1
|
Chen Y, Xu J, Liu L, Li H, Yang Y, Cheng S, Li L. Construction and validation of an immune gene-based model for diagnosis and risk prediction of severe asthma. J Asthma 2024:1-14. [PMID: 39661012 DOI: 10.1080/02770903.2024.2422410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE Severe asthma (SA) is a serious disease with limited treatment options, which is closely linked to immune dysfunction. Therefore, immune-associated biomarkers may diagnose SA and offer therapeutic targets for SA. METHODS The gene expression profiles of SA patients and matched controls were from the National Center for Biotechnology Information database. Immune genes were downloaded from the ImmPort database. After screening for differentially expressed genes (DEGs) between SA patients and controls, and identifying gene modules highly associated with SA, immune-related DEGs were obtained. Then, protein-protein interaction analysis, Cytoscape software and receiver operating characteristic (ROC) curves were used to identify hub genes. Next, the relationship between hub genes and immune cells was explored, and single-sample gene set enrichment analysis (ssGSEA) was applied to conduct pathway enrichment analyses. Finally, the Least Absolute Shrinkage and Selection Operator (LASSO) combined with ROC analysis were used to confirm the diagnostic value of the hub genes. RESULTS Forty immune-related DEGs were obtained, and RNASE3, CAMP and LTF were determined as hub genes. The hub genes were closely associated with immune cells, and ssGSEA showed that lysosome was associated with high expressions of the hub genes, while primary immunodeficiency was related to low expressions of the hub genes. LASSO combined with ROC analysis confirmed the immune gene-based model (RNASE3, CAMP, LTF, and CD79A) could distinguish SA patients from healthy individuals with high sensitivity. CONCLUSIONS RNASE3, CAMP, LTF, and CD79A could act as diagnostic markers for SA, providing a theoretical basis for developing diagnostic targets for SA.
Collapse
Affiliation(s)
- Yaqin Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jiaye Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liwei Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Han Li
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yufang Yang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shen Cheng
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Lan Li
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Pandey S, Catto M, Roberts P, Bag S, Jacobson AL, Srinivasan R. Aphid gene expression following polerovirus acquisition is host species dependent. FRONTIERS IN PLANT SCIENCE 2024; 15:1341781. [PMID: 38525153 PMCID: PMC10957536 DOI: 10.3389/fpls.2024.1341781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Upon acquisition of persistent circulative viruses such as poleroviruses, the virus particles transcytose through membrane barriers of aphids at the midgut and salivary glands via hemolymph. Such intricate interactions can influence aphid behavior and fitness and induce associated gene expression in viruliferous aphids. Differential gene expression can be evaluated by omics approaches such as transcriptomics. Previously conducted aphid transcriptome studies used only one host species as the source of virus inoculum. Viruses typically have alternate hosts. Hence, it is not clear how alternate hosts infected with the same virus isolate alter gene expression in viruliferous vectors. To address the question, this study conducted a transcriptome analysis of viruliferous aphids that acquired the virus from different host species. A polerovirus, cotton leafroll dwarf virus (CLRDV), which induced gene expression in the cotton aphid, Aphis gossypii Glover, was assessed using four alternate hosts, viz., cotton, hibiscus, okra, and prickly sida. Among a total of 2,942 differentially expressed genes (DEGs), 750, 310, 1,193, and 689 genes were identified in A. gossypii that acquired CLRDV from infected cotton, hibiscus, okra, and prickly sida, respectively, compared with non-viruliferous aphids that developed on non-infected hosts. A higher proportion of aphid genes were overexpressed than underexpressed following CLRDV acquisition from cotton, hibiscus, and prickly sida. In contrast, more aphid genes were underexpressed than overexpressed following CLRDV acquisition from okra plants. Only four common DEGs (heat shock protein, juvenile hormone acid O-methyltransferase, and two unannotated genes) were identified among viruliferous aphids from four alternate hosts. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that the acquisition of CLRDV induced DEGs in aphids associated with virus infection, signal transduction, immune systems, and fitness. However, these induced changes were not consistent across four alternate hosts. These data indicate that alternate hosts could differentially influence gene expression in aphids and presumably aphid behavior and fitness despite being infected with the same virus isolate.
Collapse
Affiliation(s)
- Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Michael Catto
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alana L. Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
3
|
Yu W, Bosquée E, Fan J, Liu Y, Bragard C, Francis F, Chen J. Proteomic and Transcriptomic Analysis for Identification of Endosymbiotic Bacteria Associated with BYDV Transmission Efficiency by Sitobion miscanthi. PLANTS (BASEL, SWITZERLAND) 2022; 11:3352. [PMID: 36501390 PMCID: PMC9735544 DOI: 10.3390/plants11233352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids' geographic populations, differing in their BYDV transmission efficiency, after characterizing their endosymbionts, were treated with antibiotics to investigate how changes in the composition of their endosymbiont population affected BYDV transmission efficiency. After antibiotic treatment, Rickettsia was eliminated from two geographic populations. BYDV transmission efficiency by STY geographic population dropped significantly, by -44.2% with ampicillin and -25.01% with rifampicin, but HDZ geographic population decreased by only 14.19% with ampicillin and 23.88% with rifampicin. Transcriptomic analysis showed that the number of DEGs related to the immune system, carbohydrate metabolism and lipid metabolism did increase in the STY rifampicin treatment, while replication and repair, glycan biosynthesis and metabolism increased in the STY ampicillin treatment. Proteomic analysis showed that the abundance of symbionin symL, nascent polypeptide-associated complex subunit alpha and proteasome differed significantly between the two geographic populations. We found that the endosymbionts can mediate vector viral transmission. They should therefore be included in investigations into aphid-virus interactions and plant disease epidemiology. Our findings should also help with the development of strategies to prevent virus transmission.
Collapse
Affiliation(s)
- Wenjuan Yu
- MOA Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Emilie Bosquée
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Jia Fan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Claude Bragard
- Applied Microbiologye-Phytopathology, Earth and Life Institute, UCLouvain, Croix du Sud L7.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Julian Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Hu XS, Li JW, Peng JF, Wang H, Yan FY, Zhou ZF, Zhang ZF, Zhao HY, Feng Y, Liu TX. Effects of Crop Resistance on the Tritrophic Interactions between Wheat Lines, Schizaphis graminum (Hemitera: Aphididae), and Propylaea japonica (Coleoptera: Coccinellidae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2754. [PMID: 36297778 PMCID: PMC9611035 DOI: 10.3390/plants11202754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Crop resistance and biological control are both considered efficient and environmentally friendly methods of sustainable pest control. In this study, we aimed at investigating the direct influence of four wheat lines with varying resistance level on the life-history traits of the greenbug, Schizaphis graminum, and the mediational effect on the functional response of a predatory ladybird, Propylaea japonica, under laboratory conditions. Results showed that the aphid fitness was the lowest for aphids that had been feeding on wheat line '98-10-19' for one year. These aphids had the longest development time, and least adult mass, minimal mean relative growth rate, and lowest reproductive fitness. In contrast, the aphids that fed on wheat line '98-10-30' were the fittest, with the shortest development time and highest levels of reproductive fitness. The predatory activities of the ladybeetle, especially the adult male significantly decreased following the consumption of aphids belonging to the '98-10-19'-acclimated population. However, there were no significant differences in predatory efficiency (net attack frequency) among the four aphid acclimated populations. Our results showed that the wheat line '98-10-19' has a relative higher resistance to S. graminum than the other three wheat lines, which could further decrease the amount of prey available for consumption. However, the ecological effect of the resistance of '98-10-19' to S. graminum posed no negative influence on the biocontrol potential of P. japonica to these aphids, as their predatory efficiency increases at the fourth instar larvae phase.
Collapse
Affiliation(s)
- Xiang-Shun Hu
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Jing-Wen Li
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Jing-Feng Peng
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Han Wang
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Fan-Ye Yan
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Zi-Fang Zhou
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Zhan-Feng Zhang
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Hui-Yan Zhao
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yi Feng
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Tong-Xian Liu
- State Key Laboratory for Crop Stress Biology in Arid Areas and Key Laboratory of Crop Pest Management on the Northwest Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Silencing of the Prophenoloxidase Gene BtPPO1 Increased the Ability of Acquisition and Retention of Tomato chlorosis virus by Bemisia tabaci. Int J Mol Sci 2022; 23:ijms23126541. [PMID: 35742985 PMCID: PMC9223377 DOI: 10.3390/ijms23126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tomato chlorosis virus (ToCV) has seriously impacted tomato production around the world. ToCV is semi-persistently transmitted by the whitefly, Bemisia tabaci, which is a serious agricultural pest in the world. However, the interaction mechanism between ToCV and its whitefly vector is still poorly understood. Our previous transcriptome analysis demonstrated that the expression level of an immune-related gene, prophenoloxidase (PPO), in B. tabaci increased after ToCV acquisition, which indicates that the PPO may be involved in the interaction mechanism between the ToCV and its vector. To determine the role of the PPO in the acquisition and retention of ToCV by B. tabaci, we cloned the complete Open Reading Frames (ORF) of the BtPPOs (BtPPO1 and BtPPO2), and then structure and phylogenetic analyses were performed. BtPPOs were closely related to the PPO genes of Hemiptera insects. Spatial-temporal expression detection was qualified by using reverse transcription quantitative PCR (RT-qPCR), and this revealed that BtPPOs were expressed in all tissues and developmental stages. We found that only BtPPO1 was significantly upregulated after B. tabaci acquired ToCV for 12 and 24 h. According to the paraffin-fluorescence probe-fluorescence in situ hybridization (FISH) experiment, we verified that ToCV and BtPPO1 were co-located in the thorax of B. tabaci, which further revealed the location of their interaction. Finally, the effects of the BtPPOs on ToCV acquisition and retention by B. tabaci were determined using RNA interference (RNAi). The results showed that the RNAi of the responsive gene (BtPPO1) significantly increased the titer of ToCV in B. tabaci. These results demonstrate that BtPPO1 participates in ToCV acquisition and retention by B. tabaci.
Collapse
|
6
|
Marmonier A, Velt A, Villeroy C, Rustenholz C, Chesnais Q, Brault V. Differential gene expression in aphids following virus acquisition from plants or from an artificial medium. BMC Genomics 2022; 23:333. [PMID: 35488202 PMCID: PMC9055738 DOI: 10.1186/s12864-022-08545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.
Collapse
Affiliation(s)
- Aurélie Marmonier
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Amandine Velt
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Claire Villeroy
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Camille Rustenholz
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Quentin Chesnais
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Véronique Brault
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France.
| |
Collapse
|
7
|
Comparison of Transcriptome Responses between Sogatella furcifera Females That Acquired Southern Rice Black-Streaked Dwarf Virus and Not. INSECTS 2022; 13:insects13020182. [PMID: 35206753 PMCID: PMC8877124 DOI: 10.3390/insects13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The southern rice black-streaked dwarf virus (SRBSDV) is transmitted horizontally by the planthopper, Sogatella furcifera. During feeding on virus-infected plants, S. furcifera may acquire or fail to acquire SRBSDV. In this study, the responses were compared among the S. furcifera successfully acquiring the virus, those failing to acquire the virus, and those not exposed to SRBSDV (the control). A total of 1043 and 2932 differentially expressed genes (DEGs) were obtained in S. furcifera females that acquired SRBSDV and that failed to, in comparison with the control, respectively. Functionally, these DEGs are primarily involved in diverse signaling pathways related to primary metabolism and innate immunity, such as apoptosis. Additional bioassays confirmed the activation of apoptosis in S. furcifera by SRBSDV exposure. Interestingly, we also found that six female-specific genes were also upregulated in S. furcifera females exposed to SRBSDV. Our results further the understanding of the interactions between the vector S. furcifera females and SRBSDV at the molecular level. Abstract The southern rice black-streaked dwarf virus (SRBSDV) is transmitted horizontally by Sogatella furcifera in a persistent, propagative manner. Exposure of S. furcifera females to SRBSDV-infected rice plants may trigger transcriptomic changes in the insects, the transcriptomes of females that acquired SRBSDV and those that failed to, as well as females fed on healthy rice plants as control, were sequenced and compared. Nine transcriptomic libraries were constructed, from which a total of 53,084 genes were assembled. Among the genes, 1043 and 2932 were differentially expressed genes (DEGs) in S. furcifera females that acquired SRBSDV and that failed to, in comparison with the control, respectively. Functional enrichment analysis showed that DEGs identified in S. furcifera females exposed to SRBSDV are primarily involved in diverse signaling pathways related to primary metabolism and innate immunity. The DEGs in the S. furcifera females that failed to acquire the virus significantly outnumbered that in the insects that acquired the virus, and the virus exposure activated the humoral and cellular immune responses of the vectors, especially the apoptosis. The key gene in apoptosis encoding caspase 1 was upregulated by SRBSDV exposure, especially in S. furcifera females that failed to acquire the virus. Analysis of caspase 1 activity validated that SRBSDV exposure induced caspase 1 accumulation. Surprisingly, the expression of six female-specific genes was also upregulated by SRBSDV exposure, which was confirmed by RT-qPCR analysis. This study provides evidence to explain the differential virus acquisition at the transcriptome level.
Collapse
|