1
|
Xie X, Shi L, Hou G, Zhong Z, Wang Z, Pan D, Na W, Xiao Q. Genome wide detection of CNV and their association with body size in Danzhou chickens. Poult Sci 2024; 103:104266. [PMID: 39293262 PMCID: PMC11426044 DOI: 10.1016/j.psj.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Copy number variation (CNV) is a crucial component of genetic diversity in the genome, serving as the foundation for the genetic architecture and phenotypic variability of complex traits. In this study, we examined CNVs in the Danzhou (DZ) chicken, an indigenous breed exclusive to Hainan Province, China. By employing whole-genome resequencing data from 200 DZ chickens, we conducted a comprehensive genome-wide analysis of CNVs using CNVpytor and performed CNV-based genome-wide association studies (GWAS) on 6 body size traits, including body slope length (BSL), keel length (KeL), tibial length (TiL), tibial circumference (TiC), chest width (ChW), and chest depth (ChD) utilizing linear mixed model methods considering a genomic relationship matrix. We identified a total of 144,265 autosomal CNVs among the 200 individuals, comprising 67,818 deletions and 76,447 duplications. After merging these variants together, we obtained 4,824 distinct copy number variant regions, which accounted for approximately 20% of the chicken autosomal genome. Furthermore, we discovered several significantly associated CNV segments with body size traits located proximal to genes such as IHH, WNT6, WNT10A, LPR4, FZD2, WNT7B, and GNAS that have been extensively implicated in skeletal development and growth processes. These findings enhance our understanding of CNVs in chickens and their potential impact on body size traits by revealing candidate genes involved in the regulation of these traits. This establishes a solid framework for future studies and may prove particularly beneficial for exploring genetic structural variation in chickens.
Collapse
Affiliation(s)
- Xinfeng Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Liguang Shi
- Chinese Academy of Tropical Agricultural Sciences,Haikou, Hainan 571101, China
| | - Guanyu Hou
- Chinese Academy of Tropical Agricultural Sciences,Haikou, Hainan 571101, China
| | - Ziqi Zhong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Deyou Pan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Ayalew W, Xiaoyun W, Tarekegn GM, Tessema TS, Chu M, Liang C, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Ping Y. Whole-genome sequencing of copy number variation analysis in Ethiopian cattle reveals adaptations to diverse environments. BMC Genomics 2024; 25:1088. [PMID: 39548375 PMCID: PMC11566455 DOI: 10.1186/s12864-024-10936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Genomic structural variations (GSVs), notably copy number variations (CNVs), significantly shape genetic diversity and facilitate adaptation in cattle populations. Despite their importance, the genome-wide characterization of CNVs in indigenous Ethiopian cattle breeds-Abigar, Fellata, and Gojjam-Highland remains largely unexplored. In this study, we applied a read-depth approach to whole genome sequencing (WGS) data to conduct the first comprehensive analysis of CNVs in these populations. RESULTS We identified 3,893 CNV regions (CNVRs) covering 19.15 Mb (0.71% of the cattle genome). These CNVRs ranged from 1.60 kb to 488.0 kb, with an average size of 4.92 kb. These CNVRs included deletions (1713), duplications (1929), and mixed events (251) showing notable differences in distribution among the breeds. Four out of five randomly selected CNVRs were successfully validated using real time polymerase chain reaction (qPCR). Further analyses identified candidate genes associated with high-altitude adaptation (GBE1 and SOD1), heat stress adaptation (HSPA13, DNAJC18, and DNAJC8) and resistance to tick infestations (BoLA and KRT33A). In addition, variance stabilizing transformation (VST) statistics highlighted population-specific CNVRs, emphasizing the unique genetic signatures of high-altitude adaptation in the Gojjam-Highland cattle breed. Among the detected CNVRs, 4.93% (192 out of 3,893) overlapped with 520 quantitative traits loci (QTLs) associated with six economically important trait categories suggesting that these CNVRs may significantly contribute to the genetic variation underlying these traits. CONCLUSIONS Our comprehensive analysis reveals significant CNVRs associated with key adaptive traits in Ethiopian cattle breeds highlighting their genetic diversity and resilience. These findings offer valuable insights into the genetic basis of adaptability and can inform sustainable breeding practices and conservation efforts. Future research should prioritize the functional validation of these CNVRs and their integration into breeding programs to enhance traits such as disease resistance and environmental adaptability.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wu Xiaoyun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China.
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
- Scotland's Rural College (SRUC), Roslin Institute Building, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, Stockholm, 17177, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Yan Ping
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 30050, P.R. China.
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, 831100, P.R. China.
| |
Collapse
|
3
|
Rojas de Oliveira H, Chud TCS, Oliveira GA, Hermisdorff IC, Narayana SG, Rochus CM, Butty AM, Malchiodi F, Stothard P, Miglior F, Baes CF, Schenkel FS. Genome-wide association analyses reveal copy number variant regions associated with reproduction and disease traits in Canadian Holstein cattle. J Dairy Sci 2024; 107:7052-7063. [PMID: 38788846 DOI: 10.3168/jds.2023-24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/01/2024] [Indexed: 05/26/2024]
Abstract
This study aimed to evaluate the impact of copy number variants (CNV) on 13 reproduction and 12 disease traits in Holstein cattle. Intensity signal files containing log R ratio and B allele frequency information from 13,730 Holstein animals genotyped with a 95K SNP panel, and 8,467 Holstein animals genotyped with a 50K SNP panel were used to identify the CNVs. Subsequently, the identified CNVs were validated using whole-genome sequence data from 126 animals, resulting in 870 high-confidence copy number variant regions (CNVR) on 12,131 animals. Out of these, 54 CNVR had frequencies higher than or equal to 1% in the population and were used in the genome-wide association analysis (one CNVR at a time, including the G matrix). Results revealed that 4 CNVR were significantly associated with at least one of the traits analyzed in this study. Specifically, 2 CNVR were associated with 3 reproduction traits (i.e., calf survival, first service to conception, and nonreturn rate), and 2 CNVR were associated with 2 disease traits (i.e., metritis and retained placenta). These CNVR harbored genes implicated in immune response, cellular signaling, and neuronal development, supporting their potential involvement in these traits. Further investigations to unravel the mechanistic and functional implications of these CNVR on the mentioned traits are warranted.
Collapse
Affiliation(s)
- Hinayah Rojas de Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Tatiane C S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Isis C Hermisdorff
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Saranya G Narayana
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Lactanet, Guelph, ON, Canada N1K 1E5
| | - Christina M Rochus
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | - Francesca Malchiodi
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Semex, Guelph, ON, Canada N1H 6J2
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2H1
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Lactanet, Guelph, ON, Canada N1K 1E5
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland 3012
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
4
|
Davoudi P, Do DN, Rathgeber B, Colombo S, Sargolzaei M, Plastow G, Wang Z, Miar Y. Identification of consensus homozygous regions and their associations with growth and feed efficiency traits in American mink. BMC Genom Data 2024; 25:68. [PMID: 38982354 PMCID: PMC11234557 DOI: 10.1186/s12863-024-01252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
The recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism (SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex traits in this species. The objective of this study was to evaluate the association between consensus runs of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array. The identified ROH segments were included simultaneously, concatenated into consensus regions, and the ROH-based association studies were carried out with linear mixed models considering a genomic relationship matrix for 11 growth and feed efficiency traits implemented in ASReml-R version 4. In total, 298,313 ROH were identified across all individuals, with an average length and coverage of 4.16 Mb and 414.8 Mb, respectively. After merging ROH segments, 196 consensus ROH regions were detected and used for genome-wide ROH-based association analysis. Thirteen consensus ROH regions were significantly (P < 0.01) associated with growth and feed efficiency traits. Several candidate genes within the significant regions are known for their involvement in growth and body size development, including MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, we found ten consensus ROH regions, defined as ROH islands, with frequencies over 80% of the population. These islands harbored 12 annotated genes, some of which were related to immune system processes such as DTX3L, PARP9, PARP14, CD86, and HCLS1. This is the first study to explore the associations between homozygous regions with growth and feed efficiency traits in American mink. Our findings shed the light on the effects of homozygosity in the mink genome on growth and feed efficiency traits, that can be utilized in developing a sustainable breeding program for mink.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc, Plain City, OH, USA
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
5
|
Boschiero C, Neupane M, Yang L, Schroeder SG, Tuo W, Ma L, Baldwin RL, Van Tassell CP, Liu GE. A Pilot Detection and Associate Study of Gene Presence-Absence Variation in Holstein Cattle. Animals (Basel) 2024; 14:1921. [PMID: 38998033 PMCID: PMC11240624 DOI: 10.3390/ani14131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95-99% of individuals), 494 shell (present in 5-94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
6
|
Delledonne A, Punturiero C, Ferrari C, Bernini F, Milanesi R, Bagnato A, Strillacci MG. Copy number variant scan in more than four thousand Holstein cows bred in Lombardy, Italy. PLoS One 2024; 19:e0303044. [PMID: 38771855 PMCID: PMC11108207 DOI: 10.1371/journal.pone.0303044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
Copy Number Variants (CNV) are modifications affecting the genome sequence of DNA, for instance, they can be duplications or deletions of a considerable number of base pairs (i.e., greater than 1000 bp and up to millions of bp). Their impact on the variation of the phenotypic traits has been widely demonstrated. In addition, CNVs are a class of markers useful to identify the genetic biodiversity among populations related to adaptation to the environment. The aim of this study was to detect CNVs in more than four thousand Holstein cows, using information derived by a genotyping done with the GGP (GeneSeek Genomic Profiler) bovine 100K SNP chip. To detect CNV the SVS 8.9 software was used, then CNV regions (CNVRs) were detected. A total of 123,814 CNVs (4,150 non redundant) were called and aggregated into 1,397 CNVRs. The PCA results obtained using the CNVs information, showed that there is some variability among animals. For many genes annotated within the CNVRs, the role in immune response is well known, as well as their association with important and economic traits object of selection in Holstein, such as milk production and quality, udder conformation and body morphology. Comparison with reference revealed unique CNVRs of the Holstein breed, and others in common with Jersey and Brown. The information regarding CNVs represents a valuable resource to understand how this class of markers may improve the accuracy in prediction of genomic value, nowadays solely based on SNPs markers.
Collapse
Affiliation(s)
- Andrea Delledonne
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Chiara Punturiero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Carlotta Ferrari
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Maria G. Strillacci
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
7
|
Steenwyk JL, King N. The promise and pitfalls of synteny in phylogenomics. PLoS Biol 2024; 22:e3002632. [PMID: 38768403 PMCID: PMC11105162 DOI: 10.1371/journal.pbio.3002632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic. To resolve difficult nodes on the tree of life, 2 recent studies tested the utility of synteny, the conserved collinearity of orthologous genetic loci in 2 or more organisms, for phylogenetics. Synteny exhibits compelling phylogenomic potential while also raising new challenges. This Essay identifies and discusses specific opportunities and challenges that bear on the value of synteny data and other rare genomic changes for phylogenomic studies. Synteny-based analyses of highly contiguous genome assemblies mark a new chapter in the phylogenomic era and the quest to reconstruct the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
8
|
Petrov AF, Bogdanova OV, Narozhnykh KN, Kamaldinov EV, Shatokhin KS, Gart VV, Kulikova SG, Zhigulin TA. Clustering of countries based on dairy productivity characteristics of Holstein cattle for breeding material selection. Vet World 2024; 17:1108-1118. [PMID: 38911070 PMCID: PMC11188896 DOI: 10.14202/vetworld.2024.1108-1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim The aim of any breeding process is to create a herd based on certain parameters that reflect an ideal animal vision. Targeted herding involves selecting the source of breeding material to be imported from another country. Therefore, there is a problem in selecting a breeding material importer to rapidly form a uterine canopy with the required properties. The purpose of this study was to evaluate a set of predictive milk productivity traits in Holstein cattle across countries. Materials and Methods This research was based on records of 819,358 recorded animals from 28 countries born after January 1, 2018, from open databases. We used the Euclidean metric to construct dendrograms characterizing the similarity of countries according to the complex milk productivity traits of the daughters of bulls. The Ward method was used to minimize intracluster variance when forming clusters and constructing the corresponding diagrams. Principal component analysis was used to reduce dimensionality and eliminate the effect of multicollinearity. The principal components were selected using the Kaiser-Harris criteria. Results A ranking of multidimensional complex milk productivity traits in different countries over the past 5 years was performed. A group of leading countries led by the USA was established according to the studied indicators, and the possible reasons for such a division into groups were described. Conclusion The pressure of purposeful artificial selection prevails in comparison with the pressure of natural selection concerning milk productivity traits in a certain group of countries, which allows specialists to choose suppliers when buying breeding animals and materials. The findings are based solely on data from recorded animals, which may not represent the entire breed population within each country, especially in regions where record-keeping may be inconsistent. It is expected that further studies will include regional data from large enterprises not part of Interbull, with mandatory verification and validation. An important element of such work is seen as the ability to compare the milk productivity of populations from different countries using a different scale, as well as studying the differentiation of countries by other selection traits of dairy.
Collapse
Affiliation(s)
- A. F. Petrov
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - O. V. Bogdanova
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - K. N. Narozhnykh
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - E. V. Kamaldinov
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - K. S. Shatokhin
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - V. V. Gart
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - S. G. Kulikova
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - T. A. Zhigulin
- Department of Veterinary Genetics and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| |
Collapse
|
9
|
Singh VK, Singh S, Nandhini PB, Bhatia AK, Dixit SP, Ganguly I. Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent. Anim Biotechnol 2023; 34:3483-3494. [PMID: 36592947 DOI: 10.1080/10495398.2022.2162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copy number variations (CNVs) include deletions, duplications, and insertions that are larger than 50 bp in size causing structural variation responsible for diversity, adaptation, and breed development. Indian cattle breeds are highly diverse from the taurine breeds. The pattern of CNVRs in 191 animals belonging to 39 cattle breeds (four Indicine and 35 Taurine) was studied based on Illumina 777K BovineHD chip data. The Indicine breeds revealed 2590 CNVs and 335 copy number variation regions (CNVRs) in autosomes. Out of the identified CNVs, 50 were found to be novel. Structure analysis revealed admixed nature of Siri. Neighbor joining tree from CNVR data showed that hot (Kankrej and Hallikar) and cold (Ladakhi and Siri) adapted cattle breeds clustered separately. CNVR of Indian and European breeds revealed that Balkan and Italian breeds of Podolian group are admixed with Indian cattle breeds corroborating indicine introgression (6.1-13.5%). CNVRs spanning the regions of olfactory receptors and immune system genes were identified. AMOVA revealed 9% variation among populations which is 2% greater than SNP based studies showing higher inclusion of variation by CNVR. Detailed analysis of CNVs/CNVRs in Indian cattle adapted to hot and cold climate, and their diversity among worldwide cattle is presented in this study.
Collapse
Affiliation(s)
- V K Singh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - P B Nandhini
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - A K Bhatia
- Animal Genetic Resources Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - S P Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - I Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
10
|
Li X, Ma W, Liu H, Wang D, Su L, Yang X. Integrative pan-cancer analysis of cuproplasia-associated genes for the genomic and clinical characterization of 33 tumors. Chin Med J (Engl) 2023; 136:2621-2631. [PMID: 37027423 PMCID: PMC10617821 DOI: 10.1097/cm9.0000000000002343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The molecular mechanisms driving tumorigenesis have continually been the focus of researchers. Cuproplasia is defined as copper-dependent cell growth and proliferation, including its primary and secondary roles in tumor formation and proliferation through signaling pathways. In this study, we analyzed the differences in the expression of cuproplasia-associated genes (CAGs) in pan-cancerous tissues and investigated their role in immune-regulation and tumor prognostication. METHODS Raw data from 11,057 cancer samples were acquired from multiple databases. Pan-cancer analysis was conducted to analyze the CAG expression, single-nucleotide variants, copy number variants, methylation signatures, and genomic signatures of micro RNA (miRNA)-messenger RNA (mRNA) interactions. The Genomics of Drug Sensitivity in Cancer and the Cancer Therapeutics Response Portal databases were used to evaluate drug sensitivity and resistance against CAGs. Using single-sample Gene Set Enrichment Analysis (ssGSEA) and Immune Cell Abundance Identifier database, immune cell infiltration was analyzed with the ssGSEA score as the standard. RESULTS Aberrantly expressed CAGs were found in multiple cancers. The frequency of single-nucleotide variations in CAGs ranged from 1% to 54% among different cancers. Furthermore, the correlation between CAG expression in the tumor microenvironment and immune cell infiltration varied among different cancers. ATP7A and ATP7B were negatively correlated with macrophages in 16 tumors including breast invasive carcinoma and esophageal carcinoma, while the converse was true for MT1A and MT2A . In addition, we established cuproplasia scores and demonstrated their strong correlation with patient prognosis, immunotherapy responsiveness, and disease progression ( P <0.05). Finally, we identified potential candidate drugs by matching gene targets with existing drugs. CONCLUSIONS This study reports the genomic characterization and clinical features of CAGs in pan-cancers. It helps clarify the relationship between CAGs and tumorigenesis, and may be helpful in the development of biomarkers and new therapeutic agents.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Weining Ma
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Hui Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200060, China
| | - Deming Wang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Lixin Su
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Xitao Yang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
11
|
Xu J, Zhang W, Zhang P, Sun W, Han Y, Li L. A comprehensive analysis of copy number variations in diverse apple populations. BMC Genomics 2023; 24:256. [PMID: 37170226 PMCID: PMC10176694 DOI: 10.1186/s12864-023-09347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/16/2022] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND As an important source of genetic variation, copy number variation (CNV) can alter the dosage of DNA segments, which in turn may affect gene expression level and phenotype. However, our knowledge of CNV in apple is still limited. Here, we obtained high-confidence CNVs and investigated their functional impact based on genome resequencing data of two apple populations, cultivars and wild relatives. RESULTS In this study, we identified 914,610 CNVs comprising 14,839 CNV regions (CNVRs) from 346 apple accessions, including 289 cultivars and 57 wild relatives. CNVRs summed to 71.19 Mb, accounting for 10.03% of the apple genome. Under the low linkage disequilibrium (LD) with nearby SNPs, they could also accurately reflect the population structure of apple independent of SNPs. Furthermore, A total of 3,621 genes were covered by CNVRs and functionally involved in biological processes such as defense response, reproduction and metabolic processes. In addition, the population differentiation index ([Formula: see text]) analysis between cultivars and wild relatives revealed 127 CN-differentiated genes, which may contribute to trait differences in these two populations. CONCLUSIONS This study was based on identification of CNVs from 346 diverse apple accessions, which to our knowledge was the largest dataset for CNV analysis in apple. Our work presented the first comprehensive CNV map and provided valuable resources for understanding genomic variations in apple.
Collapse
Affiliation(s)
- Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicheng Sun
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Lee YL, Bosse M, Takeda H, Moreira GCM, Karim L, Druet T, Oget-Ebrad C, Coppieters W, Veerkamp RF, Groenen MAM, Georges M, Bouwman AC, Charlier C. High-resolution structural variants catalogue in a large-scale whole genome sequenced bovine family cohort data. BMC Genomics 2023; 24:225. [PMID: 37127590 PMCID: PMC10152703 DOI: 10.1186/s12864-023-09259-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Structural variants (SVs) are chromosomal segments that differ between genomes, such as deletions, duplications, insertions, inversions and translocations. The genomics revolution enabled the discovery of sub-microscopic SVs via array and whole-genome sequencing (WGS) data, paving the way to unravel the functional impact of SVs. Recent human expression QTL mapping studies demonstrated that SVs play a disproportionally large role in altering gene expression, underlining the importance of including SVs in genetic analyses. Therefore, this study aimed to generate and explore a high-quality bovine SV catalogue exploiting a unique cattle family cohort data (total 266 samples, forming 127 trios). RESULTS We curated 13,731 SVs segregating in the population, consisting of 12,201 deletions, 1,509 duplications, and 21 multi-allelic CNVs (> 50-bp). Of these, we validated a subset of copy number variants (CNVs) utilising a direct genotyping approach in an independent cohort, indicating that at least 62% of the CNVs are true variants, segregating in the population. Among gene-disrupting SVs, we prioritised two likely high impact duplications, encompassing ORM1 and POPDC3 genes, respectively. Liver expression QTL mapping results revealed that these duplications are likely causing altered gene expression, confirming the functional importance of SVs. Although most of the accurately genotyped CNVs are tagged by single nucleotide polymorphisms (SNPs) ascertained in WGS data, most CNVs were not captured by individual SNPs obtained from a 50K genotyping array. CONCLUSION We generated a high-quality SV catalogue exploiting unique whole genome sequenced bovine family cohort data. Two high impact duplications upregulating the ORM1 and POPDC3 are putative candidates for postpartum feed intake and hoof health traits, thus warranting further investigation. Generally, CNVs were in low LD with SNPs on the 50K array. Hence, it remains crucial to incorporate CNVs via means other than tagging SNPs, such as investigation of tagging haplotypes, direct imputation of CNVs, or direct genotyping as done in the current study. The SV catalogue and the custom genotyping array generated in the current study will serve as valuable resources accelerating utilisation of full spectrum of genetic variants in bovine genomes.
Collapse
Affiliation(s)
- Young-Lim Lee
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands.
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium.
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Haruko Takeda
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | | | - Latifa Karim
- GIGA Institute, GIGA Genomics Platform, University of Liège, Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | - Claire Oget-Ebrad
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
- GIGA Institute, GIGA Genomics Platform, University of Liège, Liège, Belgium
| | - Roel F Veerkamp
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel Georges
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| | - Aniek C Bouwman
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Carole Charlier
- Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-R &, University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Liu Y, Mu Y, Wang W, Ahmed Z, Wei X, Lei C, Ma Z. Analysis of genomic copy number variations through whole-genome scan in Chinese Qaidam cattle. Front Vet Sci 2023; 10:1148070. [PMID: 37065216 PMCID: PMC10103646 DOI: 10.3389/fvets.2023.1148070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Qaidam cattle (CDM) are indigenous breed inhabiting Northwest China. In the present study, we newly sequenced 20 Qaidam cattle to investigate the copy number variants (CNVs) based on the ARS-UMD1.2 reference genome. We generated the CNV region (CNVR) datasets to explore the genomic CNV diversity and population stratification. The other four cattle breeds (Xizang cattle, XZ; Kazakh cattle, HSK; Mongolian cattle, MG; and Yanbian cattle, YB) from the regions of North China embracing 43 genomic sequences were collected and are distinguished from each of the other diverse populations by deletions and duplications. We also observed that the number of duplications was significantly more than deletions in the genome, which may be less harmful to gene formation and function. At the same time, only 1.15% of CNVRs overlapped with the exon region. Population differential CNVRs and functional annotations between the Qaidam cattle population and other cattle breeds revealed the functional genes related to immunity (MUC6), growth (ADAMTSL3), and adaptability (EBF2). Our analysis has provided numerous genomic characteristics of some Chinese cattle breeds, which are valuable as customized biological molecular markers in cattle breeding and production.
Collapse
Affiliation(s)
- Yangkai Liu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yanan Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Wenxiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Xudong Wei
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Chuzhao Lei
| | - Zhijie Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- *Correspondence: Zhijie Ma
| |
Collapse
|
14
|
Assessment of linkage disequilibrium patterns between structural variants and single nucleotide polymorphisms in three commercial chicken populations. BMC Genomics 2022; 23:193. [PMID: 35264116 PMCID: PMC8908679 DOI: 10.1186/s12864-022-08418-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Structural variants (SV) are causative for some prominent phenotypic traits of livestock as different comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly studied. Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether close-by single nucleotide polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and can serve as markers. Literature comes to different conclusions on whether SVs are in LD to SNPs on the same level as SNPs to other SNPs. The present study aimed to generate a precise SV callset from whole-genome short-read sequencing (WGS) data for three commercial chicken populations and to evaluate LD patterns between the called SVs and surrounding SNPs. It is thereby the first study that assessed LD between SVs and SNPs in chickens. RESULTS The final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 218 inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and SNPs was at the same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly reduced (DUP: 40%, INV: 27%, BND: 19% of between-SNP LD). A main factor for the reduced LD was the presence of local minor allele frequency differences, which accounted for 50% of the difference between SNP - SNP and DUP - SNP LD. This was potentially accompanied by lower genotyping accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of the presence of tag SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged by WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when reducing the pool of potential tag SNPs to SNPs located on four different chicken genotyping arrays. CONCLUSIONS The results implied that genomic variance due to DELs in the chicken populations studied can be captured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be advisable for DUP, INV, and BND effects.
Collapse
|
15
|
Ladeira GC, Pilonetto F, Fernandes AC, Bóscollo PP, Dauria BD, Titto CG, Coutinho LL, E Silva FF, Pinto LFB, Mourão GB. CNV detection and their association with growth, efficiency and carcass traits in Santa Inês sheep. J Anim Breed Genet 2022; 139:476-487. [PMID: 35218589 DOI: 10.1111/jbg.12671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Copy number variations (CNV) are an important source of genetic variation. CNV has been increasingly studied and frequently associated with diseases and productive traits in livestock animals. However, CNV-based genome-wide association studies (GWAS) in Santa Inês sheep, one of the principal sheep breeds in Brazil, have not yet been reported. Thus, the aim of this study was to investigate the association between CNV and growth, efficiency and carcass traits in sheep. The Illumina OvineSNP50 BeadChip array was used to detect CNV in 491 Santa Inês individuals. Then, CNV-based GWAS was performed with a linear mixed model approach considering a genomic relationship matrix, for ten traits: (1) growth: body weight at three (W3) and six (W6) months of age; (2) efficiency: residual feed intake (RFI) and feed efficiency (FE) and (3) carcass: external carcass length (ECL), leg length (LL), carcass yield (CY), commercial cuts weight (CCW), loin eye area (LEA) and subcutaneous fat thickness (SFT). We identified 1,167 autosomal CNV in 438 sheep, with 294 non-redundant CNV, ranging from 21.8 to 861.9 kb, merged into 216 distinct copy number variation regions (CNVRs). One significant CNV segment (pFDR -value<0.05) in OAR3 was associated with CY, while another significant CNV in OAR6 was associated with RFI. Additionally, another 5 CNV segments were considered relevant for investigation in the future studies. The significant segments overlapped 4 QTLs and spanned 8 genes, including the SPAST, TGFA and ADGRL3 genes, involved in cell differentiation and energy metabolism. Therefore, the results of the present study increase knowledge about CNV in sheep, their possible impacts on productive traits, and provide information for future investigations, being especially useful for those interested in structural variations in the sheep genome.
Collapse
Affiliation(s)
- Giovanni Coelho Ladeira
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Fabrício Pilonetto
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Anna Carolina Fernandes
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Paola Pérez Bóscollo
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Brayan Dias Dauria
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Cristiane Gonçalves Titto
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), Pirassununga, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | | | - Luís Fernando Batista Pinto
- Department of Animal Science, College of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| |
Collapse
|
16
|
Tang J, Shen X, Yang Y, Yang H, Qi A, Yang S, Qu K, Lan X, Huang B, Chen H. Two Different Copy Number Variations of the CLCN2 Gene in Chinese Cattle and Their Association with Growth Traits. Animals (Basel) 2021; 12:ani12010041. [PMID: 35011147 PMCID: PMC8749635 DOI: 10.3390/ani12010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variation (CNV) can affect gene function and even individual phenotypic traits by changing the transcription and translation level of related genes, and it also plays an important role in species evolution. Chloride voltage-gated channel 2 (CLCN2) encodes a voltage-gated chloride channel (CLC-2), which has a wide organ distribution and is ubiquitously expressed. Based on previous studies, we hypothesize that CLCN2 could be a candidate gene involved in cell volume regulation, transepithelial transport and cell proliferation. This study aimed to explore CNVs in the CLCN2 gene and investigate its association with growth traits in four Chinese cattle breeds (Yunling cattle, Xianan cattle, Qinchuan cattle and Pinan cattle). We identified there are two copy number variation regions (CNV1: 3600 bp, including exon 2-11; CNV2: 4800 bp, including exon 21-22) of the CLCN2 gene. The statistical analysis showed that the CNV1 mutation in the YL cattle population was significantly associated with cannon circumference (p < 0.01). The CNV2 mutation in the XN cattle population had a significant effect on body slanting length, chest girth and body weight (p < 0.05). In the YL cattle, the association analysis of CLCN2 gene CNV1 and CNV2 combination with cannon circumference was significant (p < 0.01). Our results provide evidence that CNV1 and CNV2 in CLCN2 are associated with growth traits in two different cattle populations and could be used as candidate markers for cattle molecular breeding.
Collapse
Affiliation(s)
- Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Xuemei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (H.C.); (B.H.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (H.C.); (B.H.)
| |
Collapse
|
17
|
Igoshin AV, Deniskova TE, Yurchenko AA, Yudin NS, Dotsev AV, Selionova MI, Zinovieva NA, Larkin DM. Copy number variants in genomes of local sheep breeds from Russia. Anim Genet 2021; 53:119-132. [PMID: 34904242 DOI: 10.1111/age.13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 01/21/2023]
Abstract
Copy number variants (CNVs) are genomic structural variations that contribute to many adaptive and economically important traits in livestock. In this study, we detected CNVs in 354 animals from 16 Russian indigenous sheep breeds and analysed their possible functional roles. Our analysis of the entire sample set resulted in 4527 CNVs forming 1450 CNV regions (CNVRs). When constructing CNVRs for individual breeds, a total of 2715 regions ranging from 88 in Groznensk to 337 in Osetin breeds were identified. To make interbreed CNVR frequency comparison possible, we also identified core CNVRs using CNVs with overlapping chromosomal locations found in different breeds. This resulted in 137 interbreed CNVRs with frequency >15% in at least one breed. Functional enrichment analysis of genes affected by CNVRs in individual breeds revealed 12 breeds with significant enrichments in olfactory perception, PRAME family proteins, and immune response. Function of genes affected by interbreed and breed-specific CNVRs revealed candidates related to domestication, adaptation to high altitudes and cold climates, reproduction, parasite resistance, milk and meat qualities, wool traits, fat storage, and fat metabolism. Our work is the first attempt to uncover and characterise the CNV makeup of Russian indigenous sheep breeds. Further experimental and functional validation of CNVRs would help in developing new and improving existing sheep breeds.
Collapse
Affiliation(s)
- A V Igoshin
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - T E Deniskova
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - A A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - N S Yudin
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - A V Dotsev
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - M I Selionova
- Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Moscow, 127550, Russia
| | - N A Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - D M Larkin
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Royal Veterinary College, University of London, London, NW1 0TU, UK
| |
Collapse
|
18
|
Kava R, Peripolli E, Berton MP, Lemos M, Lobo RB, Stafuzza NB, Pereira AS, Baldi F. Genome-wide structural variations in Brazilian Senepol cattle, a tropically adapted taurine breed. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Fernandes AC, da Silva VH, Goes CP, Moreira GCM, Godoy TF, Ibelli AMG, Peixoto JDO, Cantão ME, Ledur MC, de Rezende FM, Coutinho LL. Genome-wide detection of CNVs and their association with performance traits in broilers. BMC Genomics 2021; 22:354. [PMID: 34001004 PMCID: PMC8130382 DOI: 10.1186/s12864-021-07676-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Copy number variations (CNVs) are a major type of structural genomic variants that underlie genetic architecture and phenotypic variation of complex traits, not only in humans, but also in livestock animals. We identified CNVs along the chicken genome and analyzed their association with performance traits. Genome-wide CNVs were inferred from Affymetrix® high density SNP-chip data for a broiler population. CNVs were concatenated into segments and association analyses were performed with linear mixed models considering a genomic relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35 to 41 days, feed conversion ratio from 35 to 41 days and, body weight gain from 35 to 41 days of age. Results We identified 23,214 autosomal CNVs, merged into 5042 distinct CNV regions (CNVRs), covering 12.84% of the chicken autosomal genome. One significant CNV segment was associated with BWG on GGA3 (q-value = 0.00443); one significant CNV segment was associated with BW35 (q-value = 0.00571), BW41 (q-value = 0.00180) and BW42 (q-value = 0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (q-value = 0.00432). All significant CNV segments were verified by qPCR, and a validation rate of 92.59% was observed. These CNV segments are located nearby genes, such as KCNJ11, MyoD1 and SOX6, known to underlie growth and development. Moreover, gene-set analyses revealed terms linked with muscle physiology, cellular processes regulation and potassium channels. Conclusions Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate performance traits in chickens. Our findings provide a foundation for future functional studies on the role of specific genes in regulating performance in chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07676-1.
Collapse
Affiliation(s)
- Anna Carolina Fernandes
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Vinicius Henrique da Silva
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | | | - Thaís Fernanda Godoy
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | | | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves: Empresa Brasileira de Pesquisa Agropecuária Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves: Empresa Brasileira de Pesquisa Agropecuária Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves: Empresa Brasileira de Pesquisa Agropecuária Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
20
|
Qiu Y, Ding R, Zhuang Z, Wu J, Yang M, Zhou S, Ye Y, Geng Q, Xu Z, Huang S, Cai G, Wu Z, Yang J. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genomics 2021; 22:332. [PMID: 33964879 PMCID: PMC8106131 DOI: 10.1186/s12864-021-07654-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Background In the process of pig breeding, the average daily gain (ADG), days to 100 kg (AGE), and backfat thickness (BFT) are directly related to growth rate and fatness. However, the genetic mechanisms involved are not well understood. Copy number variation (CNV), an important source of genetic diversity, can affect a variety of complex traits and diseases and has gradually been thrust into the limelight. In this study, we reported the genome-wide CNVs of Duroc pigs using SNP genotyping data from 6627 animals. We also performed a copy number variation region (CNVR)-based genome-wide association studies (GWAS) for growth and fatness traits in two Duroc populations. Results Our study identified 953 nonredundant CNVRs in U.S. and Canadian Duroc pigs, covering 246.89 Mb (~ 10.90%) of the pig autosomal genome. Of these, 802 CNVRs were in U.S. Duroc pigs with 499 CNVRs were in Canadian Duroc pigs, indicating 348 CNVRs were shared by the two populations. Experimentally, 77.8% of nine randomly selected CNVRs were validated through quantitative PCR (qPCR). We also identified 35 CNVRs with significant association with growth and fatness traits using CNVR-based GWAS. Ten of these CNVRs were associated with both ADG and AGE traits in U.S. Duroc pigs. Notably, four CNVRs showed significant associations with ADG, AGE, and BFT, indicating that these CNVRs may play a pleiotropic role in regulating pig growth and fat deposition. In Canadian Duroc pigs, nine CNVRs were significantly associated with both ADG and AGE traits. Further bioinformatic analysis identified a subset of potential candidate genes, including PDGFA, GPER1, PNPLA2 and BSCL2. Conclusions The present study provides a necessary supplement to the CNV map of the Duroc genome through large-scale population genotyping. In addition, the CNVR-based GWAS results provide a meaningful way to elucidate the genetic mechanisms underlying complex traits. The identified CNVRs can be used as molecular markers for genetic improvement in the molecular-guided breeding of modern commercial pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07654-7.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ming Yang
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Sixiu Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
21
|
Strillacci MG, Moradi-Shahrbabak H, Davoudi P, Ghoreishifar SM, Mokhber M, Masroure AJ, Bagnato A. A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC Genomics 2021; 22:305. [PMID: 33902439 PMCID: PMC8077898 DOI: 10.1186/s12864-021-07604-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In Iran, river buffalo is of great importance. It plays an important role in the economy of the Country, because its adaptation to harsh climate conditions and long productive lifespan permitting its farming across the Country and to convert low-quality feed into valuable milk. The genetic variability in Iranian buffalo breeds have been recently studied using SNPs genotyping data, but a whole genome Copy Number Variants (CNVs) mapping was not available. The aim of this study was to perform a genome wide CNV scan in 361 buffaloes of the three Iranian river breeds (Azeri, Khuzestani and Mazandarani) through the analysis of data obtained using the Axiom® Buffalo Genotyping Array 90 K. RESULTS CNVs detection resulted in a total of 9550 CNVs and 302 CNVRs identified in at least 5% of samples within breed, covering around 1.97% of the buffalo genome. and A total of 22 CNVRs were identified in all breeds and a different proportion of regions were in common among the three populations. Within the more represented CNVRs (n = 302) mapped a total of 409 buffalo genes, some of which resulted associated with morphological, healthy, milk, meat and reproductive traits, according to Animal Genome Cattle database. CONCLUSIONS This work provides a step forward in the interpretation of genomic variation within and among the buffalo populations, releasing a first map of CNVs and providing insights about their recent selection and adaptation to environment. The presence of the set of genes and QTL traits harbored in the CNVRs could be possibly linked with the buffalo's natural adaptive history together to a recent selection for milk used as primary food source from this species.
Collapse
Affiliation(s)
- Maria G. Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3 Canada
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167 Iran
| | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agriculture and Natural resources, Urmia University, 11Km Sero Road, P. O. Box: 165, Urmia, 57561-51818 Iran
| | - Anoar Jamai Masroure
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
22
|
Copy number variation: Characteristics, evolutionary and pathological aspects. Biomed J 2021; 44:548-559. [PMID: 34649833 PMCID: PMC8640565 DOI: 10.1016/j.bj.2021.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) were the subject of extensive research in the past years. They are common features of the human genome that play an important role in evolution, contribute to population diversity, development of certain diseases, and influence host–microbiome interactions. CNVs have found application in the molecular diagnosis of many diseases and in non-invasive prenatal care, but their full potential is only emerging. CNVs are expected to have a tremendous impact on screening, diagnosis, prognosis, and monitoring of several disorders, including cancer and cardiovascular disease. Here, we comprehensively review basic definitions of the term CNV, outline mechanisms and factors involved in CNV formation, and discuss their evolutionary and pathological aspects. We suggest a need for better defined distinguishing criteria and boundaries between known types of CNVs.
Collapse
|
23
|
Copy Number Variants in Four Italian Turkey Breeds. Animals (Basel) 2021; 11:ani11020391. [PMID: 33546454 PMCID: PMC7913726 DOI: 10.3390/ani11020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Hybrid Turkey selection is focusing on meat production traits characterized by high genetic heritability; the strong directional selection is well known to produce a constant loss in genetic diversity. Genetic characterization is one of the essential activities in the management of populations at risk of extinction. In addition, the genetic structure at the population level and the relationships between individuals are nowadays analysable at the genomic level. In this paper, the genome of 4 different Italian turkey breeds included in the Autochthonous Italian Poultry Breeds Register are analysed in order to obtain a genome-wide Copy Number Variant scan to ameliorate the existing knowledge of the genomic structure of Italian local turkey breeds. Differences have been described at genomic level for physiological, reproductive, and behavioral traits. The analyzed breeds are clearly distinguishable at the genomic level, and their relationships are clearly linked to their geographical origin and to the history of the rural structure of their developing regions. Genome information based on Copy Number Variant (CNV) detection has generated important information in this study concerning the uniqueness of the Italian local turkey breeds. Abstract Heritage breeds can be considered a genetic reservoir of genetic variability to be conserved and valorized considering their historical, cultural, and adaptive characteristics and possibly for their high potential in commercial hybrid genetic improvement by gene introgression. The aim of the present research is to investigate via Copy Number Variant (CNVs) the genomic makeup of 4 Italian autochthonous turkey breeds (Bronzato Comune—BrCI, 24; Ermellinato di Rovigo—ErRo, 24; Parma e Piacenza—PrPc, 25; Romagnolo—RoMa, 29). CNVs detection was performed using two different software and an interbreed CNVs comparison was carried out. A total of 1077 CNVs were identified in 102 turkeys, summarized into 519 CNV regions (CNVRs), which resulted after merging in 101 and 18 breed and shared regions. Biodiversity was analyzed using the effective information supplied by CNVs analysis, and BrCI and ErRo were characterized by a low mapped CNV number. Differences were described at a genomic level related to physiological, reproductive, and behavioral traits. The comparison with other three Italian turkey breeds (Brianzolo, Colle Euganei, and Nero Italiano) using a CNV data set available in the literature showed high clustering properties at the genomic level, and their relationships are strictly linked to the geographical origin and to the history of the rural structure of their native regions.
Collapse
|
24
|
Peripolli E, Reimer C, Ha NT, Geibel J, Machado MA, Panetto JCDC, do Egito AA, Baldi F, Simianer H, da Silva MVGB. Genome-wide detection of signatures of selection in indicine and Brazilian locally adapted taurine cattle breeds using whole-genome re-sequencing data. BMC Genomics 2020; 21:624. [PMID: 32917133 PMCID: PMC7488563 DOI: 10.1186/s12864-020-07035-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The cattle introduced by European conquerors during the Brazilian colonization period were exposed to a process of natural selection in different types of biomes throughout the country, leading to the development of locally adapted cattle breeds. In this study, whole-genome re-sequencing data from indicine and Brazilian locally adapted taurine cattle breeds were used to detect genomic regions under selective pressure. Within-population and cross-population statistics were combined separately in a single score using the de-correlated composite of multiple signals (DCMS) method. Putative sweep regions were revealed by assessing the top 1% of the empirical distribution generated by the DCMS statistics. RESULTS A total of 33,328,447 biallelic SNPs with an average read depth of 12.4X passed the hard filtering process and were used to access putative sweep regions. Admixture has occurred in some locally adapted taurine populations due to the introgression of exotic breeds. The genomic inbreeding coefficient based on runs of homozygosity (ROH) concurred with the populations' historical background. Signatures of selection retrieved from the DCMS statistics provided a comprehensive set of putative candidate genes and revealed QTLs disclosing cattle production traits and adaptation to the challenging environments. Additionally, several candidate regions overlapped with previous regions under selection described in the literature for other cattle breeds. CONCLUSION The current study reported putative sweep regions that can provide important insights to better understand the selective forces shaping the genome of the indicine and Brazilian locally adapted taurine cattle breeds. Such regions likely harbor traces of natural selection pressures by which these populations have been exposed and may elucidate footprints for adaptation to the challenging climatic conditions.
Collapse
Affiliation(s)
- Elisa Peripolli
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, 14884-900, Brazil
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Johannes Geibel
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Marco Antonio Machado
- National Council for Scientific and Technological Development (CNPq), Lago Sul, 71605-001, Brazil
- Embrapa Dairy Cattle, Juiz de Fora, 36038-330, Brazil
| | | | | | - Fernando Baldi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, 14884-900, Brazil
| | - Henner Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | | |
Collapse
|
25
|
Warburton CL, Engle BN, Ross EM, Costilla R, Moore SS, Corbet NJ, Allen JM, Laing AR, Fordyce G, Lyons RE, McGowan MR, Burns BM, Hayes BJ. Use of whole-genome sequence data and novel genomic selection strategies to improve selection for age at puberty in tropically-adapted beef heifers. Genet Sel Evol 2020; 52:28. [PMID: 32460805 PMCID: PMC7251835 DOI: 10.1186/s12711-020-00547-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background In tropically-adapted beef heifers, application of genomic prediction for age at puberty has been limited due to low prediction accuracies. Our aim was to investigate novel methods of pre-selecting whole-genome sequence (WGS) variants and alternative analysis methodologies; including genomic best linear unbiased prediction (GBLUP) with multiple genomic relationship matrices (MGRM) and Bayesian (BayesR) analyses, to determine if prediction accuracy for age at puberty can be improved. Methods Genotypes and phenotypes were obtained from two research herds. In total, 868 Brahman and 960 Tropical Composite heifers were recorded in the first population and 3695 Brahman, Santa Gertrudis and Droughtmaster heifers were recorded in the second population. Genotypes were imputed to 23 million whole-genome sequence variants. Eight strategies were used to pre-select variants from genome-wide association study (GWAS) results using conditional or joint (COJO) analyses. Pre-selected variants were included in three models, GBLUP with a single genomic relationship matrix (SGRM), GBLUP MGRM and BayesR. Five-way cross-validation was used to test the effect of marker panel density (6 K, 50 K and 800 K), analysis model, and inclusion of pre-selected WGS variants on prediction accuracy. Results In all tested scenarios, prediction accuracies for age at puberty were highest in BayesR analyses. The addition of pre-selected WGS variants had little effect on the accuracy of prediction when BayesR was used. The inclusion of WGS variants that were pre-selected using a meta-analysis with COJO analyses by chromosome, fitted in a MGRM model, had the highest prediction accuracies in the GBLUP analyses, regardless of marker density. When the low-density (6 K) panel was used, the prediction accuracy of GBLUP was equal (0.42) to that with the high-density panel when only six additional sequence variants (identified using meta-analysis COJO by chromosome) were included. Conclusions While BayesR consistently outperforms other methods in terms of prediction accuracies, reasonable improvements in accuracy can be achieved when using GBLUP and low-density panels with the inclusion of a relatively small number of highly relevant WGS variants.
Collapse
Affiliation(s)
- Christie L Warburton
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia.
| | - Bailey N Engle
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Roy Costilla
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Stephen S Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Corbet
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Jack M Allen
- Agricultural Business Research Institute, University of New England, Armidale, NSW, Australia
| | - Alan R Laing
- Formerly Department of Agriculture and Fisheries, Ayr, QLD, Australia
| | - Geoffry Fordyce
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Russell E Lyons
- School of Veterinary Science, The University of Queensland, St Lucia, QLD, Australia.,Neogen, University of Queensland, Gatton, QLD, Australia
| | - Michael R McGowan
- School of Veterinary Science, The University of Queensland, St Lucia, QLD, Australia
| | - Brian M Burns
- Formerly Department of Agriculture and Fisheries, Rockhampton, QLD, Australia
| | - Ben J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|