian Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiao-Ping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Feng Qi
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chun-Yu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing-Xu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Cui
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Ling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Zhang S, Zhu C, Zhang X, Liu M, Xue X, Lai C, Xuhan X, Chen Y, Zhang Z, Lai Z, Lin Y. Single-cell RNA sequencing analysis of the embryogenic callus clarifies the spatiotemporal developmental trajectories of the early somatic embryo in Dimocarpus longan. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1277-1297. [PMID: 37235696 DOI: 10.1111/tpj.16319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Plant embryogenic calli (ECs) can undergo somatic embryogenesis to regenerate plants. This process is mediated by regulatory factors, such as transcription factors and specifically expressed genes, but the precise molecular mechanisms underlying somatic embryogenesis at the single-cell level remain unclear. In this study, we performed high-resolution single-cell RNA sequencing analysis to determine the cellular changes in the EC of the woody plant species Dimocarpus longan (longan) and clarify the continuous cell differentiation trajectories at the transcriptome level. The highly heterogeneous cells in the EC were divided into 12 putative clusters (e.g., proliferating, meristematic, vascular, and epidermal cell clusters). We determined cluster-enriched expression marker genes and found that overexpression of the epidermal cell marker gene GDSL ESTERASE/LIPASE-1 inhibited the hydrolysis of triacylglycerol. In addition, the stability of autophagy was critical for the somatic embryogenesis of longan. The pseudo-timeline analysis elucidated the continuous cell differentiation trajectories from early embryonic cell division to vascular and epidermal cell differentiation during the somatic embryogenesis of longan. Moreover, key transcriptional regulators associated with cell fates were revealed. We found that ETHYLENE RESPONSIVE FACTOR 6 was characterized as a heat-sensitive factor that negatively regulates longan somatic embryogenesis under high-temperature stress conditions. The results of this study provide new spatiotemporal insights into cell division and differentiation during longan somatic embryogenesis at single-cell resolution.
Collapse
Affiliation(s)
- Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyu Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaodong Xue
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, Toulouse, 31300, France
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
10
|
Chen Y, Xie D, Ma X, Xue X, Liu M, Xiao X, Lai C, Xu X, Chen X, Chen Y, Zhang Z, XuHan X, Lai Z, Lin Y. Genome-wide high-throughput chromosome conformation capture analysis reveals hierarchical chromatin interactions during early somatic embryogenesis. PLANT PHYSIOLOGY 2023; 193:555-577. [PMID: 37313777 DOI: 10.1093/plphys/kiad348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Somatic embryogenesis (SE), like zygotic embryo development, is a progressive process. Early SE is the beginning of a switch from a somatic to an embryogenic state and is an important stage for initiating chromatin reprogramming of SE. Previous studies suggest that changes in chromatin accessibility occur during early SE, although information on the 3D structure of chromatin is not yet available. Here, we present a chromosome-level genome assembly of longan (Dimocarpus longan) using PacBio combined with high-through chromosome conformation capture scaffolding, which resulted in a 446 Mb genome assembly anchored onto 15 scaffolds. During early SE, chromatin was concentrated and then decondensed, and a large number of long terminal repeat retrotransposons (LTR-RTs) were enriched in the local chromatin interaction region, suggesting LTR-RTs were involved in chromatin reorganization. Early SE was accompanied by the transformation from A to B compartments, and the interactions between B compartments were enhanced. Results from chromatin accessibility, monomethylation of histone H3 at lysine 4 (H3K4me1) modification, and transcription analyses further revealed a gene regulatory network for cell wall thickening during SE. Particularly, we found that the H3K4me1 differential peak binding motif showed abnormal activation of ethylene response factor transcription factors and participation in SE. The chromosome-level genomic and multiomics analyses revealed the 3D conformation of chromatin during early SE, providing insight into the molecular mechanisms underlying cell wall thickening and the potential regulatory networks of TFs during early SE in D. longan. These results provide additional clues for revealing the molecular mechanisms of plant SE.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dejian Xie
- Beijing Research Center, Wuhan Frasergen Bioinformatics Co., Ltd, Beijing 100081, China
| | - Xiangwei Ma
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaodong Xue
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mengyu Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuechen Xiao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, Toulouse 31300, France
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
11
|
Wang Y, Wang H, Bao W, Sui M, Bai YE. Transcriptome Analysis of Embryogenic and Non-Embryogenic Callus of Picea Mongolica. Curr Issues Mol Biol 2023; 45:5232-5247. [PMID: 37504248 PMCID: PMC10378709 DOI: 10.3390/cimb45070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
Picea mongolica is a rare tree species in China, which is of great significance in combating desertification and improving the harsh ecological environment. Due to the low rate of natural regeneration, high mortality, and susceptibility to pests and cold springs, Picea mongolica has gradually become extinct. At present, somatic embryogenesis (SE) is the most effective method of micro-proliferation in conifers, but the induction rate of embryogenic callus (EC) is low, and EC is difficult to differentiate from non-embryonic callus (NEC). Therefore, the EC and NEC of Picea mongolica were compared from the morphology, histological, physiological, and transcriptional levels, respectively. Morphological observation showed that the EC was white and transparent filamentous, while the NEC was compact and brownish-brown lumpy. Histological analyses showed that the NEC cells were large and loosely arranged; the nuclei attached to the edge of the cells were small; the cytoplasm was low; and the cell gap was large and irregular. In the EC, small cells, closely arranged cells, and a large nucleus and nucleolus were observed. Physiological studies showed significant differences in ROS-scavenging enzymes between the EC and NEC. Transcriptome profiling revealed that 13,267 differentially expressed genes (DEGs) were identified, 3682 were up-regulated, and 9585 were down-regulated. In total, 63 GO terms had significant enrichment, 32 DEGs in plant hormone signal transduction pathway were identified, and 502 different transcription factors (TFs) were characterized into 38 TF families. Meanwhile, we identified significant gene expression trends associated with somatic embryo development in plant hormones (AUX/IAA, YUCCA, LEA, etc.), stress (GST, HSP, GLP, etc.), phenylpropanoid metabolism (4CL, HCT, PAL, etc.), and transcription factors (AP2/ERF, MYB, WOX, etc.). In addition, nine genes were chosen for RT-qPCR, and the results were consistent with RNA-Seq data. This study revealed the changes in morphology, histology, physiology, and gene expression in the differentiation of NEC into EC and laid the foundation for finding the key genes to promote EC formation.
Collapse
Affiliation(s)
- Yaping Wang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Hao Wang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Wenquan Bao
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Mingming Sui
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Yu E Bai
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| |
Collapse
|
12
|
Kurczynska E, Godel-Jędrychowska K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1951. [PMID: 37653868 PMCID: PMC10224393 DOI: 10.3390/plants12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE. Among wall chemical components, different pectic, AGP, extensin epitopes, and lipid transfer proteins have been discussed as potential apoplastic markers of explant cells during the acquisition of embryogenic competence. The role of symplasmic communication/isolation during SE has also been discussed, paying particular attention to the formation of symplasmic domains within and between cells that carry out different developmental processes. Information about the number and functionality of plasmodesmata (PD) and callose deposition as the main player in symplasmic isolation has also been presented.
Collapse
Affiliation(s)
- Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
13
|
Zhang M, Chen X, Lou X, Zhang Y, Han X, Yang Q, Tong Z, Zhang J. Identification of WUSCHEL-related homeobox ( WOX) gene family members and determination of their expression profiles during somatic embryogenesis in Phoebe bournei. FORESTRY RESEARCH 2023; 3:5. [PMID: 39526263 PMCID: PMC11524275 DOI: 10.48130/fr-2023-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/19/2023] [Indexed: 11/16/2024]
Abstract
WUSCHEL-related homeobox (WOX) transcription factor (TF)-encoding genes play crucial roles during embryo development. The function of WOX genes in embryonic development has been thoroughly studied in Arabidopsis thaliana, but little is known about their function in woody species, especially Phoebe bournei, an endemic and endangered species in China. In the present study, a total of 15 WOX genes were identified in P. bournei, and phylogenetic analysis resulted in their assignment to three typical clades: an ancient clade, an intermediate clade, and a modern/WUS clade. The gene structure and sequence characteristics and the physicochemical properties of WOX proteins were also analyzed. Promoter prediction indicated that WOX genes are likely involved in plant growth and development and hormone responses. Subsequently, we evaluated the expression patterns of WOX genes in response to auxin (IAA), abscisic acid (ABA), and methyl jasmonate (MeJA) treatments. According to tissue-specific expression patterns, we screened nine WOX genes that were present in embryonic calli and that might participate in the somatic embryogenesis (SE) of P. bournei. Furthermore, the expression profiles of these nine WOX genes during three phases of embryogenic calli development and three phases of somatic embryo development, namely, spheroid embryogenesis, immature cotyledon-producing embryogenesis and mature cotyledon-producing embryogenesis, were monitored. Overall, we systematically analyzed the expression patterns of WOX genes in P. bournei during SE, the information of which provides a basis for further elucidating the molecular mechanism through which WOX TFs function in P. bournei embryo development.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Xinyi Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Xiongzhen Lou
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, P. R. China
| |
Collapse
|
14
|
Awada R, Lepelley M, Breton D, Charpagne A, Campa C, Berry V, Georget F, Breitler JC, Léran S, Djerrab D, Martinez-Seidel F, Descombes P, Crouzillat D, Bertrand B, Etienne H. Global transcriptome profiling reveals differential regulatory, metabolic and hormonal networks during somatic embryogenesis in Coffea arabica. BMC Genomics 2023; 24:41. [PMID: 36694132 PMCID: PMC9875526 DOI: 10.1186/s12864-022-09098-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial and error approach. We report the first global scale transcriptome profiling performed at all developmental stages of SE in coffee to unravel the mechanisms that regulate cell fate and totipotency. RESULTS RNA-seq of 48 samples (12 developmental stages × 4 biological replicates) generated 90 million high quality reads per sample, approximately 74% of which were uniquely mapped to the Arabica genome. First, the statistical analysis of transcript data clearly grouped SE developmental stages into seven important phases (Leaf, Dedifferentiation, Primary callus, Embryogenic callus, Embryogenic cell clusters, Redifferentiation and Embryo) enabling the identification of six key developmental phase switches, which are strategic for the overall biological efficiency of embryo regeneration. Differential gene expression and functional analysis showed that genes encoding transcription factors, stress-related genes, metabolism-related genes and hormone signaling-related genes were significantly enriched. Second, the standard environmental drivers used to control SE, i.e. light, growth regulators and cell density, were clearly perceived at the molecular level at different developmental stages. Third, expression profiles of auxin-related genes, transcription factor-related genes and secondary metabolism-related genes were analyzed during SE. Gene co-expression networks were also inferred. Auxin-related genes were upregulated during dedifferentiation and redifferentiation while transcription factor-related genes were switched on from the embryogenic callus and onward. Secondary metabolism-related genes were switched off during dedifferentiation and switched back on at the onset of redifferentiation. Secondary metabolites and endogenous IAA content were tightly linked with their respective gene expression. Lastly, comparing Arabica embryogenic and non-embryogenic cell transcriptomes enabled the identification of biological processes involved in the acquisition of embryogenic capacity. CONCLUSIONS The present analysis showed that transcript fingerprints are discriminating signatures of cell fate and are under the direct influence of environmental drivers. A total of 23 molecular candidates were successfully identified overall the 12 developmental stages and can be tested in many plant species to optimize SE protocols in a rational way.
Collapse
Affiliation(s)
- Rayan Awada
- Nestlé Research - Plant Science Research Unit, Tours, France ,grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Maud Lepelley
- Nestlé Research - Plant Science Research Unit, Tours, France
| | - David Breton
- Nestlé Research - Plant Science Research Unit, Tours, France
| | - Aline Charpagne
- grid.419905.00000 0001 0066 4948Nestlé Research, Société Des Produits Nestlé SA, Lausanne, Switzerland ,grid.511382.c0000 0004 7595 5223Sophia Genetics, Genève, Switzerland
| | - Claudine Campa
- grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France ,grid.4399.70000000122879528UMR DIADE, IRD, Montpellier, France
| | - Victoria Berry
- Nestlé Research - Plant Science Research Unit, Tours, France
| | - Frédéric Georget
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Jean-Christophe Breitler
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Sophie Léran
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Doâa Djerrab
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Federico Martinez-Seidel
- grid.418390.70000 0004 0491 976XMax Planck Institute for Molecular Plant Physiology, Golm, Germany ,grid.1008.90000 0001 2179 088XSchool of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Patrick Descombes
- grid.419905.00000 0001 0066 4948Nestlé Research, Société Des Produits Nestlé SA, Lausanne, Switzerland
| | | | - Benoît Bertrand
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| | - Hervé Etienne
- grid.8183.20000 0001 2153 9871UMR DIADE, CIRAD, Montpellier, France ,grid.121334.60000 0001 2097 0141UMR DIADE, Université de Montpellier, CIRAD, Montpellier, IRD France
| |
Collapse
|
15
|
CRISPR in Modulating Antibiotic Resistance of ESKAPE Pathogens. Mol Biotechnol 2023; 65:1-16. [PMID: 35939207 DOI: 10.1007/s12033-022-00543-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
The ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolates both from the clinical settings and food products are demonstrated to gain resistance to multiple antimicrobials. Therefore, the ESKAPE pathogens pose a serious threat to public health, which warrants specific attention to developing alternative novel therapeutics. The clustered regularly interspaced short palindromic repeats associated (CRISPR-Cas) system is one of the novel methods for managing antibiotic-resistant strains. Specific Cas nucleases can be programmed against bacterial genomic sequences to decrease bacterial resistance to antibiotics. Moreover, a few CRISPR-Cas nucleases have the ability to the sequence-specific killing of bacterial strains. However, some pathogens acquire antibiotic resistance due to the presence of the CRISPR-Cas system. In brief, there is a wide range of functional diversity of CRISPR-Cas systems in bacterial pathogens. Hence, to be an effective and safe infection treatment strategy, a comprehensive understanding of the role of CRISPR-Cas systems in modulating antibiotic resistance in ESKAPE pathogens is essential. The present review summarizes all the mechanisms by which CRISPR confers and prevents antibiotic resistance in ESKAPE. The review also emphasizes the relationship between CRISPR-Cas systems, biofilm formation, and antibiotic resistance in ESKAPE.
Collapse
|
16
|
Wu G, Wei X, Wang X, Wei Y. Changes and transcriptome regulation of endogenous hormones during somatic embryogenesis in Ormosia henryi Prain. FRONTIERS IN PLANT SCIENCE 2023; 14:1121259. [PMID: 37077643 PMCID: PMC10106752 DOI: 10.3389/fpls.2023.1121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Introduction Ormosia henryi is a rare and endangered plant growing in southern China. Somatic embryo culture is an effective measure for the rapid propagation of O. henryi. It has not been reported how regulatory genes induce somatic embryogenesis by regulating endogenous hormone changes during the process of somatic embryogenesis in O. henryi. Methods In this study, we analysed the endogenous hormone levels and transcriptome data of nonembryogenic callus (NEC), embryogenic callus (EC), globular embryo (GE) and cotyledon embryo (CE) in O. henryi. Results The results showed that the indole-3-acetic acid (IAA) content was higher and the cytokinins (CKs) content was lower in EC than in NEC, and the gibberellins (GAs) and abscisic acid (ABA) contents were significantly higher in NEC than in EC. The contents of IAA, CKs, GAs and ABA increased significantly with EC development. The expression patterns of differentially expressed genes (DEGs) involved in the biosynthesis and signal transduction of auxin (AUX) (YUCCA and SAUR), CKs (B-ARR), GAs (GA3ox, GA20ox, GID1 and DELLA) and ABA (ZEP, ABA2, AAO3, CYP97A3, PYL and ABF) were consistent with the levels of endogenous hormones during somatic embryogenesis (SE). In this study, 316 different transcription factors (TFs) regulating phytohormones were detected during SE. AUX/IAA were downregulated in the process of EC formation and GE differentiation into CE, but other TFs were upregulated and downregulated. Conclusion Therefore, we believe that relatively high IAA content and low CKs, GAs and ABA contents contribute to EC formation. The differential expression of AUX, CKs, GAs and ABA biosynthesis and signal transduction genes affected the endogenous hormone levels at different stages of SE in O. henryi. The downregulated expression of AUX/IAA inhibited NEC induction, promoted EC formation and GE differentiation into CE.
Collapse
Affiliation(s)
- Gaoyin Wu
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
- College of Life Science, Guizhou Normal University, Guiyang, Guizhou, China
- *Correspondence: Wei Xiaoli, ; Wu Gaoyin,
| | - Xiaoli Wei
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
- *Correspondence: Wei Xiaoli, ; Wu Gaoyin,
| | - Xiao Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Yi Wei
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
17
|
Peng C, Gao F, Tretyakova IN, Nosov AM, Shen H, Yang L. Transcriptomic and Metabolomic Analysis of Korean Pine Cell Lines with Different Somatic Embryogenic Potential. Int J Mol Sci 2022; 23:13301. [PMID: 36362088 PMCID: PMC9658236 DOI: 10.3390/ijms232113301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 10/14/2023] Open
Abstract
The embryogenesis capacity of conifer callus is not only highly genotype-dependent, but also gradually lost after long-term proliferation. These problems have seriously limited the commercialization of conifer somatic embryogenesis (SE) technology. In this study, the responsive SE cell line (R-EC), the blocked SE cell line (B-EC), and the loss of SE cell line (L-EC) were studied. The morphological, physiological, transcriptomic, and metabolomic profiles of these three types of cells were analyzed. We found that R-EC had higher water content, total sugar content, and putrescine (Put) content, as well as lower superoxide dismutase (SOD) activity and H2O2 content compared to B-EC and L-EC. A total of 2566, 13,768, and 13,900 differentially expressed genes (DEGs) and 219, 253, and 341 differentially expressed metabolites (DEMs) were found in the comparisons of R-EC versus B-EC, R-EC versus B-EC, and B-EC versus L-EC, respectively. These DEGs and DEMs were mainly found to be involved in plant signal transduction, starch and sugar metabolism, phenylpropane metabolism, and flavonoid metabolism. We found that the AUX1 and AUX/IAA families of genes were significantly up-regulated after the long-term proliferation of callus, resulting in higher auxin content. Most phenylpropane and flavonoid metabolites, which act as antioxidants to protect cells from damage, were found to be significantly up-regulated in R-EC.
Collapse
Affiliation(s)
- Chunxue Peng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Fang Gao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Iraida Nikolaevna Tretyakova
- Laboratory of Forest Genetics and Breeding, V.N. Sukachev Institute of Forest, Siberian Branch of RAS, Krasnoyarsk 660036, Russia
| | - Alexander Mikhaylovich Nosov
- Department of Cell Biology, Institute of Plant Physiology K.A. Timiryazev, Russian Academy of Sciences, Moscow 127276, Russia
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China
| |
Collapse
|
18
|
Feng MQ, Lu MD, Long JM, Yin ZP, Jiang N, Wang PB, Liu Y, Guo WW, Wu XM. miR156 regulates somatic embryogenesis by modulating starch accumulation in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6170-6185. [PMID: 35661206 DOI: 10.1093/jxb/erac248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/02/2022] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that transcription factors CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (CsSPL) genes, and reduction of SE efficiency. In the short tandem target mimic (STTM)-miR156a overexpression callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated. csi-miR172d was down-regulated, whereas the target genes, CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus altering starch accumulation in callus cells and regulating SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs-mediated regulation of SE, and provides new insights into enhancing SE capability in citrus.
Collapse
Affiliation(s)
- Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Meng-Di Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Peng-Bo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yue Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
A Comparative Transcriptome Analysis Reveals the Molecular Mechanisms That Underlie Somatic Embryogenesis in Peaonia ostii ‘Fengdan’. Int J Mol Sci 2022; 23:ijms231810595. [PMID: 36142512 PMCID: PMC9505998 DOI: 10.3390/ijms231810595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Low propagation rate is the primary problem that limits industry development of tree peony. In this study, a highly efficient regeneration system for tree peony using somatic embryogenesis (SE) was established. The transcriptomes of zygotic embryo explants (S0), non-embryonic callus (S1), embryonic callus (S2), somatic embryos (S3), and regenerated shoots (S4) were analyzed to determine the regulatory mechanisms that underlie SE in tree peony. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of S1-vs-S2 and S1-vs-S3, respectively. The enriched DEGs were primarily involved in hormone signal transduction, stress response and the nucleus (epigenetic modifications). The results indicated that cell division, particularly asymmetric cell division, was enhanced in S3. Moreover, the genes implicated in cell fate determination played central roles in S3. Hormone signal pathways work in concert with epigenetic modifications and stress responses to regulate SE. SERK, WOX9, BBM, FUS3, CUC, and WUS were characterized as the molecular markers for tree peony SE. To our knowledge, this is the first study of the SE of tree peony using transcriptome sequencing. These results will improve our understanding of the molecular mechanisms that underly SE in tree peony and will benefit the propagation and genetic engineering of this plant.
Collapse
|
20
|
Chen X, Xu X, Zhang S, Munir N, Zhu C, Zhang Z, Chen Y, Xuhan X, Lin Y, Lai Z. Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in Dimocarpus longan Lour. TREE PHYSIOLOGY 2022; 42:1876-1898. [PMID: 35313353 DOI: 10.1093/treephys/tpac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are widely involved in plant growth and development. However, the function of circRNAs in plant somatic embryogenesis (SE) remains elusive. Here, by using high-throughput sequencing, a total of 5029 circRNAs were identified in the three stages of longan (Dimocarpus longan Lour.) early SE. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed (DE) circRNA host genes were enriched in the 'non-homologous end-joining' (NHEJ) and 'butanoate metabolism' pathways. In addition, the reactive oxygen species (ROS) content during longan early SE was determined. The results indicated that ROS-induced DNA double-strand breaks may not depend on the NHEJ repair pathway. Correlation analyses of the levels of related metabolites (glutamate, γ-aminobutyrate and pyruvate) and the expression levels of circRNAs and their host genes involved in butanoate metabolism were performed. The results suggested that circRNAs may act as regulators of the expression of cognate mRNAs, thereby affecting the accumulation of related compounds. A competing endogenous RNA (ceRNA) network of DE circRNAs, DE mRNAs, DE long noncoding RNAs (lncRNAs) and DE microRNAs (miRNAs) was constructed. The results showed that the putative targets of the noncoding RNA (ncRNAs) were significantly enriched in the KEGG pathways 'mitogen-activated protein kinase signaling' and 'nitrogen metabolism'. Furthermore, the expression patterns of the candidate circRNAs, lncRNAs, miRNAs and mRNAs confirmed the negative correlation between miRNAs and ceRNAs. In addition, two circRNA overexpression vectors were constructed to further verify the ceRNA network correlations in longan early SE. Our study revealed the potential role of circRNAs in longan early SE, providing new insights into the intricate regulatory mechanism underlying plant SE.
Collapse
Affiliation(s)
- Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Nigarish Munir
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| |
Collapse
|
21
|
Zhang C, Xu X, Xu X, Li Y, Zhao P, Chen X, Shen X, Zhang Z, Chen Y, Liu S, XuHan X, Lin Y, Lai Z. Genome-wide identification, evolution analysis of cytochrome P450 monooxygenase multigene family and their expression patterns during the early somatic embryogenesis in Dimocarpus longan Lour. Gene 2022; 826:146453. [PMID: 35337851 DOI: 10.1016/j.gene.2022.146453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
Cytochrome P450 (CYP), a multi-gene superfamily, is involved in a broad range of physiological processes, including hormone responses and secondary metabolism throughout the plant life cycle. Longan (Dimocarpus longan), a subtropical and tropical evergreen fruit tree, its embryonic development is closely related to the yield and quality of fruits. And a large number of secondary metabolites, such as flavonoids and carotenoids, are also produced during the longan somatic embryogenesis (SE). It is important, therefore, to study potential functions of CYPs in longan. However, the knowledge of longan CYPs is still very limited. Here, a total of 327 DlCYPs were identified using the genome-search method, which could be classified into nine clans. The expansion of the DlCYP family was mainly caused by tandem duplication (TD) events. Promoter cis-acting elements analysis elucidated that DlCYPs played important roles in hormonal responses. A total of 246 DlCYPs exhibited six different expression patterns during the early SE based on longan transcriptomic data. Eight DlCYPs underwent alternative splicing (AS) events, and they might produce one to six isoforms. And the AS transcript of DlCYP97C1 might act as an alternative to the full-length transcript in ICpEC and GE stages. Finally, protein-protein interaction (PPI) networks and miRNA target prediction elucidated that DlCYPs might be involved in the phenylpropanoid metabolic pathway and primarily regulated and targeted by miR413. In summary, our results provided valuable inventory for understanding the classification and biological functions of DlCYPs and provided insight into further functional verification of DlCYPs during the longan early SE.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengcheng Zhao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Shen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu XuHan
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Shi QF, Long JM, Yin ZP, Jiang N, Feng MQ, Zheng B, Guo WW, Wu XM. miR171 modulates induction of somatic embryogenesis in citrus callus. PLANT CELL REPORTS 2022; 41:1403-1415. [PMID: 35381869 DOI: 10.1007/s00299-022-02865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.
Collapse
Affiliation(s)
- Qiao-Fang Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Zhang Y, Guo W, Chen L, Shen X, Yang H, Fang Y, Ouyang W, Mai S, Chen H, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Zhou X, Cao D, Li X, Jiao Y. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmUGT Enhanced Soybean Resistance Against Leaf-Chewing Insects Through Flavonoids Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:802716. [PMID: 35273623 PMCID: PMC8902248 DOI: 10.3389/fpls.2022.802716] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Leaf-chewing insects are important pests that cause yield loss and reduce seed quality in soybeans (Glycine max). Breeding soybean varieties that are resistant to leaf-chewing insects can minimize the need for insecticide use and reduce yield loss. The marker gene for QTL-M, Glyma.07g110300 (LOC100775351) that encodes a UDP-glycosyltransferase (UGT) is the major determinant of resistance against leaf-chewing insects in soybean; it exhibits a loss of function in insect-resistant soybean germplasms. In this study, Agrobacterium-mediated transformation introduced the CRISPR/Cas9 expression vector into the soybean cultivar Tianlong No. 1 to generate Glyma.07g110300-gene mutants. We obtained two novel types of mutations, a 33-bp deletion and a single-bp insertion in the GmUGT coding region, which resulted in an enhanced resistance to Helicoverpa armigera and Spodoptera litura. Additionally, overexpressing GmUGT produced soybean varieties that were more sensitive to H. armigera and S. litura. Both mutant and overexpressing lines exhibited no obvious phenotypic changes. The difference in metabolites and gene expression suggested that GmUGT is involved in imparting resistance to leaf-chewing insects by altering the flavonoid content and expression patterns of genes related to flavonoid biosynthesis and defense. Furthermore, ectopic expression of the GmUGT gene in the ugt72b1 mutant of Arabidopsis substantially rescued the phenotype of H. armigera resistance in the atugt72b1 mutant. Our study presents a strategy for increasing resistance against leaf-chewing insects in soybean through CRISPR/Cas9-mediated targeted mutagenesis of the UGT genes.
Collapse
Affiliation(s)
- Yongxing Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinjie Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yisheng Fang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wenqi Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Sihua Mai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqing Jiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
24
|
Qi S, Zhao R, Yan J, Fan Y, Huang C, Li H, Chen S, Zhang T, Kong L, Zhao J, Zhang J. Global Transcriptome and Coexpression Network Analyses Reveal New Insights Into Somatic Embryogenesis in Hybrid Sweetgum ( Liquidambar styraciflua × Liquidambar formosana). FRONTIERS IN PLANT SCIENCE 2021; 12:751866. [PMID: 34880884 PMCID: PMC8645980 DOI: 10.3389/fpls.2021.751866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Somatic embryogenesis (SE) is a process of somatic cells that dedifferentiate to totipotent embryonic stem cells and generate embryos in vitro. Despite recent scientific headway in deciphering the difficulties of somatic embryogenesis, the overall picture of key genes, pathways, and co-expression networks regulating SE is still fragmented. Therefore, deciphering the molecular basis of somatic embryogenesis of hybrid sweetgum remains pertinent. In the present study, we analyzed the transcriptome profiles and gene expression regulation changes via RNA sequencing from three distinct developmental stages of hybrid sweetgum: non-embryogenic callus (NEC), embryogenic callus (EC), and redifferentiation. Comparative transcriptome analysis showed that 19,957 genes were differentially expressed in ten pairwise comparisons of SE. Among these, plant hormone signaling-related genes, especially the auxin and cytokinin signaling components, were significantly enriched in NEC and EC early. The K-means method was used to identify multiple transcription factors, including HB-WOX, B3-ARF, AP2/ERF, and GRFs (growth regulating factors). These transcription factors showed distinct stage- or tissue-specific expression patterns mirroring each of the 12 superclusters to which they belonged. For example, the WOX transcription factor family was expressed only at NEC and EC stages, ARF transcription factor was expressed in EC early, and GRFs was expressed in late SE. It was noteworthy that the AP2/ERF transcription factor family was expressed during the whole SE process, but almost not in roots, stems and leaves. A weighted gene co-expression network analysis (WGCNA) was used in conjunction with the gene expression profiles to recognize the genes and modules that may associate with specific tissues and stages. We constructed co-expression networks and revealed 22 gene modules. Four of these modules with properties relating to embryonic potential, early somatic embryogenesis, and somatic embryo development, as well as some hub genes, were identified for further functional studied. Through a combination analysis of WGCNA and K-means, SE-related genes including AUX22, ABI3, ARF3, ARF5, AIL1, AIL5, AGL15, WOX11, WOX9, IAA29, BBM1, MYB36, LEA6, SMR4 and others were obtained, indicating that these genes play an important role in the processes underlying the progression from EC to somatic embryos (SEs) morphogenesis. The transcriptome information provided here will form the foundation for future research on genetic transformation and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; Key genes obtained from coexpression network analysis at each critical stage of somatic embryo can be considered as potential candidate genes to verify these networks.
Collapse
Affiliation(s)
- Shuaizheng Qi
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ruirui Zhao
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jichen Yan
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yingming Fan
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chao Huang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hongxuan Li
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Siyuan Chen
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ting Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lisheng Kong
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC, Canada
| | - Jian Zhao
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jinfeng Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
Wang Y, Li HL, Zhou YK, Guo D, Zhu JH, Peng SQ. Transcriptomes analysis reveals novel insight into the molecular mechanisms of somatic embryogenesis in Hevea brasiliensis. BMC Genomics 2021; 22:183. [PMID: 33711923 PMCID: PMC7953812 DOI: 10.1186/s12864-021-07501-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is a promising technology for plant vegetative propagation, which has an important role in tree breeding. Though rubber tree (Hevea brasiliensis Muell. Arg.) SE has been founded, few late SE-related genes have been identified and the molecular regulation mechanisms of late SE are still not well understood. RESULTS In this study, the transcriptomes of embryogenic callus (EC), primary embryo (PE), cotyledonary embryo (CE), abnormal embryo (AE), mature cotyledonary embryo (MCE) and withered abnormal embryo (WAE) were analyzed. A total of 887,852,416 clean reads were generated, 85.92% of them were mapped to the rubber tree genome. The de novo assembly generated 36,937 unigenes. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of CE vs. AE and MCE vs. WAE, respectively. The specific common DEGs were mainly involved in the phytohormones signaling pathway, biosynthesis of phenylpropanoid and starch and sucrose metabolism. Among them, hormone signal transduction related genes were significantly enriched, especially the auxin signaling factors (AUX-like1, GH3.1, SAUR32-like, IAA9-like, IAA14-like, IAA27-like, IAA28-like and ARF5-like). The transcription factors including WRKY40, WRKY70, MYBS3-like, MYB1R1-like, AIL6 and bHLH93-like were characterized as molecular markers for rubber tree late SE. CML13, CML36, CAM-7, SERK1 and LEAD-29-like were also related to rubber tree late SE. In addition, histone modification had crucial roles during rubber tree late SE. CONCLUSIONS This study provides important information to elucidate the molecular regulation during rubber tree late SE.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Yong-Kai Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Jia-Hong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China.
- Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China.
| |
Collapse
|
26
|
Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Ong PW, Ooi LCL, Low ETL, Ishak Z, Yahya S, Song Y, Singh R. Early nodulin 93 protein gene: essential for induction of somatic embryogenesis in oil palm. PLANT CELL REPORTS 2020; 39:1395-1413. [PMID: 32734510 DOI: 10.1007/s00299-020-02571-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.
Collapse
Affiliation(s)
- Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Ray J Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Pei-Wen Ong
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Institute of Plant Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan, ROC
| | - Leslie Cheng-Li Ooi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zamzuri Ishak
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- , No.16, Jalan 3/5E, 43650, Bandar Baru Bangi, Selangor, Malaysia
| | - Suzaini Yahya
- Sime Darby Biotech Laboratories Sdn Bhd., Km10, Jalan Banting-Kelanang, P.O. Box 207, 42700, Banting, Selangor, Malaysia
- , Taman Alam Shah, 41000, Klang, Selangor, Malaysia
| | - Youhong Song
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
27
|
Chen X, Huang S, Jiang M, Chen Y, XuHan X, Zhang Z, Lin Y, Lai Z. Genome-wide identification and expression analysis of the SR gene family in longan (Dimocarpus longan Lour.). PLoS One 2020; 15:e0238032. [PMID: 32841304 PMCID: PMC7447046 DOI: 10.1371/journal.pone.0238032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/05/2022] Open
Abstract
Longan (Dimocarpus longan Lour.) is an important commercial fruit tree in southern China. The embryogenesis of longan affects the quality and yield of fruit. A large number of alternative splicing events occurs during somatic embryogenesis (SE), which is regulated by serine/arginine-rich (SR) proteins. However, the functions of SR proteins in longan are poorly understood. In this study, 21 Dlo-SR gene family members belonging to six subfamilies were identified, among which Dlo-RSZ20a, Dlo-SR30, Dlo-SR17, Dlo-SR53 and Dlo-SR32 were localized in the nucleus, Dlo-RSZ20b, Dlo-RSZ20c, Dlo-RSZ20d, Dlo-SC18, Dlo-RS2Z29, Dlo-SCL41, and Dlo-SR33 were localized in chloroplasts, and Dlo-RS43, Dlo-SC33, Dlo-SC37, Dlo-RS2Z33, Dlo-RS2Z16, Dlo-RS2Z24, Dlo-SCL43, Dlo-SR112, and Dlo-SR59 were localized in the nucleus and chloroplasts. The Dlo-SR genes exhibited differential expression patterns in different tissues of longan. The transcript levels of Dlo-RSZ20a, Dlo-SC18, Dlo-RS2Z29, DLo-SR59, Dlo-SR53, and Dlo-SR17 were low in all analyzed tissues, whereas Dlo-RS43, Dlo-RS2Z16, Dlo-RS2Z24, and Dlo-SR30 were highly expressed in all tissues. To clarify their function during SE, the transcript levels of Dlo-SR genes were analyzed at different four stages of SE, comprising non-embryonic callus (NEC), friable-embryogenic callus (EC), incomplete compact pro-embryogenic culture (ICpEC) and globular embryo (GE). Interestingly, the transcript levels of Dlo-RS2Z29 and Dlo-SR112 were increased in embryogenic cells compared with the NEC stage, whereas transcript levels of Dlo-RSZ20a, Dlo-RS43, Dlo-SC37, and Dlo-RS2Z16 were especially increased at the GE stage compared with the other stages. Alternative splicing events of Dlo-SR mRNA precursors (pre-mRNAs) was detected during SE, with totals of 41, 29, 35, and 44 events detected during NEC, EC, ICpEC, and GE respectively. Protein–protein interaction analysis showed that SR proteins were capable of interaction with each other. The results indicate that the alternative splicing of Dlo-SR pre-mRNAs occurs during SE and that Dlo-SR proteins may interact to regulate embryogenesis of longan.
Collapse
Affiliation(s)
- Xiaodong Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Huang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengqi Jiang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yukun Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu XuHan
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute de la Recherche Interdisciplinaire de Toulouse, Toulouse, France
| | - Zihao Zhang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| | - Zhongxiong Lai
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| |
Collapse
|
28
|
Li X, Chen Y, Zhang S, Su L, Xu X, Chen X, Lai Z, Lin Y. Genome-wide identification and expression analyses of Sm genes reveal their involvement in early somatic embryogenesis in Dimocarpus longan Lour. PLoS One 2020; 15:e0230795. [PMID: 32243451 PMCID: PMC7122786 DOI: 10.1371/journal.pone.0230795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
The Sm proteins are a conserved protein family with Sm motifs. The family includes Sm and Sm-like proteins, which play important roles in pre-mRNA splicing. Most research on the Sm proteins have been conducted in herbaceous plants, and less in woody plants such as Dimocarpus longan (longan). And the embryo development status significantly affects the quality and yield of longan. In this study, we conducted a genome-wide analysis of longan Sm genes (DlSm) to clarify their roles during somatic embryogenesis (SE) and identified 29 Sm genes. Phylogenetic analysis deduced longan Sm proteins clustered into 17 phylogenetic groups with the homologous Sm proteins of Arabidopsis thaliana. We also analyzed the gene structures, motif compositions, and conserved domains of the longan Sm proteins. The promoter sequences of the DlSm genes contained many light, endosperm development, hormone, and temperature response elements, which suggested their possible functions. In the non-embryogenic callus(NEC) and during early SE in longan, the alternative splicing(AS) events of DlSm genes indicated that these genes may influence SE development by changing gene structures and sequences. The kinetin(KT) hormone, and blue and white light treatments affected the differentiation and growth of longan embryonic callus(EC) probably by affecting the AS events of DlSm genes. Expression profiles showed the possible functional divergence among Sm genes, and different hormones and light qualities affected their expression levels. The expression trends of the DlSm genes determined by RNA sequencing as fragments per kilobase of exon model per million mapped reads (FPKM) and by real-time quantitative PCR(qRT-PCR) during early SE in longan showed that the expression of the DlSm genes was affected by the growth and differentiation of longan SE, and decreased as the somatic embryo differentiation progressed. The results will contributed to understanding the longan Sm gene family and provide a basis for future functional validation studies.
Collapse
Affiliation(s)
- Xue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liyao Su
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoping Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohui Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
29
|
Wójcik AM, Wójcikowska B, Gaj MD. Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:E1333. [PMID: 32079138 PMCID: PMC7072907 DOI: 10.3390/ijms21041333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
Auxin contributes to almost every aspect of plant development and metabolism as well as the transport and signalling of auxin-shaped plant growth and morphogenesis in response to endo- and exogenous signals including stress conditions. Consistently with the common belief that auxin is a central trigger of developmental changes in plants, the auxin treatment of explants was reported to be an indispensable inducer of somatic embryogenesis (SE) in a large number of plant species. Treating in vitro-cultured tissue with auxins (primarily 2,4-dichlorophenoxyacetic acid, which is a synthetic auxin-like plant growth regulator) results in the extensive reprogramming of the somatic cell transcriptome, which involves the modulation of numerous SE-associated transcription factor genes (TFs). A number of SE-modulated TFs that control auxin metabolism and signalling have been identified, and conversely, the regulators of the auxin-signalling pathway seem to control the SE-involved TFs. In turn, the different expression of the genes encoding the core components of the auxin-signalling pathway, the AUXIN/INDOLE-3-ACETIC ACIDs (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs), was demonstrated to accompany SE induction. Thus, the extensive crosstalk between the hormones, in particular, auxin and the TFs, was revealed to play a central role in the SE-regulatory network. Accordingly, LEAFY COTYLEDON (LEC1 and LEC2), BABY BOOM (BBM), AGAMOUS-LIKE15 (AGL15) and WUSCHEL (WUS) were found to constitute the central part of the complex regulatory network that directs the somatic plant cell towards embryogenic development in response to auxin. The revealing picture shows a high degree of complexity of the regulatory relationships between the TFs of the SE-regulatory network, which involve direct and indirect interactions and regulatory feedback loops. This review examines the recent advances in studies on the auxin-controlled genetic network, which is involved in the mechanism of SE induction and focuses on the complex regulatory relationships between the down- and up-stream targets of the SE-regulatory TFs. In particular, the outcomes from investigations on Arabidopsis, which became a model plant in research on genetic control of SE, are presented.
Collapse
|