1
|
Duan Y, Wang Y, Ding W, Wang C, Meng L, Meng J, Chen N, Liu Y, Xing S. Comparative and phylogenetic analysis of the chloroplast genomes of four commonly used medicinal cultivars of Chrysanthemums morifolium. BMC PLANT BIOLOGY 2024; 24:992. [PMID: 39434004 PMCID: PMC11495106 DOI: 10.1186/s12870-024-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
'Boju' and 'Huaiju' are cultivars of the Chrysanthemum (Chrysanthemum morifolium Ramat.) in the family Asteraceae, valued for their medicinal, tea, and ornamental properties, and valued by individuals. However, the yield and quality of medicinal chrysanthemums are limited by the characteristics of the germplasm resources, including the identification at the varieties and cultivation levels. Currently, research characterizing the chloroplast genomes of medicinal Chrysanthemum flowers is relatively limited. This study conducted chloroplast whole-genome sequencing on two cultivars of Chrysanthemum, 'Boju' and 'Huaiju', and compared them with the previously published chloroplast genomes of 'Hangbaiju' and 'Gongju'. The study analyzed the chloroplast genome structures of these four medicinal Chrysanthemums, identifying mutation hotspots and clarifying their phylogenetic relationships. The chloroplast genome sizes of four medicinal Chrysanthemum cultivation products ranged from 151,057 to 151,109 bp, with GC content ranging from 37.45% to 37.76%. A total of 134 genes were identified, including 89 protein-coding genes, 37 ribosomal RNA genes, and 8 transfer RNA genes. Comparative genomic analysis revealed 159 large repeat sequences, 276 simple sequence repeats, 1 gene, and 8 intergenic regions identified as highly variable regions. Nucleotide diversity (Pi) values were high (≥ 0.004) for the petN-psbM, trnR-UCU-trnT-GGU, trnT-GGU-psbD, ndhC-trnV-UCA, ycf1, ndhI-ndhG, trnL-UGA-rpl32, rpl32-ndhF, and ndhF-ycf1 fragments, aiding in variety identification. Phylogenetic analysis revealed consistent results between maximum likelihood and Bayesian inference trees, showing that the four medicinal Chrysanthemum cultivars, along with their wild counterparts and related species, evolved as a monophyletic group, forming a sister clade to Artemisia and Ajania. Among the six Chrysanthemum species, the wild Chrysanthemum diverged first (Posterior probability = 1, bootstrap = 1,000), followed by Ajania, while C. indicum and C. morifolium clustered together (Bootstrap = 100), indicating their closest genetic relationship. The chloroplast whole-genome data and characteristic information provided in this study can be used for variety identification, genetic conservation, and phylogenetic analysis within the family Asteraceae.
Collapse
Affiliation(s)
- Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chun Wang
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ling Meng
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Jie Meng
- Jiuzhou Fangyuan Pharmaceutical Co., Ltd., Anhui Modern Industry Research Institute of Traditional Chinese Medicine, Bozhou, 236821, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China.
| |
Collapse
|
2
|
Zhang Q, Yu Z, Wang C, Zhang Y, Miao B, Xu Y, Chen Q. Characterization of the complete chloroplast genome sequence of Artemisia sylvatica Maximowicz 1859 (Asteraceae). Mitochondrial DNA B Resour 2024; 9:1394-1399. [PMID: 39421297 PMCID: PMC11485915 DOI: 10.1080/23802359.2024.2415130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Artemisia sylvatica Maximowicz 1859 is one of the medicinal herbs in Artemisia. This study presents the complete chloroplast genome of A. sylvatica, sequenced using the Illumina NovaSeq platform. The genome is 151,161 bp in length, featuring a GC content of 38%. It consists of a large single-copy (LSC) region of 82,892 bp, a small single-copy (SSC) region of 18,353 bp, and two inverted repeat (IR) regions of 24,958 bp each. In total, the genome contains 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis positions A. sylvatica within the subgenus Artemisia, highlighting its evolutionary relationships within this diverse genus. The first chloroplast genome of A. sylvatica was reported in this work contributes to the enrichment of genomic data for the genus Artemisia.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, P. R. China
| | - Zelong Yu
- College of Forestry, Xinyang Agricultural and Forestry University, Xinyang, P. R. China
| | - Chunsheng Wang
- College of Agriculture, Xinyang Agricultural and Forestry University, Xinyang, P. R. China
| | - Yingli Zhang
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, P. R. China
| | - Bailing Miao
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, P. R. China
| | - Yuan Xu
- College of Pharmacy, Xinyang Agricultural and Forestry University, Xinyang, P. R. China
| | - Qiong Chen
- College of Pharmacy, Xinyang Agricultural and Forestry University, Xinyang, P. R. China
| |
Collapse
|
3
|
Kadam SK, Youn JS, Tamboli AS, Yang J, Pak JH, Choo YS. Complete chloroplast genome sequence of Artemisia littoricola (Asteraceae) from Dokdo Island Korea: genome structure, phylogenetic analysis, and biogeography study. Funct Integr Genomics 2024; 24:181. [PMID: 39365449 DOI: 10.1007/s10142-024-01464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The Asteraceae family, particularly the Artemisia genus, presents taxonomic challenges due to limited morphological characteristics and frequent natural hybridization. Molecular tools, such as chloroplast genome analysis, offer solutions for accurate species identification. In this study, we sequenced and annotated the chloroplast genome of Artemisia littoricola sourced from Dokdo Island, employing comparative analyses across six diverse Artemisia species. Our findings reveal conserved genome structures with variations in repeat sequences and junction boundaries. Notably, the chloroplast genome of A. littoricola spans 150,985 bp, consistent with other Artemisia species, and comprises 131 genes, including 86 protein-coding, 37 tRNA, and 8 rRNA genes. Among these genes, 16 possess a single intron, while clpP and ycf3 exhibit two introns each. Furthermore, 18 genes display duplicated copies within the IR regions. Moreover, the genome possesses 42 Simple Sequence Repeats (SSRs), predominantly abundant in A/T content and located within intergenic spacer regions. The analysis of codon usage revealed that the codons for leucine were the most frequent, with a preference for ending with A/U. While the chloroplast genome exhibited conservation overall, non-coding regions showed lower conservation compared to coding regions, with the Inverted Repeat (IR) region displaying higher conservation than single-copy regions. Phylogenetic analyses position A. littoricola within subgenus Dracunculus, indicating a close relationship with A. scoparia and A. desertorum. Additionally, biogeographic reconstructions suggest ancestral origins in East Asia, emphasizing Mongolia, China (North East and North Central and South Central China), and Korea. This study underscores the importance of chloroplast genomics in understanding Artemisia diversity and evolution, offering valuable insights into taxonomy, evolutionary patterns, and biogeographic history. These findings not only enhance our understanding of Artemisia's intricate biology but also contribute to conservation efforts and facilitate the development of molecular markers for further research and applications in medicine and agriculture.
Collapse
Affiliation(s)
- Suhas K Kadam
- Department of Biology, School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Jin-Suk Youn
- Department of Biology, School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Asif S Tamboli
- Department of Biology, School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - JiYoung Yang
- Department of Biology, School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Jae Hong Pak
- Department of Biology, School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Yeon-Sik Choo
- Department of Biology, School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea.
- Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak- ro, Buk-gu, Daegu, 41566, Korea.
| |
Collapse
|
4
|
Ding X, Pan H, Shi P, Zhao S, Bao S, Zhong S, Dai C, Chen J, Gong L, Zhang D, Qiu X, Liao B, Huang Z. A comparative analysis of chloroplast genomes revealed the chloroplast heteroplasmy of Artemisia annua. Front Pharmacol 2024; 15:1466578. [PMID: 39206258 PMCID: PMC11349571 DOI: 10.3389/fphar.2024.1466578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Artemisia annua L. is the main source of artemisinin, an antimalarial drug. High diversity of morphological characteristics and artemisinin contents of A. annua has affected the stable production of artemisinin while efficient discrimination method of A. annua strains is not available. The complete chloroplast (cp) genomes of 38 A. annua strains were assembled and analyzed in this study. Phylogenetic analysis of Artemisia species showed that distinct intraspecific divergence occurred in A. annua strains. A total of 38 A. annua strains were divided into two distinct lineages, one lineage containing widely-distributed strains and the other lineage only containing strains from northern China. The A. annua cp genomes ranged from 150, 953 to 150, 974 bp and contained 131 genes, and no presence or absence variation of genes was observed. The IRs and SC junctions were located in rps19 and ycf1, respectively, without IR contraction observed. Rich sequence polymorphisms were observed among A. annua strains, and a total of 60 polymorphic sites representing 14 haplotypes were identified which unfolding the cpDNA heteroplasmy of A. annua. In conclusion, this study provided valuable resource for A. annua strains identification and provided new insights into the evolutionary characteristics of A. annua.
Collapse
Affiliation(s)
- Xiaoxia Ding
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hengyu Pan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiqi Shi
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyu Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengye Bao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Zhong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Chunyan Dai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieting Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Gong
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baosheng Liao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Luo L, Qu Q, Lin H, Chen J, Lin Z, Shao E, Lin D. Exploring the Evolutionary History and Phylogenetic Relationships of Giant Reed ( Arundo donax) through Comprehensive Analysis of Its Chloroplast Genome. Int J Mol Sci 2024; 25:7936. [PMID: 39063178 PMCID: PMC11277011 DOI: 10.3390/ijms25147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Giant reed (Arundo donax) is widely distributed across the globe and is considered an important energy crop. This study presents the first comprehensive analysis of the chloroplast genome of giant reed, revealing detailed characteristics of this species' chloroplast genome. The chloroplast genome has a total length of 137,153 bp, containing 84 protein-coding genes, 38 tRNA genes, and 8 rRNA genes, with a GC content of 39%. Functional analysis indicates that a total of 45 photosynthesis-related genes and 78 self-replication-related genes were identified, which may be closely associated with its adaptability and growth characteristics. Phylogenetic analysis confirmed that Arundo donax cv. Lvzhou No.1 belongs to the Arundionideae clade and occupies a distinct evolutionary position compared to other Arundo species. The findings of this study not only enhance our understanding of the giant reed genome but also provide valuable genetic resources for its application in biotechnology, bioenergy crop development, and ecological restoration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ensi Shao
- Juncao Science and Ecology College, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Q.Q.); (H.L.); (J.C.); (Z.L.)
| | - Dongmei Lin
- Juncao Science and Ecology College, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Q.Q.); (H.L.); (J.C.); (Z.L.)
| |
Collapse
|
6
|
Zhang L, Zhang E, Wei Y, Zheng G. Phylogenetic analysis and divergence time estimation of Lycium species in China based on the chloroplast genomes. BMC Genomics 2024; 25:569. [PMID: 38844874 PMCID: PMC11155141 DOI: 10.1186/s12864-024-10487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Lycium is an economically and ecologically important genus of shrubs, consisting of approximately 70 species distributed worldwide, 15 of which are located in China. Despite the economic and ecological importance of Lycium, its phylogeny, interspecific relationships, and evolutionary history remain relatively unknown. In this study, we constructed a phylogeny and estimated divergence time based on the chloroplast genomes (CPGs) of 15 species, including subspecies, of the genus Lycium from China. RESULTS We sequenced and annotated 15 CPGs in this study. Comparative analysis of these genomes from these Lycium species revealed a typical quadripartite structure, with a total sequence length ranging from 154,890 to 155,677 base pairs (bp). The CPGs was highly conserved and moderately differentiated. Through annotation, we identified a total of 128-132 genes. Analysis of the boundaries of inverted repeat (IR) regions showed consistent positioning: the junctions of the IRb/LSC region were located in rps19 in all Lycium species, IRb/SSC between the ycf1 and ndhF genes, and SSC/IRa within the ycf1 gene. Sequence variation in the SSC region exceeded that in the IR region. We did not detect major expansions or contractions in the IR region or rearrangements or insertions in the CPGs of the 15 Lycium species. Comparative analyses revealed five hotspot regions in the CPG: trnR(UCU), atpF-atpH, ycf3-trnS(GGA), trnS(GGA), and trnL-UAG, which could potentially serve as molecular markers. In addition, phylogenetic tree construction based on the CPG indicated that the 15 Lycium species formed a monophyletic group and were divided into two typical subbranches and three minor branches. Molecular dating suggested that Lycium diverged from its sister genus approximately 17.7 million years ago (Mya) and species diversification within the Lycium species of China primarily occurred during the recent Pliocene epoch. CONCLUSION The divergence time estimation presented in this study will facilitate future research on Lycium, aid in species differentiation, and facilitate diverse investigations into this economically and ecologically important genus.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, College of Biological Science & Engineering, National Ethnic Affairs Commission of the People's Republic of China, North Minzu University, Yinchuan, 750021, China
| | - Erdong Zhang
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, College of Biological Science & Engineering, National Ethnic Affairs Commission of the People's Republic of China, North Minzu University, Yinchuan, 750021, China
| | - Yuqing Wei
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, College of Biological Science & Engineering, National Ethnic Affairs Commission of the People's Republic of China, North Minzu University, Yinchuan, 750021, China
| | - Guoqi Zheng
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
7
|
Wang Y, Wei Q, Xue T, He S, Fang J, Zeng C. Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing. BMC Genomics 2024; 25:561. [PMID: 38840044 PMCID: PMC11151499 DOI: 10.1186/s12864-024-10455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.
Collapse
Affiliation(s)
- Yuhang Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Qingying Wei
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Tianyuan Xue
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Sixiao He
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Jiao Fang
- School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Ye H, Wang Y, Liu H, Lei D, Li H, Gao Z, Feng X, Han M, Qie Q, Zhou H. The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1334. [PMID: 38794406 PMCID: PMC11125379 DOI: 10.3390/plants13101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Disentangling how climate oscillations and geographical events significantly influence plants' genetic architecture and demographic history is a central topic in phytogeography. The deciduous ancient tree species Ulmus macrocarpa is primarily distributed throughout Northern China and has timber and horticultural value. In the current study, we studied the phylogenic architecture and demographical history of U. macrocarpa using chloroplast DNA with ecological niche modeling. The results indicated that the populations' genetic differentiation coefficient (NST) value was significantly greater than the haplotype frequency (GST) (p < 0.05), suggesting that U. macrocarpa had a clear phylogeographical structure. Phylogenetic inference showed that the putative chloroplast haplotypes could be divided into three groups, in which the group Ⅰ was considered to be ancestral. Despite significant genetic differentiation among these groups, gene flow was detected. The common ancestor of all haplotypes was inferred to originate in the middle-late Miocene, followed by the haplotype overwhelming diversification that occurred in the Quaternary. Combined with demography pattern and ecological niche modeling, we speculated that the surrounding areas of Shanxi and Inner Mongolia were potential refugia for U. macrocarpa during the glacial period in Northern China. Our results illuminated the demography pattern of U. macrocarpa and provided clues and references for further population genetics investigations of precious tree species distributed in Northern China.
Collapse
Affiliation(s)
- Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiling Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Dingfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhimei Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaolong Feng
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Mian Han
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Qiyang Qie
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China
| |
Collapse
|
9
|
Lao XL, Meng Y, Wu J, Wen J, Nie ZL. Plastid genomes provide insights into the phylogeny and chloroplast evolution of the paper daisy tribe Gnaphalieae (Asteraceae). Gene 2024; 901:148177. [PMID: 38242378 DOI: 10.1016/j.gene.2024.148177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Chloroplast genomes, as an essential source of phylogenetic information, are increasingly utilized in the evolutionary study of angiosperms. Gnaphalieae is a medium-sized tribe of the sunflower family of Asteraceae, with about 2,100 species in 178 genera distributed in temperate habitats worldwide. There has been considerable progress in our understanding of their phylogenetic evolution using both nuclear and chloroplast sequences, but no focus on chloroplast genomic data. In this study, we performed sequencing, assembly, and annotation of 16 representative chloroplast genomes from all the major lineages of Gnaphalieae. Our results showed that the plastomes exhibited a typical circular tetrad structure with similar genomic structure gene content. But there were differences in genome size, SSRs, and codon usage within the tribe. Phylogenetic analysis revealed Relhania clade is the earliest diverged lineages with the Lasiopogon clade and the Gnaphalium s.s. clade diverged subsequently. The core group includes FLAG clade sister to the HAP and Australasian group. Compared with the outgroup species, chloroplast genome size of the FLAG clade is much reduced whereas those of Australasian, HAP, Gnaphalium s.s., Lasiopogon and Relhania clades are relatively expanded. Insertions and deletions in the intergenic regions associated with repetitive sequence variations are supposed to be the main factor leading to length variations in the chloroplast genomes of Gnaphalieae. The comparative analyses of chloroplast genomes would provide useful implications into understanding the taxonomic and evolutionary history of Gnaphalieae.
Collapse
Affiliation(s)
- Xiao-Lin Lao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jue Wu
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China.
| |
Collapse
|
10
|
Gao Y, Chen Z, Li X, Malik K, Li C. Comparative Analyses of Complete Chloroplast Genomes of Microula sikkimensis and Related Species of Boraginaceae. Genes (Basel) 2024; 15:226. [PMID: 38397215 PMCID: PMC10887780 DOI: 10.3390/genes15020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The present study provides a detailed analysis of the chloroplast genome of Microula sikkimensis. The genome consisted of a total of 149,428 bp and four distinct regions, including a large single-copy region (81,329 bp), a small single-copy region (17,261 bp), and an inverted repeat region (25,419 bp). The genome contained 112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes, and some exhibited duplication in the inverted repeat region. The chloroplast genome displayed different GC content across regions, with the inverted repeat region exhibiting the highest. Codon usage analysis and the identification of simple sequence repeats (SSRs) offer valuable genetic markers. Comparative analysis with other Boraginaceae species highlighted conservation and diversity in coding and noncoding regions. Phylogenetic analysis placed M. sikkimensis within the Boraginaceae family, revealing its distinct relationship with specific species.
Collapse
Affiliation(s)
- Yunqing Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiuzhang Li
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China;
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Luo J, Liu X, Li T, Chen H, Qu T, Wang Y, Yu S, Fu Z. Characterization and phylogenetic analysis of the chloroplast genome of Duhaldea cappa (Buch.-Ham. ex D.Don) Pruski & Anderb. (Asteraceae). Mitochondrial DNA B Resour 2024; 9:186-190. [PMID: 38282979 PMCID: PMC10812854 DOI: 10.1080/23802359.2024.2306203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
Duhaldea cappa, a valuable medicinal plant of genus Duhaldea in the tribe Inuleae, is predominantly found in China, Bhutan, India, Malaysia, Nepal, Pakistan, Thailand, and Vietnam. However, the genomic studies of Duhaldea cappa are limited. In this study, we successfully sequenced and assembled the complete chloroplast genome of Duhaldea cappa. The chloroplast genome is 150,819 bp in length with a 37.73% GC content. The chloroplast genome has a quadripartite structure, consisting of a large single-copy region of 82,731 bp, a small single-copy region of 18,168 bp, and a pair of inverted repeat sequences of 24,960 bp. The genome contains 133 genes. Among these genes, there are 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogeny reconstructed from data of the complete chloroplast genome indicated that Duhaldea cappa is closely related to Pluchea indica in the tribe Inuleae. Analyzing and reporting the chloroplast genome of Duhaldea cappa will establish a solid theoretical and data foundation for the efficient development, conservation, and utilization of this plant species.
Collapse
Affiliation(s)
- Junjia Luo
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaofeng Liu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Tingyu Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Hui Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Tianmeng Qu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yueguang Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Shuhua Yu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Zhixi Fu
- Ministry of Education, Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| |
Collapse
|
12
|
Li Z, Duan B, Zhou Z, Fang H, Yang M, Xia C, Zhou Y, Wang J. Comparative analysis of medicinal plants Scutellaria baicalensis and common adulterants based on chloroplast genome sequencing. BMC Genomics 2024; 25:39. [PMID: 38191291 PMCID: PMC10773089 DOI: 10.1186/s12864-023-09920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Scutellaria baicalensis Georgi has been extensively used as a medicinal herb in China for over 2000 years. They may be intentionally or inadvertently substituted or blended with comparable species in the local market, threatening clinical medication safety. Molecular markers are effective tools to prevent misidentification and eliminate doping and falsification among Scutellaria plants. This study screened four highly variable regions to identify Scutellaria and its adulterants. In addition, a phylogenetic analysis was performed using the complete cp genome combined with published Scutellaria species samples. Moreover, a comparative analysis of the cp genomes was conducted to investigate the cp genome evolution of S. baicalensis. RESULTS The complete cp genome of five species of Scutellaria was sequenced for the first time, and four previously published Scutellaria species were re-sequenced. They all exhibited a conserved quadripartite structure in their cp genomes, including two distinct regions, namely a small and large single copy region, respectively, and two inverted repeats encompassing the majority of ribosomal RNA genes. Furthermore, the nine species exhibited high conservation from aspects of the genome structure, codon usage, repeat sequences, and gene content. Four highly variable regions (matK-rps16, ndhC-trnV-UAC, psbE-petL, and rps16-trnQ-UUG) may function as potential molecular markers for differentiating S. baicalensis from its adulterants. Additionally, the monophyly of Scutellaria was ascertained and could be reclassified into two subgenera, subgenus Anaspis and subgenus Scutellaria, as evidenced by the phylogenetic analyses on sequences of cp genome and shared protein-coding sequences. According to the molecular clock analysis, it has been inferred that the divergence of Scutellaria occurred at approximately 4.0 Mya during the Pliocene Epoch. CONCLUSION Our study provides an invaluable theoretical basis for further Scutellaria species identification, phylogenetics, and evolution analysis.
Collapse
Affiliation(s)
- Zhen Li
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Hui Fang
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Meihua Yang
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Ying Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
- Institute of Caulis Dendrobii of Longling County, Baoshan, 678300, China.
| | - Jing Wang
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
13
|
Niu Z, Lin Z, Tong Y, Chen X, Deng Y. Complete plastid genome structure of 13 Asian Justicia (Acanthaceae) species: comparative genomics and phylogenetic analyses. BMC PLANT BIOLOGY 2023; 23:564. [PMID: 37964203 PMCID: PMC10647099 DOI: 10.1186/s12870-023-04532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Justicia L. is the largest genus in Acanthaceae Juss. and widely distributed in tropical and subtropical regions of the world. Previous phylogenetic studies have proposed a general phylogenetic framework for Justicia based on several molecular markers. However, their studies were mainly focused on resolution of phylogenetic issues of Justicia in Africa, Australia and South America due to limited sampling from Asia. Additionally, although Justicia plants are of high medical and ornamental values, little research on its genetics was reported. Therefore, to improve the understanding of its genomic structure and relationships among Asian Justicia plants, we sequenced complete chloroplast (cp.) genomes of 12 Asian plants and combined with the previously published cp. genome of Justicia leptostachya Hemsl. for further comparative genomics and phylogenetic analyses. RESULTS All the cp. genomes exhibit a typical quadripartite structure without genomic rearrangement and gene loss. Their sizes range from 148,374 to 151,739 bp, including a large single copy (LSC, 81,434-83,676 bp), a small single copy (SSC, 16,833-17,507 bp) and two inverted repeats (IR, 24,947-25,549 bp). GC contents range from 38.1 to 38.4%. All the plastomes contain 114 genes, including 80 protein-coding genes, 30 tRNAs and 4 rRNAs. IR variation and repetitive sequences analyses both indicated that Justicia grossa C. B. Clarke is different from other Justicia species because its lengths of ndhF and ycf1 in IRs are shorter than others and it is richest in SSRs and dispersed repeats. The ycf1 gene was identified as the candidate DNA barcode for the genus Justicia. Our phylogenetic results showed that Justicia is a polyphyletic group, which is consistent with previous studies. Among them, J. grossa belongs to subtribe Tetramerinae of tribe Justicieae while the other Justicia members belong to subtribe Justiciinae. Therefore, based on morphological and molecular evidence, J. grossa should be undoubtedly recognized as a new genus. Interestingly, the evolutionary history of Justicia was discovered to be congruent with the morphology evolution. CONCLUSION Our study not only elucidates basic features of Justicia whole plastomes, but also sheds light on interspecific relationships of Asian Justicia plants for the first time.
Collapse
Affiliation(s)
- Zhengyang Niu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheli Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yi Tong
- School of Chinese Materia Medica Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
14
|
Xu XM, Wei Z, Sun JZ, Zhao QF, Lu Y, Wang ZL, Zhu SX. Phylogeny of Leontopodium (Asteraceae) in China-with a reference to plastid genome and nuclear ribosomal DNA. FRONTIERS IN PLANT SCIENCE 2023; 14:1163065. [PMID: 37583593 PMCID: PMC10425225 DOI: 10.3389/fpls.2023.1163065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
The infrageneric taxonomy system, species delimitation, and interspecies systematic relationships of Leontopodium remain controversial and complex. However, only a few studies have focused on the molecular phylogeny of this genus. In this study, the characteristics of 43 chloroplast genomes of Leontopodium and its closely related genera were analyzed. Phylogenetic relationships were inferred based on chloroplast genomes and nuclear ribosomal DNA (nrDNA). Finally, together with the morphological characteristics, the relationships within Leontopodium were identified and discussed. The results showed that the chloroplast genomes of Filago, Gamochaeta, and Leontopodium were well-conserved in terms of gene number, gene order, and GC content. The most remarkable differences among the three genera were the length of the complete chloroplast genome, large single-copy region, small single-copy region, and inverted repeat region. In addition, the chloroplast genome structure of Leontopodium exhibited high consistency and was obviously different from that of Filago and Gamochaeta in some regions, such as matk, trnK (UUU)-rps16, petN-psbM, and trnE (UUC)-rpoB. All the phylogenetic trees indicated that Leontopodium was monophyletic. Except for the subgeneric level, our molecular phylogenetic results were inconsistent with the previous taxonomic system, which was based on morphological characteristics. Nevertheless, we found that the characteristics of the leaf base, stem types, and carpopodium base were phylogenetically correlated and may have potential value in the taxonomic study of Leontopodium. In the phylogenetic trees inferred using complete chloroplast genomes, the subgen. Leontopodium was divided into two clades (Clades 1 and 2), with most species in Clade 1 having herbaceous stems, amplexicaul, or sheathed leaves, and constricted carpopodium; most species in Clade 2 had woody stems, not amplexicaul and sheathed leaves, and not constricted carpopodium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Xu Q, Li Z, Wu N, Yang J, Yuan L, Zhao T, Sima Y, Xu T. Comparitive Analysis of the Chloroplast Genomes of Three Houpoea Plants. Genes (Basel) 2023; 14:1262. [PMID: 37372442 DOI: 10.3390/genes14061262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The genus Houpoea belongs to the family Magnoliaceae, and the species in this genus have important medicinal values. However, the investigation of the correlation between the evolution of the genus and its phylogeny has been severely hampered by the unknown range of species within the genus and the paucity of research on its chloroplast genome. Thus, we selected three species of Houpoea: Houpoea officinalis var officinalis (OO), Houpoea officinalis var. biloba (OB), and Houpoea rostrata (R). With lengths of 160,153 bp (OO), 160,011 bp (OB), and 160,070 bp (R), respectively, the whole chloroplast genomes (CPGs) of these three Houpoea plants were acquired via Illumina sequencing technology, and the findings were annotated and evaluated. These three chloroplast genomes were revealed by the annotation findings to be typical tetrads. A total of 131, 132, and 120 different genes were annotated. The CPGs of the three species had 52, 47, and 56 repeat sequences, which were primarily found in the ycf2 gene. A useful tool for identifying species is the approximately 170 simple sequence repeats (SSRs) that have been found. The border area of the reverse repetition region (IR) was studied, and it was shown that across the three Houpoea plants, it is highly conservative, with only changes between H. rostrata and the other two plants observed. Numerous highly variable areas (rps3-rps19, rpl32-trnL, ycf1, ccsA, etc.) have the potential to serve as the barcode label for Houpoea, according to an examination of mVISTA and nucleotide diversity (Pi). Phylogenetic relation indicates that Houpoea is a monophyletic taxon, and its genus range and systematic position are consistent with the Magnoliaceae system of Sima Yongkang-Lu Shugang, including five species and varieties of H. officinalis var. officinalis, H. rostrata, H. officinalis var. biloba, Houpoea obovate, and Houpoea tripetala, which evolved and differentiated from the ancestors of Houpoea to the present Houpoea in the above order. This study provides valuable information on the genus Houpoea, enriches the CPG information on Houpoea genus, and provides genetic resources for the further classification of and phylogenetic research on Houpoea.
Collapse
Affiliation(s)
- Qinbin Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Zhuoran Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Nannan Wu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jing Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Lang Yuan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Tongxing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yongkang Sima
- Kunming Arboretum, Yunnan Academy of Forestry & Grassland Science, Kunming 650201, China
| | - Tao Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| |
Collapse
|
16
|
Xia L, Wang H, Zhao X, Obel HO, Yu X, Lou Q, Chen J, Cheng C. Chloroplast Pan-Genomes and Comparative Transcriptomics Reveal Genetic Variation and Temperature Adaptation in the Cucumber. Int J Mol Sci 2023; 24:ijms24108943. [PMID: 37240287 DOI: 10.3390/ijms24108943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Although whole genome sequencing, genetic variation mapping, and pan-genome studies have been done on a large group of cucumber nuclear genomes, organelle genome information is largely unclear. As an important component of the organelle genome, the chloroplast genome is highly conserved, which makes it a useful tool for studying plant phylogeny, crop domestication, and species adaptation. Here, we have constructed the first cucumber chloroplast pan-genome based on 121 cucumber germplasms, and investigated the genetic variations of the cucumber chloroplast genome through comparative genomic, phylogenetic, haplotype, and population genetic structure analysis. Meanwhile, we explored the changes in expression of cucumber chloroplast genes under high- and low-temperature stimulation via transcriptome analysis. As a result, a total of 50 complete chloroplast genomes were successfully assembled from 121 cucumber resequencing data, ranging in size from 156,616-157,641 bp. The 50 cucumber chloroplast genomes have typical quadripartite structures, consisting of a large single copy (LSC, 86,339-86,883 bp), a small single copy (SSC, 18,069-18,363 bp), and two inverted repeats (IRs, 25,166-25,797 bp). Comparative genomic, haplotype, and population genetic structure results showed that there is more genetic variation in Indian ecotype cucumbers compared to other cucumber cultivars, which means that many genetic resources remain to be explored in Indian ecotype cucumbers. Phylogenetic analysis showed that the 50 cucumber germplasms could be classified into 3 types: East Asian, Eurasian + Indian, and Xishuangbanna + Indian. The transcriptomic analysis showed that matK were significantly up-regulated under high- and low-temperature stresses, further demonstrating that cucumber chloroplasts respond to temperature adversity by regulating lipid metabolism and ribosome metabolism. Further, accD has higher editing efficiency under high-temperature stress, which may contribute to the heat tolerance. These studies provide useful insight into genetic variation in the chloroplast genome, and established the foundation for exploring the mechanisms of temperature-stimulated chloroplast adaptation.
Collapse
Affiliation(s)
- Lei Xia
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hesbon Ochieng Obel
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Wong KH, Siu TY, Tsang SSK, Kong BLH, Wu HY, But GWC, Hui JHL, Shaw PC, Lau DTW. The Complete Chloroplast Genomes of Nine Smilacaceae Species from Hong Kong: Inferring Infra- and Inter-Familial Phylogeny. Int J Mol Sci 2023; 24:ijms24087460. [PMID: 37108622 PMCID: PMC10138973 DOI: 10.3390/ijms24087460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The Smilacaceae is a cosmopolitan family consisting of 200-370 described species. The family includes two widely accepted genera, namely Smilax and Heterosmilax. Among them, the taxonomical status of Heterosmilax has been continuously challenged. Seven Smilax and two Heterosmilax species can be found in Hong Kong, with most of them having medicinal importance. This study aims to revisit the infra-familial and inter-familial relationships of the Smilacaceae using complete chloroplast genomes. The chloroplast genomes of the nine Smilacaceae species from Hong Kong were assembled and annotated, which had sizes of 157,885 bp to 159,007 bp; each of them was identically annotated for 132 genes, including 86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes. The generic status of Heterosmilax was not supported because it was nested within the Smilax clade in the phylogenetic trees, echoing previous molecular and morphological studies. We suggest delimitating the genus Heterosmilax as a section under the genus Smilax. The results of phylogenomic analysis support the monophyly of Smilacaceae and the exclusion of Ripogonum from the family. This study contributes to the systematics and taxonomy of monocotyledons, authentication of medicinal Smilacaceae, and conservation of plant diversity.
Collapse
Affiliation(s)
- Kwan-Ho Wong
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tin-Yan Siu
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Research Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Stacey Shun-Kei Tsang
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Grace Wing-Chiu But
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jerome Ho-Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Simon F.S. Li Marine Science Laboratory and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (The Chinese University of Hong Kong) and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - David Tai-Wai Lau
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
18
|
Zhang SD, Yan K, Ling LZ. Characterization and phylogenetic analyses of ten complete plastomes of Spiraea species. BMC Genomics 2023; 24:137. [PMID: 36944915 PMCID: PMC10029230 DOI: 10.1186/s12864-023-09242-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Spiraea is a genus of deciduous shrubs that contains 80-120 species, is mainly distributed in the Northern Hemisphere and has diversified in East Asia. Spiraea species are cultivated as ornamental plants and some are used in traditional herbal medicine. Based on morphological characteristics and genetic markers, phylogenetic classification exhibits low discriminatory power. RESULTS In present study, we assembled and characterized the chloroplast (cp) genomes of ten Spiraea species and comparatively analysed with five reported cp genomes of this genus. The cp genomes of the fifteen Spiraea species, ranging from 155,904 to 158,637 bp in length, were very conserved and no structural rearrangements occurred. A total of 85 protein-coding genes (PCGs), 37 tRNAs and 8 rRNAs were annotated. We also examined 1,010 simple sequence repeat (SSR) loci, most of which had A/T base preference. Comparative analysis of cp genome demonstrated that single copy and non-coding regions were more divergent than the inverted repeats (IRs) and coding regions and six mutational hotspots were detected. Selection pressure analysis showed that all PCGs were under purifying selection. Phylogenetic analysis based on the complete cp genome data showed that Spiraea formed a monophyletic group and was further divided into two major clades. Infrageneric classification in each clade was supported with a high resolution value. Moreover, the phylogenetic trees based on each individual mutational hotspot segment and their combined dataset also consisted of two major clades, but most of the phylogenetic relationships of interspecies were not well supported. CONCLUSIONS Although the cp genomes of Spiraea species exhibited high conservation in genome structure, gene content and order, a large number of polymorphism sites and several mutation hotspots were identified in whole cp genomes, which might be sufficiently used as molecular markers to distinguish Spiraea species. Phylogenetic analysis based on the complete cp genome indicated that infrageneric classification in two major clades was supported with high resolution values. Therefore, the cp genome data of the genus Spiraea will be effective in resolving the phylogeny in this genus.
Collapse
Affiliation(s)
- Shu-Dong Zhang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Kai Yan
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China.
| | - Li-Zhen Ling
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China.
| |
Collapse
|
19
|
Jin G, Li W, Song F, Yang L, Wen Z, Feng Y. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships. BMC PLANT BIOLOGY 2023; 23:136. [PMID: 36899296 PMCID: PMC9999589 DOI: 10.1186/s12870-023-04113-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Artemisia subg. Seriphidium, one of the most species-diverse groups within Artemisia, grows mainly in arid or semi-arid regions in temperate climates. Some members have considerable medicinal, ecological, and economic value. Previous studies on this subgenus have been limited by a dearth of genetic information and inadequate sampling, hampering our understanding of their phylogenetics and evolutionary history. We therefore sequenced and compared the chloroplast genomes of this subgenus, and evaluated their phylogenetic relationships. RESULTS We newly sequenced 18 chloroplast genomes of 16 subg. Seriphidium species and compared them with one previously published taxon. The chloroplast genomes, at 150,586-151,256 bp in length, comprised 133 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and one pseudogene, with GC content of 37.40-37.46%. Comparative analysis showed that genomic structures and gene order were relatively conserved, with only some variation in IR borders. A total of 2203 repeats (1385 SSRs and 818 LDRs) and 8 highly variable loci (trnK - rps16, trnE - ropB, trnT, ndhC - trnV, ndhF, rpl32 - trnL, ndhG - ndhI and ycf1) were detected in subg. Seriphidium chloroplast genomes. Phylogenetic analysis of the whole chloroplast genomes based on maximum likelihood and Bayesian inference analyses resolved subg. Seriphidium as polyphyletic, and segregated into two main clades, with the monospecific sect. Minchunensa embedded within sect. Seriphidium, suggesting that the whole chloroplast genomes can be used as molecular markers to infer the interspecific relationship of subg. Seriphidium taxa. CONCLUSION Our findings reveal inconsistencies between the molecular phylogeny and traditional taxonomy of the subg. Seriphidium and provide new insights into the evolutionary development of this complex taxon. Meanwhile, the whole chloroplast genomes with sufficiently polymorphic can be used as superbarcodes to resolve interspecific relationships in subg. Seriphidium.
Collapse
Affiliation(s)
- Guangzhao Jin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ying Feng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
20
|
Jin GZ, Wen ZB, Song F, Feng Y. The complete chloroplast genome of an endangered plant Artemisia borotalensis (Asteraceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:145-148. [PMID: 36685653 PMCID: PMC9848251 DOI: 10.1080/23802359.2022.2163599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Artemisia borotalensis Poljakov is an endemic and endangered herb in China. In this study, we sequenced and analyzed the complete chloroplast genome of this species. Sequencing revealed the genome to be 151,179 bp in length, containing a large single copy region (82,862 bp), a small single copy region (18,377 bp), and a pair of inverted repeat regions (24,970 bp each). Our analyses demonstrated that it contained 133 genes, including 87 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes, and one pseudogene (ycf1). Furthermore, we found the genome to have an overall GC content of 37.4%. A phylogenetic analysis indicated that A. borotalensis and A. maritima clustered together as sister group to A. annua and A. fukudo clade.
Collapse
Affiliation(s)
- Guang-Zhao Jin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China,The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-bin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China,The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Feng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China,The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China,CONTACT Ying Feng State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
21
|
Wang W, Wang X, Shi Y, Yin Q, Gao R, Wang M, Xiang L, Wu L. Identification of Laportea bulbifera using the complete chloroplast genome as a potentially effective super-barcode. J Appl Genet 2023; 64:231-245. [PMID: 36633756 DOI: 10.1007/s13353-022-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Laportea bulbifera, a Miao medicine grown in karst areas, has exerted a unique curative effect on skin itching in the elderly, with an annual sales of > 100 million Yuan. Owing to the shortage of resources and large morphological variations in L. bulbifera, it is difficult to identify the species correctly using only traditional methods, which seriously affects the safety of drug usage for patients. This study obtained the complete high-quality L. bulbifera chloroplast (cp) genome, using second- and third-generation high-throughput sequencing. The cp genome was 149,911 bp in length, with a typical quadripartite structure. A total of 127 genes were annotated, including 83 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. There was an inverted small single copy (SSC) structure in the L. bulbifera cp genome, one large-scale rearrangement of ~ 39 kb excised in the SSC and IR regions. The complete cp genome sequence is used as a potentially effective super-barcode and the highly variable regions (ycf1, matK, and ndhD) can be used as potentially specific barcodes to accurately distinguish L. bulbifera from counterfeits and closely related species. This study is important for the identification of L. bulbifera and lays a theoretical foundation for elucidating the phylogenetic relationship of the species.
Collapse
Affiliation(s)
- Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Wang Y, Sun J, Qiao P, Wang J, Wang M, Du Y, Xiong F, Luo J, Yuan Q, Dong W, Huang L, Guo L. Evolutionary history of genus Coptis and its dynamic changes in the potential suitable distribution area. FRONTIERS IN PLANT SCIENCE 2022; 13:1003368. [PMID: 36507390 PMCID: PMC9727247 DOI: 10.3389/fpls.2022.1003368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The genus Coptis belongs to the Ranunculaceae family, containing 15 recognized species highly diverse in morphology. It is a conspicuous taxon with special evolutionary position, distribution pattern and medicinal value, which makes it to be of great research and conservation significance. In order to better understand the evolutionary dynamics of Coptis and promote more practical conservation measures, we performed plastome sequencing and used the sequencing data in combination with worldwide occurrence data of Coptis to estimate genetic diversity and divergence times, rebuild biogeographic history and predict its potential suitable distribution area. The average nucleotide diversity of Coptis was 0.0067 and the hotspot regions with the highest hypermutation levels were located in the ycf1 gene. Coptis is most likely to have originated in North America and Japanese archipelago and has a typical Eastern Asian and North American disjunct distribution pattern, while the species diversity center is located in Mid-West China and Japan. The crown age of the genus is estimated at around 8.49 Mya. The most suitable climatic conditions for Coptis were as follows: precipitation of driest quarter > 25.5 mm, annual precipitation > 844.9 mm and annual mean temperature -3.1 to 19 °C. The global and China suitable area shows an upward trend in the future when emission of greenhouse gases is well controlled, but the area, especially in China, decreases significantly without greenhouse gas policy interventions. The results of this study provide a comprehensive insight into the Coptis evolutionary dynamics and will facilitate future conservation efforts.
Collapse
Affiliation(s)
- Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Qiao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengli Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongxi Du
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Feng Xiong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Luo
- Kunming Xishan Forestry and Grassland Comprehensive Service Center, Kunming, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
23
|
Lan Z, Shi Y, Yin Q, Gao R, Liu C, Wang W, Tian X, Liu J, Nong Y, Xiang L, Wu L. Comparative and phylogenetic analysis of complete chloroplast genomes from five Artemisia species. FRONTIERS IN PLANT SCIENCE 2022; 13:1049209. [PMID: 36479523 PMCID: PMC9720176 DOI: 10.3389/fpls.2022.1049209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Artemisia Linn. is a large genus within the family Asteraceae that includes several important medicinal plants. Because of their similar morphology and chemical composition, traditional identification methods often fail to distinguish them. Therefore, developing an effective identification method for Artemisia species is an urgent requirement. In this study, we analyzed 15 chloroplast (cp) genomes, including 12 newly sequenced genomes, from 5 Artemisia species. The cp genomes from the five Artemisia species had a typical quadripartite structure and were highly conserved across species. They had varying lengths of 151,132-151,178 bp, and their gene content and codon preferences were similar. Mutation hotspot analysis identified four highly variable regions, which can potentially be used as molecular markers to identify Artemisia species. Phylogenetic analysis showed that the five Artemisia species investigated in this study were sister branches to each other, and individuals of each species formed a monophyletic clade. This study shows that the cp genome can provide distinguishing features to help identify closely related Artemisia species and has the potential to serve as a universal super barcode for plant identification.
Collapse
Affiliation(s)
- Zhaohui Lan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xufang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiawei Liu
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Yiying Nong
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Zhou Z, Wang J, Pu T, Dong J, Guan Q, Qian J, Shi L, Duan B. Comparative analysis of medicinal plant Isodon rubescens and its common adulterants based on chloroplast genome sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1036277. [PMID: 36479509 PMCID: PMC9720329 DOI: 10.3389/fpls.2022.1036277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/26/2022] [Indexed: 06/03/2023]
Abstract
Isodon rubescens (Hemsley) H. Hara is the source of Donglingcao under the monograph Rabdosiae Rubescentis Herba in Chinese Pharmacopoeia. In the local marketplace, this medicine can be accidentally contaminated, deliberately substituted, or mixed with other related species. The contaminants of herbal products are a threat to consumer safety. Due to the scarcity of genetic information on Isodon plants, more molecular markers are needed to avoid misidentification. In the present study, the complete chloroplast (cp) genome of seven species of Isodon was sequenced, de novo assembled and characterized. The cp genomes of these species universally exhibited a conserved quadripartite structure, i.e., two inverted repeats (IRs) containing most of the ribosomal RNA genes and two unique regions (large single copy and small single copy). Moreover, the genome structure, codon usage, and repeat sequences were highly conserved and showed similarities among the seven species. Five highly variable regions (trnS-GCU-trnT-CGU, atpH-atpI, trnE-UUC-trnT-GGU, ndhC-trnM-CAU, and rps15-ycf1) might be potential molecular markers for identifying I. rubescens and its contaminants. These findings provide valuable information for further species identification, evolution, and phylogenetic research of Isodon.
Collapse
Affiliation(s)
- Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jing Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tingting Pu
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Qin Guan
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jun Qian
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
25
|
Wang X, Xu KW, Lee SY, Wu J, Li Q, Chen BJ. Characterization of the chloroplast genome and phylogenetic analysis of Ceratopteris pteridoides (Pteridaceae). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Xie H, Zhang L, Zhang C, Chang H, Xi Z, Xu X. Comparative analysis of the complete chloroplast genomes of six threatened subgenus Gynopodium (Magnolia) species. BMC Genomics 2022; 23:716. [PMID: 36261795 PMCID: PMC9583488 DOI: 10.1186/s12864-022-08934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The subgenus Gynopodium belonging to genus Magnolia have high ornamental, economic, and ecological value. Subgenus Gynopodium contains eight species, but six of these species are threatened. No studies to date have characterized the characteristics of the chloroplast genomes (CPGs) within subgenus Gynopodium species. In this study, we compared the structure of CPGs, identified the mutational hotspots and resolved the phylogenetic relationship of subgenus Gynopodium. RESULTS The CPGs of six subgenus Gynopodium species ranged in size from 160,027 bp to 160,114 bp. A total of 131 genes were identified, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. We detected neither major expansions or contractions in the inverted repeat region, nor rearrangements or insertions in the CPGs of six subgenus Gynopodium species. A total of 300 large repeat sequences (forward, reverse, and palindrome repeats), 847 simple sequence repeats, and five highly variable regions were identified. One gene (ycf1) and four intergenic regions (psbA-trnH-GUG, petA-psbJ, rpl32-trnL-UAG, and ccsA-ndhD) were identified as mutational hotspots by their high nucleotide diversity (Pi) values (≥ 0.004), which were useful for species discrimination. Maximum likelihood and Bayesian inference trees were concordant and indicated that Magnoliaceae consisted of two genera Liriodendron and Magnolia. Six species of subgenus Gynopodium clustered as a monophyletic clade, forming a sister clade with subgenus Yulania (BS = 100%, PP = 1.00). Due to the non-monophyly of subgenus Magnolia, subgenus Gynopodium should be treated as a section of Magnolia. Within section Gynopodium, M. sinica diverged first (posterior probability = 1, bootstrap = 100), followed by M. nitida, M. kachirachirai and M. lotungensis. M. omeiensis was sister to M. yunnanensis (posterior probability = 0.97, bootstrap = 50). CONCLUSION The CPGs and characteristics information provided by our study could be useful in species identification, conservation genetics and resolving phylogenetic relationships of Magnoliaceae species.
Collapse
Affiliation(s)
- Huanhuan Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People's Republic of China, College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Cheng Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hong Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
27
|
Lin P, Yin H, Wang K, Gao H, Liu L, Yao X. Comparative Genomic Analysis Uncovers the Chloroplast Genome Variation and Phylogenetic Relationships of Camellia Species. Biomolecules 2022; 12:biom12101474. [PMID: 36291685 PMCID: PMC9599789 DOI: 10.3390/biom12101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Camellia is the largest genus in the family Theaceae. Due to phenotypic diversity, frequent hybridization, and polyploidization, an understanding of the phylogenetic relationships between Camellia species remains challenging. Comparative chloroplast (cp) genomics provides an informative resource for phylogenetic analyses of Camellia. In this study, 12 chloroplast genome sequences from nine Camellia species were determined using Illumina sequencing technology via de novo assembly. The cp genome sizes ranged from 156,545 to 157,021 bp and were organized into quadripartite regions with the typical angiosperm cp genomes. Each genome harbored 87 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes in the same order and orientation. Differences in long and short sequence repeats, SNPs, and InDels were detected across the 12 cp genomes. Combining with the complete cp sequences of seven other species in the genus Camellia, a total of nine intergenic sequence divergent hotspots and 14 protein-coding genes with high sequence polymorphism were identified. These hotspots, especially the InDel (~400 bp) located in atpH-atpI region, had sufficient potential to be used as barcode markers for further phylogenetic analysis and species identification. Principal component and phylogenetic analysis suggested that regional constraints, rather than functional constraints, strongly affected the sequence evolution of the cp genomes in this study. These cp genomes could facilitate the development of new molecular markers, accurate species identification, and investigations of the phylogenomic relationships of the genus Camellia.
Collapse
Affiliation(s)
- Ping Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (P.L.); (X.Y.); Tel.: +86-571-63320229 (P.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Kailiang Wang
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Haidong Gao
- Genepioneer Biotechnologies Co., Ltd., Nanjing 210023, China
| | - Lei Liu
- Genepioneer Biotechnologies Co., Ltd., Nanjing 210023, China
| | - Xiaohua Yao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (P.L.); (X.Y.); Tel.: +86-571-63320229 (P.L.)
| |
Collapse
|
28
|
Li QJ, Liu Y, Wang AH, Chen QF, Wang JM, Peng L, Yang Y. Plastome comparison and phylogenomics of Fagopyrum (Polygonaceae): insights into sequence differences between Fagopyrum and its related taxa. BMC PLANT BIOLOGY 2022; 22:339. [PMID: 35831794 PMCID: PMC9281083 DOI: 10.1186/s12870-022-03715-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/23/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fagopyrum (Polygonaceae) is a small plant lineage comprised of more than fifteen economically and medicinally important species. However, the phylogenetic relationships of the genus are not well explored, and the characteristics of Fagopyrum chloroplast genomes (plastomes) remain poorly understood so far. It restricts the comprehension of species diversity in Fagopyrum. Therefore, a comparative plastome analysis and comprehensive phylogenomic analyses are required to reveal the taxonomic relationship among species of Fagopyrum. RESULTS In the current study, 12 plastomes were sequenced and assembled from eight species and two varieties of Fagopyrum. In the comparative analysis and phylogenetic analysis, eight previously published plastomes of Fagopyrum were also included. A total of 49 plastomes of other genera in Polygonaceae were retrieved from GenBank and used for comparative analysis with Fagopyrum. The variation of the Fagopyrum plastomes is mainly reflected in the size and boundaries of inverted repeat/single copy (IR/SC) regions. Fagopyrum is a relatively basal taxon in the phylogenomic framework of Polygonaceae comprising a relatively smaller plastome size (158,768-159,985 bp) than another genus of Polygonaceae (158,851-170,232 bp). A few genera of Polygonaceae have nested distribution of the IR/SC boundary variations. Although most species of Fagopyrum show the same IRb/SC boundary with species of Polygonaceae, only a few species show different IRa/SC boundaries. The phylogenomic analyses of Fagopyrum supported the cymosum and urophyllum groups and resolved the systematic position of subclades within the urophyllum group. Moreover, the repeat sequence types and numbers were found different between groups of Fagopyrum. The plastome sequence identity showed significant differences between intra-group and inter-group. CONCLUSIONS The deletions of intergenic regions cause a short length of Fagopyrum plastomes, which may be the main reason for plastome size diversity in Polygonaceae species. The phylogenomic reconstruction combined with the characteristics comparison of plastomes supports grouping within Fagopyrum. The outcome of these genome resources may facilitate the taxonomy, germplasm resources identification as well as plant breeding of Fagopyrum.
Collapse
Affiliation(s)
- Qiu-Jie Li
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu Liu
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Hu Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, 615013, China
| | - Qing-Fu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Jian-Mei Wang
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lu Peng
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
29
|
Xia X, Peng J, Yang L, Zhao X, Duan A, Wang D. Comparative Analysis of the Complete Chloroplast Genomes of Eight Ficus Species and Insights into the Phylogenetic Relationships of Ficus. Life (Basel) 2022; 12:life12060848. [PMID: 35743879 PMCID: PMC9224849 DOI: 10.3390/life12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
The genus Ficus is an evergreen plant, the most numerous species in the family Moraceae, and is often used as a food and pharmacy source. The phylogenetic relationships of the genus Ficus have been debated for many years due to the overlapping phenotypic characters and morphological similarities between the genera. In this study, the eight Ficus species (Ficus altissima, Ficus auriculata, Ficus benjamina, Ficus curtipes, Ficus heteromorpha, Ficus lyrata, Ficus microcarpa, and Ficus virens) complete chloroplast (cp) genomes were successfully sequenced and phylogenetic analyses were made with other Ficus species. The result showed that the eight Ficus cp genomes ranged from 160,333 bp (F. heteromorpha) to 160,772 bp (F. curtipes), with a typical quadripartite structure. It was found that the eight Ficus cp genomes had similar genome structures, containing 127 unique genes. The cp genomes of the eight Ficus species contained 89−104 SSR loci, which were dominated by mono-nucleotides repeats. Moreover, we identified eight hypervariable regions (trnS-GCU_trnG-UCC, trnT-GGU_psbD, trnV-UAC_trnM-CAU, clpP_psbB, ndhF_trnL-UAG, trnL-UAG_ccsA, ndhD_psaC, and ycf1). Phylogenetic analyses have shown that the subgenus Ficus and subgenus Synoecia exhibit close affinities and based on the results, we prefer to merge the subgenus Synoecia into the subgenus Ficus. At the same time, new insights into the subgeneric classification of the Ficus macrophylla were provided. Overall, these results provide useful data for further studies on the molecular identification, phylogeny, species identification and population genetics of speciation in the Ficus genus.
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Jingyu Peng
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100089, China;
| | - Lin Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Xueli Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Anan Duan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
- Correspondence: ; Tel.: +86-138-8891-5161
| |
Collapse
|
30
|
Comparative Plastome Analysis of Three Amaryllidaceae Subfamilies: Insights into Variation of Genome Characteristics, Phylogeny, and Adaptive Evolution. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3909596. [PMID: 35372568 PMCID: PMC8970886 DOI: 10.1155/2022/3909596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
In the latest APG IV classification system, Amaryllidaceae is placed under the order of Asparagus and includes three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, which include many economically important crops. With the development of molecular phylogeny, research on the phylogenetic relationship of Amaryllidaceae has become more convenient. However, the current comparative analysis of Amaryllidaceae at the whole chloroplast genome level is still lacking. In this study, we sequenced 18 Allioideae plastomes and combined them with publicly available data (a total of 41 plastomes), including 21 Allioideae species, 1 Agapanthoideae species, 14 Amaryllidoideae species, and 5 Asparagaceae species. Comparative analyses were performed including basic characteristics of genome structure, codon usage, repeat elements, IR boundary, and genome divergence. Phylogenetic relationships were detected using single-copy genes (SCGs) and ribosomal internal transcribed spacer sequences (ITS), and the branch-site model was also employed to conduct the positive selection analysis. The results indicated that all Amaryllidaceae species showed a highly conserved typical tetrad structure. The GC content and five codon usage indexes in Allioideae species were lower than those in the other two subfamilies. Comparison analysis of Bayesian and ML phylogeny based on SCGs strongly supports the monophyly of three subfamilies and the sisterhood among them. Besides, positively selected genes (PSGs) were detected in each of the three subfamilies. Almost all genes with significant posterior probabilities for codon sites were associated with self-replication and photosynthesis. Our study investigated the three subfamilies of Amaryllidaceae at the whole chloroplast genome level and suggested the key role of selective pressure in the adaptation and evolution of Amaryllidaceae.
Collapse
|
31
|
Yu J, Xia M, Wang Y, Chi X, Xu H, Chen S, Zhang F. Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Lee YS, Woo S, Kim JK, Park JY, Izzah NK, Park HS, Kang JH, Lee TJ, Sung SH, Kang KB, Yang TJ. Genetic and chemical markers for authentication of three Artemisia species: A. capillaris, A. gmelinii, and A. fukudo. PLoS One 2022; 17:e0264576. [PMID: 35271607 PMCID: PMC8912906 DOI: 10.1371/journal.pone.0264576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/13/2022] [Indexed: 11/19/2022] Open
Abstract
The genus Artemisia is an important source of medicines in both traditional and modern pharmaceutics, particularly in East Asia. Despite the great benefits of herbal medicine, quality assessment methods for these medicinal herbs are lacking. The young leaves from Artemisia species are generally used, and most of the species have similar morphology, which often leads to adulteration and misuse. This study assembled five complete chloroplast genomes of three Artemisia species, two accessions of A. gmelinii and A. capillaris, and one A. fukudo. Through comparative analysis, we revealed genomic variations and phylogenetic relationships between these species and developed seven InDel-based barcode markers which discriminated the tested species from each other. Additionally, we analyzed specialized metabolites from the species using LC-MS and suggested chemical markers for the identification and authentication of these herbs. We expect that this integrated and complementary authentication method would aid in reducing the misuse of Artemisia species.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sunmin Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jin-Kyung Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nur Kholilatul Izzah
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Taek Joo Lee
- Hantaek Botanical Garden, Yongin, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Yang J, Hu G, Hu G. Comparative genomics and phylogenetic relationships of two endemic and endangered species (Handeliodendron bodinieri and Eurycorymbus cavaleriei) of two monotypic genera within Sapindales. BMC Genomics 2022; 23:27. [PMID: 34991482 PMCID: PMC8734052 DOI: 10.1186/s12864-021-08259-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. RESULTS The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Analysis of selection pressure showed that there are a few positively selected genes. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisting of Aesculus chinensis and A. wangii and strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. CONCLUSION This study revealed that the cp genome size of the Hippocastanoideae was generally smaller compared to the other subfamilies within Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.
Collapse
Affiliation(s)
- Jiaxin Yang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Guoxiong Hu
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Guangwan Hu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
34
|
Yang J, Choi MJ, Kim SH, Choi HJ, Kim SC. Plastome Characterization and Phylogenomic Analysis Yield New Insights into the Evolutionary Relationships among the Species of the Subgenus Bryocles ( Hosta; Asparagaceae) in East Asia. PLANTS 2021; 10:plants10101980. [PMID: 34685791 PMCID: PMC8538707 DOI: 10.3390/plants10101980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The genus Hosta, which has a native distribution in temperate East Asia and a number of species ranging from 23 to 40, represents a taxonomically important and ornamentally popular plant. Despite its taxonomic and horticultural importance, the genus Hosta has remained taxonomically challenging owing to insufficient diagnostic features, continuous morphological variation, and the process of hybridization and introgression, making species circumscription and phylogenetic inference difficult. In this study, we sequenced 11 accessions of Hosta plastomes, including members of three geographically defined subgenera, Hosta, Bryocles, and Giboshi, determined the characteristics of plastomes, and inferred their phylogenetic relationships. We found highly conserved plastomes among the three subgenera, identified several mutation hotspots that can be used as barcodes, and revealed the patterns of codon usage bias and RNA editing sites. Five positively selected plastome genes (rbcL, rpoB, rpoC2, rpl16, and rpl20) were identified. Phylogenetic analysis suggested (1) the earliest divergence of subg. Hosta, (2) non-monophyly of subg. Bryocles and its two sections (Lamellatae and Stoloniferae), (3) a sister relationship between H. sieboldiana (subg. Giboshi) and H. ventricosa (subg. Bryocles), and (4) reciprocally monophyletic and divergent lineages of H. capitata in Korea and Japan, requiring further studies of their taxonomic distinction.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Ulleung-do & Dok-do, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Mi-Jung Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea;
| | - Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hyeok-Jae Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea;
- Correspondence: (H.-J.C.); (S.-C.K.); Tel.: +82-55-213-3457 (H.-J.C.); +82-31-299-4499 (S.-C.K.)
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (H.-J.C.); (S.-C.K.); Tel.: +82-55-213-3457 (H.-J.C.); +82-31-299-4499 (S.-C.K.)
| |
Collapse
|
35
|
Su HJ, Liang SL, Nickrent DL. Plastome variation and phylogeny of Taxillus (Loranthaceae). PLoS One 2021; 16:e0256345. [PMID: 34407123 PMCID: PMC8372910 DOI: 10.1371/journal.pone.0256345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 12/02/2022] Open
Abstract
Several molecular phylogenetic studies of the mistletoe family Loranthaceae have been published such that now the general pattern of relationships among the genera and their biogeographic histories are understood. Less is known about species relationships in the larger (> 10 species) genera. This study examines the taxonomically difficult genus Taxillus composed of 35–40 Asian species. The goal was to explore the genetic diversity present in Taxillus plastomes, locate genetically variable hotspots, and test these for their utility as potential DNA barcodes. Using genome skimming, complete plastomes, as well as nuclear and mitochondrial rDNA sequences, were newly generated for eight species. The plastome sequences were used in conjunction with seven publicly available Taxillus sequences and three sequences of Scurrula, a close generic relative. The Taxillus plastomes ranged from 121 to 123 kbp and encoded 90–93 plastid genes. In addition to all of the NADH dehydrogenase complex genes, four ribosomal genes, infA and four intron-containing tRNA genes were lost or pseudogenized in all of the Taxillus and Scurrula plastomes. The topologies of the plastome, mitochondrial rDNA and nuclear rDNA trees were generally congruent, though with discordance at the position of T. chinensis. Several variable regions in the plastomes were identified that have sufficient numbers of parsimony informative sites as to recover the major clades seen in the complete plastome tree. Instead of generating complete plastome sequences, our study showed that accD alone or the concatenation of accD and rbcL can be used in future studies to facilitate identification of Taxillus samples and to generate a molecular phylogeny with robust sampling within the genus.
Collapse
Affiliation(s)
- Huei-Jiun Su
- Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
- * E-mail:
| | - Shu-ling Liang
- Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| | - Daniel L. Nickrent
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
36
|
Thode VA, Oliveira CT, Loeuille B, Siniscalchi CM, Pirani JR. Comparative analyses of Mikania (Asteraceae: Eupatorieae) plastomes and impact of data partitioning and inference methods on phylogenetic relationships. Sci Rep 2021; 11:13267. [PMID: 34168241 PMCID: PMC8225666 DOI: 10.1038/s41598-021-92727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
We assembled new plastomes of 19 species of Mikania and of Ageratina fastigiata, Litothamnus nitidus, and Stevia collina, all belonging to tribe Eupatorieae (Asteraceae). We analyzed the structure and content of the assembled plastomes and used the newly generated sequences to infer phylogenetic relationships and study the effects of different data partitions and inference methods on the topologies. Most phylogenetic studies with plastomes ignore that processes like recombination and biparental inheritance can occur in this organelle, using the whole genome as a single locus. Our study sought to compare this approach with multispecies coalescent methods that assume that different parts of the genome evolve at different rates. We found that the overall gene content, structure, and orientation are very conserved in all plastomes of the studied species. As observed in other Asteraceae, the 22 plastomes assembled here contain two nested inversions in the LSC region. The plastomes show similar length and the same gene content. The two most variable regions within Mikania are rpl32-ndhF and rpl16-rps3, while the three genes with the highest percentage of variable sites are ycf1, rpoA, and psbT. We generated six phylogenetic trees using concatenated maximum likelihood and multispecies coalescent methods and three data partitions: coding and non-coding sequences and both combined. All trees strongly support that the sampled Mikania species form a monophyletic group, which is further subdivided into three clades. The internal relationships within each clade are sensitive to the data partitioning and inference methods employed. The trees resulting from concatenated analysis are more similar among each other than to the correspondent tree generated with the same data partition but a different method. The multispecies coalescent analysis indicate a high level of incongruence between species and gene trees. The lack of resolution and congruence among trees can be explained by the sparse sampling (~ 0.45% of the currently accepted species) and by the low number of informative characters present in the sequences. Our study sheds light into the impact of data partitioning and methods over phylogenetic resolution and brings relevant information for the study of Mikania diversity and evolution, as well as for the Asteraceae family as a whole.
Collapse
Affiliation(s)
- Verônica A Thode
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Caetano T Oliveira
- Sítio Roberto Burle Marx, Instituto do Patrimônio Histórico e Artístico Nacional, Estrada Roberto Burle Marx, 2019, Barra de Guaratiba, Rio de Janeiro, Rio de Janeiro, 23020-240, Brazil
| | - Benoît Loeuille
- Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife, Pernambuco, 50670-901, Brazil
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Mississippi State, Mississippi, MS, 39762, USA.
| | - José R Pirani
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Tv. 14, São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|
37
|
Cui Y, Gao X, Wang J, Shang Z, Zhang Z, Zhou Z, Zhang K. Full-Length Transcriptome Analysis Reveals Candidate Genes Involved in Terpenoid Biosynthesis in Artemisia argyi. Front Genet 2021; 12:659962. [PMID: 34239538 PMCID: PMC8258318 DOI: 10.3389/fgene.2021.659962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Artemisia argyi is an important medicinal plant widely utilized for moxibustion heat therapy in China. The terpenoid biosynthesis process in A. argyi is speculated to play a key role in conferring its medicinal value. However, the molecular mechanism underlying terpenoid biosynthesis remains unclear, in part because the reference genome of A. argyi is unavailable. Moreover, the full-length transcriptome of A. argyi has not yet been sequenced. Therefore, in this study, de novo transcriptome sequencing of A. argyi's root, stem, and leaf tissues was performed to obtain those candidate genes related to terpenoid biosynthesis, by combining the PacBio single-molecule real-time (SMRT) and Illumina sequencing NGS platforms. And more than 55.4 Gb of sequencing data and 108,846 full-length reads (non-chimeric) were generated by the Illumina and PacBio platform, respectively. Then, 53,043 consensus isoforms were clustered and used to represent 36,820 non-redundant transcripts, of which 34,839 (94.62%) were annotated in public databases. In the comparison sets of leaves vs roots, and leaves vs stems, 13,850 (7,566 up-regulated, 6,284 down-regulated) and 9,502 (5,284 up-regulated, 4,218 down-regulated) differentially expressed transcripts (DETs) were obtained, respectively. Specifically, the expression profile and KEGG functional enrichment analysis of these DETs indicated that they were significantly enriched in the biosynthesis of amino acids, carotenoids, diterpenoids and flavonoids, as well as the metabolism processes of glycine, serine and threonine. Moreover, multiple genes encoding significant enzymes or transcription factors related to diterpenoid biosynthesis were highly expressed in the A. argyi leaves. Additionally, several transcription factor families, such as RLK-Pelle_LRR-L-1 and RLK-Pelle_DLSV, were also identified. In conclusion, this study offers a valuable resource for transcriptome information, and provides a functional genomic foundation for further research on molecular mechanisms underlying the medicinal use of A. argyi leaves.
Collapse
Affiliation(s)
- Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xinqiang Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jianshe Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zengzhen Shang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhibin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenxing Zhou
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
38
|
Morphological and Molecular Assessment of Genetic Diversity of Seven Species of the Genus Artemisia L. (Asteraceae). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Zhang Y, Wang Z, Guo Y, Chen S, Xu X, Wang R. Complete chloroplast genomes of Leptodermis scabrida complex: Comparative genomic analyses and phylogenetic relationships. Gene 2021; 791:145715. [PMID: 33984444 DOI: 10.1016/j.gene.2021.145715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Leptodermis scabrida complex is one of the important components of genus Leptodermis, which is mainly distributed in the Himalaya Mountains. It includes species of L. gracilis, L. hirsutiflora, L. hirsutiflora var. ciliata, L. kumaonensis, L. pilosa var. acanthoclada and L. scabrida. However, species boundaries and relationships within this complex are unclear based on current morphological and molecular evidence. We sequenced 13 complete chloroplast (cp) genomes representing seven taxa of the complex and two non-Leptodermis scabrida complex taxa. After de novo assembly and annotation, we performed comparative genomic analysis. All cp genomes showed highly conserved structures, and the genome sizes ranged from 154,369 bp to 154,885 bp and possessed the same GC content (37.5%). A total of 113 unique genes were identified in each cp sample, including 79 protein coding genes, 30 tRNAs, and four rRNAs. Repeat sequences and SSRs were detected, showing great similarity among all taxa in this complex. Six highly variable regions, including trnS-trnG, rps2-rpoC2, ndhF, rpl32-ccsA, ccsA-ndhD, and ndhA, were screened as potential molecular markers for phylogenetic reconstruction. Based on a total of 27 complete cp genome sequences, the consistent and robust phylogenetic relationships were firstly constructed and the same species within L. scabrida complex clustered into a group. The divergence time of Leptodermis from ancestral taxa occurred at the middle Eocene, which might be due to geological and climatic changes. The 13 complete cp genome sequences reported will provide new clues for phylogeny elucidation, species identification and evolutionary history speculation of Leptodermis, as well as in Rubiaceae.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yanan Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Sheng Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianyi Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ruijiang Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
40
|
Significance of Artemisia Vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules 2020; 25:molecules25194415. [PMID: 32992959 PMCID: PMC7583039 DOI: 10.3390/molecules25194415] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisia vulgaris L. (common mugwort) is a species with great importance in the history of medicine and was called the “mother of herbs” in the Middle Ages. It is a common herbaceous plant that exhibits high morphological and phytochemical variability depending on the location where it occurs. This species is well known almost all over the world. Its herb—Artemisiae vulgaris herba—is used as a raw material due to the presence of essential oil, flavonoids, and sesquiterpenoids lactones and their associated biological activities. The European Pharmacopoeia has listed this species as a potential homeopathic raw material. Moreover, this species has been used in traditional Chinese, Hindu, and European medicine to regulate the functioning of the gastrointestinal system and treat various gynecological diseases. The general aim of this review was to analyze the progress of phytochemical and pharmacological as well as professional scientific studies focusing on A. vulgaris. Thus far, numerous authors have confirmed the beneficial properties of A. vulgaris herb extracts, including their antioxidant, hepatoprotective, antispasmolytic, antinociceptive, estrogenic, cytotoxic, antibacterial, and antifungal effects. In addition, several works have reviewed the use of this species in the production of cosmetics and its role as a valuable spice in the food industry. Furthermore, biotechnological micropropagation of A. vulgaris has been analyzed.
Collapse
|
41
|
Li J, Jiang M, Chen H, Yu J, Liu C. Intraspecific variations among the chloroplast genomes of Artemisia scoparia (asteraceae) from Pakistan and China. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1810167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|