1
|
Zhang W, Zhang M, Sun Y, Liu S. Factors affecting the quality and nutritional value of donkey meat: a comprehensive review. Front Vet Sci 2024; 11:1460859. [PMID: 39309032 PMCID: PMC11412950 DOI: 10.3389/fvets.2024.1460859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Donkey meat is characterized by a high content of proteins, essential amino acids, and unsaturated fatty acids and is low in fat, cholesterol, and calories. Thus, it is considered a high-quality source of meat. Based on the data from PubMed and Web of science within past 10 years, this review summarizes the factors affecting the quality of donkey meat and its nutritional value, including breed, genetics, gender, age, muscle type, feeding regimen, storage and processing conditions. Breed, gender, age, and feeding regimen mainly affect the quality of donkey meat by influencing its intramuscular fat content and carcass quality. Meanwhile, the tenderness and flavor of donkey meat depend on the muscle type, storage and processing conditions. Genetics, on the other hand, fundamentally affect donkey meat quality by influencing the polymorphism of genes. These findings provide valuable insights and guidance for producers, consumers, and decision-makers in the donkey meat industry, promoting the development of more effective marketing strategies and the improvement of meat quality, thereby enabling the expansion and progress of the entire industry.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Min Zhang
- Shandong Provincial Animal Husbandry Station, Jinan, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Gene Bank of Equine Genetic Resources, Qingdao, China
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Gene Bank of Equine Genetic Resources, Qingdao, China
| |
Collapse
|
2
|
Luo X, Zhang J, Guo J, Zhao W, Tian Y, Xiang H, Kang H, Ye F, Chen S, Li H, Ma Z. Transcriptomic Analysis Reveals the Effects of miR-122 Overexpression in the Liver of Qingyuan Partridge Chickens. Animals (Basel) 2024; 14:2132. [PMID: 39061594 PMCID: PMC11274173 DOI: 10.3390/ani14142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The liver of chickens is essential for maintaining physiological activities and homeostasis. This study aims to investigate the specific function and molecular regulatory mechanism of microRNA-122 (miR-122), which is highly expressed in chicken liver. A lentivirus-mediated overexpression vector of miR-122 was constructed and used to infect 12-day-old female Qingyuan Partridge chickens. Transcriptome sequencing analysis was performed to identify differentially expressed genes in the liver. Overexpression of miR-122 resulted in 776 differentially expressed genes (DEGs). Enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed associations with lipid metabolism, cellular senescence, cell adhesion molecules, and the MAPK signaling pathway. Eight potential target genes of miR-122 (ARHGAP32, CTSD, LBH, PLEKHB2, SEC14L1, SLC2A1, SLC6A14, and SP8) were identified through miRNA target prediction platforms and literature integration. This study provides novel insights into the molecular regulatory mechanisms of miR-122 in chicken liver, highlighting its role in key biological processes and signaling pathways. These discoveries enhance our understanding of miR-122's impact on chicken liver function and offer valuable information for improving chicken production performance and health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.); (J.Z.); (J.G.); (W.Z.); (Y.T.); (H.X.); (H.K.); (F.Y.); (S.C.); (H.L.)
| |
Collapse
|
3
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
4
|
Leonard AS, Mapel XM, Pausch H. Pangenome-genotyped structural variation improves molecular phenotype mapping in cattle. Genome Res 2024; 34:300-309. [PMID: 38355307 PMCID: PMC10984387 DOI: 10.1101/gr.278267.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Expression and splicing quantitative trait loci (e/sQTL) are large contributors to phenotypic variability. Achieving sufficient statistical power for e/sQTL mapping requires large cohorts with both genotypes and molecular phenotypes, and so, the genomic variation is often called from short-read alignments, which are unable to comprehensively resolve structural variation. Here we build a pangenome from 16 HiFi haplotype-resolved cattle assemblies to identify small and structural variation and genotype them with PanGenie in 307 short-read samples. We find high (>90%) concordance of PanGenie-genotyped and DeepVariant-called small variation and confidently genotype close to 21 million small and 43,000 structural variants in the larger population. We validate 85% of these structural variants (with MAF > 0.1) directly with a subset of 25 short-read samples that also have medium coverage HiFi reads. We then conduct e/sQTL mapping with this comprehensive variant set in a subset of 117 cattle that have testis transcriptome data, and find 92 structural variants as causal candidates for eQTL and 73 for sQTL. We find that roughly half of the top associated structural variants affecting expression or splicing are transposable elements, such as SV-eQTL for STN1 and MYH7 and SV-sQTL for CEP89 and ASAH2 Extensive linkage disequilibrium between small and structural variation results in only 28 additional eQTL and 17 sQTL discovered when including SVs, although many top associated SVs are compelling candidates.
Collapse
Affiliation(s)
| | - Xena M Mapel
- Animal Genomics, ETH Zurich, 8092 Zurich, Switzerland
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Cai W, Zhang Y, Chang T, Wang Z, Zhu B, Chen Y, Gao X, Xu L, Zhang L, Gao H, Song J, Li J. The eQTL colocalization and transcriptome-wide association study identify potentially causal genes responsible for economic traits in Simmental beef cattle. J Anim Sci Biotechnol 2023; 14:78. [PMID: 37165455 PMCID: PMC10173583 DOI: 10.1186/s40104-023-00876-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND A detailed understanding of genetic variants that affect beef merit helps maximize the efficiency of breeding for improved production merit in beef cattle. To prioritize the putative variants and genes, we ran a comprehensive genome-wide association studies (GWAS) analysis for 21 agronomic traits using imputed whole-genome variants in Simmental beef cattle. Then, we applied expression quantitative trait loci (eQTL) mapping between the genotype variants and transcriptome of three tissues (longissimus dorsi muscle, backfat, and liver) in 120 cattle. RESULTS We identified 1,580 association signals for 21 beef agronomic traits using GWAS. We then illuminated 854,498 cis-eQTLs for 6,017 genes and 46,970 trans-eQTLs for 1,903 genes in three tissues and built a synergistic network by integrating transcriptomics with agronomic traits. These cis-eQTLs were preferentially close to the transcription start site and enriched in functional regulatory regions. We observed an average of 43.5% improvement in cis-eQTL discovery using multi-tissue eQTL mapping. Fine-mapping analysis revealed that 111, 192, and 194 variants were most likely to be causative to regulate gene expression in backfat, liver, and muscle, respectively. The transcriptome-wide association studies identified 722 genes significantly associated with 11 agronomic traits. Via the colocalization and Mendelian randomization analyses, we found that eQTLs of several genes were associated with the GWAS signals of agronomic traits in three tissues, which included genes, such as NADSYN1, NDUFS3, LTF and KIFC2 in liver, GRAMD1C, TMTC2 and ZNF613 in backfat, as well as TIGAR, NDUFS3 and L3HYPDH in muscle that could serve as the candidate genes for economic traits. CONCLUSIONS The extensive atlas of GWAS, eQTL, fine-mapping, and transcriptome-wide association studies aid in the suggestion of potentially functional variants and genes in cattle agronomic traits and will be an invaluable source for genomics and breeding in beef cattle.
Collapse
Affiliation(s)
- Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yapeng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, 20742, USA.
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang F, Velez-Irizarry D, Ernst CW, Huang W. Mapping splice QTLs reveals distinct transcriptional and post-transcriptional regulatory variation of gene expression and identifies putative alternative splicing variation mediating complex trait variation in pigs. BMC Genomics 2023; 24:240. [PMID: 37142954 PMCID: PMC10161646 DOI: 10.1186/s12864-023-09314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Alternative splicing is an important step in gene expression, generating multiple isoforms for the same genes and greatly expanding the diversity of proteomes. Genetic variation in alternative splicing contributes to phenotypic diversity in natural populations. However, the genetic basis of variation in alternative splicing in livestock including pigs remains poorly understood. RESULTS In this study, using a Duroc x Pietrain F2 pig population, we performed genome-wide analysis of alternative splicing estimated from stranded RNA-Seq data in skeletal muscle. We characterized the genetic architecture of alternative splicing and compared its basic features with those of overall gene expression. We detected a large number of novel alternative splicing events that were not previously annotated. We found heritability of quantitative alternative splicing scores (percent spliced in or PSI) to be lower than that of overall gene expression. In addition, heritabilities showed little correlation between alternative splicing and overall gene expression. We mapped expression QTLs (eQTLs) and splice QTLs (sQTLs) and found them to be largely non-overlapping. Finally, we integrated sQTL mapping with phenotype QTL (pQTL mapping to identify potential mediator of pQTL effect by alternative splicing. CONCLUSIONS Our results suggest that regulatory variation exists at multiple levels and that their genetic controls are distinct, offering opportunities for genetic improvement.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA.
| | | | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Ren Y, Tseng E, Smith TPL, Hiendleder S, Williams JL, Low WY. Long read isoform sequencing reveals hidden transcriptional complexity between cattle subspecies. BMC Genomics 2023; 24:108. [PMID: 36915055 PMCID: PMC10012480 DOI: 10.1186/s12864-023-09212-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The Iso-Seq method of full-length cDNA sequencing is suitable to quantify differentially expressed genes (DEGs), transcripts (DETs) and transcript usage (DTU). However, the higher cost of Iso-Seq relative to RNA-seq has limited the comparison of both methods. Transcript abundance estimated by RNA-seq and deep Iso-Seq data for fetal liver from two cattle subspecies were compared to evaluate concordance. Inter-sample correlation of gene- and transcript-level abundance was higher within technology than between technologies. Identification of DEGs between the cattle subspecies depended on sequencing method with only 44 genes identified by both that included 6 novel genes annotated by Iso-Seq. There was a pronounced difference between Iso-Seq and RNA-seq results at transcript-level wherein Iso-Seq revealed several magnitudes more transcript abundance and usage differences between subspecies. Factors influencing DEG identification included size selection during Iso-Seq library preparation, average transcript abundance, multi-mapping of RNA-seq reads to the reference genome, and overlapping coordinates of genes. Some DEGs called by RNA-seq alone appear to be sequence duplication artifacts. Among the 44 DEGs identified by both technologies some play a role in immune system, thyroid function and cell growth. Iso-Seq revealed hidden transcriptional complexity in DEGs, DETs and DTU genes between cattle subspecies previously missed by RNA-seq.
Collapse
Affiliation(s)
- Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Adelaide, SA, 5371, Australia
| | | | - Timothy P L Smith
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, Clay Center, Nebraska, USA
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Adelaide, SA, 5371, Australia
- Robinson Research Institute, The University of Adelaide, North Adelaide, Adelaide, SA, 5006, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Adelaide, SA, 5371, Australia
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Adelaide, SA, 5371, Australia.
| |
Collapse
|
8
|
Cis-eQTL Analysis and Functional Validation of Candidate Genes for Carcass Yield Traits in Beef Cattle. Int J Mol Sci 2022; 23:ijms232315055. [PMID: 36499383 PMCID: PMC9736101 DOI: 10.3390/ijms232315055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carcass yield traits are of considerable economic importance for farm animals, which act as a major contributor to the world’s food supply. Genome-wide association studies (GWASs) have identified many genetic variants associated with carcass yield traits in beef cattle. However, their functions are not effectively illustrated. In this study, we performed an integrative analysis of gene-based GWAS with expression quantitative trait locus (eQTL) analysis to detect candidate genes for carcass yield traits and validate their effects on bovine skeletal muscle satellite cells (BSCs). The gene-based GWAS and cis-eQTL analysis revealed 1780 GWAS and 1538 cis-expression genes. Among them, we identified 153 shared genes that may play important roles in carcass yield traits. Notably, the identified cis-eQTLs of PON3 and PRIM2 were significantly (p < 0.001) enriched in previous GWAS loci for carcass traits. Furthermore, overexpression of PON3 and PRIM2 promoted the BSCs’ proliferation, increased the expression of MYOD and downregulated the expression of MYOG, which indicated that these genes may inhibit myogenic differentiation. In contrast, PON3 and PRIM2 were significantly downregulated during the differentiation of BSCs. These findings suggested that PON3 and PRIM2 may promote the proliferation of BSCs and inhibit them in the pre-differentiation stage. Our results further contribute to the understanding of the molecular mechanisms of carcass yield traits in beef cattle.
Collapse
|
9
|
Carruthers M, Edgley DE, Saxon AD, Gabagambi NP, Shechonge A, Miska EA, Durbin R, Bridle JR, Turner GF, Genner MJ. Ecological Speciation Promoted by Divergent Regulation of Functional Genes Within African Cichlid Fishes. Mol Biol Evol 2022; 39:msac251. [PMID: 36376993 PMCID: PMC10101686 DOI: 10.1093/molbev/msac251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.
Collapse
Affiliation(s)
- Madeleine Carruthers
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Duncan E Edgley
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Nestory P Gabagambi
- Tanzanian Fisheries Research Institute, Kyela Research
Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Asilatu Shechonge
- Tanzanian Fisheries Research Institute, Dar es Salaam Research
Centre, P.O. Box 9750, Dar es Salaam, Tanzania
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge,
Cambridge CB2 1QN, United
Kingdom
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - George F Turner
- School of Natural Sciences, Bangor University,
Bangor, Wales LL57 2UW, United
Kingdom
| | - Martin J Genner
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| |
Collapse
|
10
|
Fonseca PADS, Caldwell T, Mandell I, Wood K, Cánovas A. Genome-wide association study for meat tenderness in beef cattle identifies patterns of the genetic contribution in different post-mortem stages. Meat Sci 2022; 186:108733. [PMID: 35007800 DOI: 10.1016/j.meatsci.2022.108733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
The beef tenderization process during the post-mortem period is one of the most important sensorial attributes and it is well-established. The aim of this study was to identify the genetic contribution pattern to meat tenderness at 7-(LMD7), 14-(LMD14), and 21-(LMD21) days post-mortem. The heritabilities for LMD7 (0.194), LMD14 (0.142) and LMD21 (0.048) are well established in the population evaluated here. However, its genetic contribution in terms of genomic candidate regions is still poorly understood. Tenderness was measured in the Longissiums thoracis using Warner-Bratzler shear force in the three post-mortem periods. A total of 4323 crossbred beef cattle were phenotyped and genotyped using the Illumina BovineSNP50K. The percentage of the total genetic variance was estimated using the weighted single-step genomic best linear unbiased prediction method. The main candidate windows for LMD7 were associated with proteolysis of myofibrillar structures and the weakening endomysium and perimysium. Candidate windows for LMD14 and LMD21 were mapped in bovine QTLs for body composition, height and growth. Results presented herein highlight, the largest contribution of proteolysis related processes before 14-days post-mortem and body composition characteristics in later stages for meat tenderness.
Collapse
Affiliation(s)
- Pablo Augusto de Souza Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tim Caldwell
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ira Mandell
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Katharine Wood
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
11
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Yuan Z, Ge L, Sun J, Zhang W, Wang S, Cao X, Sun W. Integrative analysis of Iso-Seq and RNA-seq data reveals transcriptome complexity and differentially expressed transcripts in sheep tail fat. PeerJ 2021; 9:e12454. [PMID: 34760406 PMCID: PMC8571958 DOI: 10.7717/peerj.12454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Background Nowadays, both customers and producers prefer thin-tailed fat sheep. To effectively breed for this phenotype, it is important to identify candidate genes and uncover the genetic mechanism related to tail fat deposition in sheep. Accumulating evidence suggesting that post-transcriptional modification events of precursor-messenger RNA (pre-mRNA), including alternative splicing (AS) and alternative polyadenylation (APA), may regulate tail fat deposition in sheep. Differentially expressed transcripts (DETs) analysis is a way to identify candidate genes related to tail fat deposition. However, due to the technological limitation, post-transcriptional modification events in the tail fat of sheep and DETs between thin-tailed and fat-tailed sheep remains unclear. Methods In the present study, we applied pooled PacBio isoform sequencing (Iso-Seq) to generate transcriptomic data of tail fat tissue from six sheep (three thin-tailed sheep and three fat-tailed sheep). By comparing with reference genome, potential gene loci and novel transcripts were identified. Post-transcriptional modification events, including AS and APA, and lncRNA in sheep tail fat were uncovered using pooled Iso-Seq data. Combining Iso-Seq data with six RNA-sequencing (RNA-Seq) data, DETs between thin- and fat-tailed sheep were identified. Protein protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were implemented to investigate the potential functions of DETs. Results In the present study, we revealed the transcriptomic complexity of the tail fat of sheep, result in 9,001 potential novel gene loci, 17,834 AS events, 5,791 APA events, and 3,764 lncRNAs. Combining Iso-Seq data with RNA-Seq data, we identified hundreds of DETs between thin- and fat-tailed sheep. Among them, 21 differentially expressed lncRNAs, such as ENSOART00020036299, ENSOART00020033641, ENSOART00020024562, ENSOART00020003848 and 9.53.1 may regulate tail fat deposition. Many novel transcripts were identified as DETs, including 15.527.13 (DGAT2), 13.624.23 (ACSS2), 11.689.28 (ACLY), 11.689.18 (ACLY), 11.689.14 (ACLY), 11.660.12 (ACLY), 22.289.6 (SCD), 22.289.3 (SCD) and 22.289.14 (SCD). Most of the identified DETs have been enriched in GO and KEGG pathways related to extracellular matrix (ECM). Our result revealed the transcriptome complexity and identified many candidate transcripts in tail fat, which could enhance the understanding of molecular mechanisms behind tail fat deposition.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Lee YL, Takeda H, Costa Monteiro Moreira G, Karim L, Mullaart E, Coppieters W, Appeltant R, Veerkamp RF, Groenen MAM, Georges M, Bosse M, Druet T, Bouwman AC, Charlier C. A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genet 2021; 17:e1009331. [PMID: 34288907 PMCID: PMC8328317 DOI: 10.1371/journal.pgen.1009331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.
Collapse
Affiliation(s)
- Young-Lim Lee
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Latifa Karim
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Ruth Appeltant
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Roel F. Veerkamp
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Martien A. M. Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Aniek C. Bouwman
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
15
|
Saravanan K, Panigrahi M, Kumar H, Bhushan B, Dutt T, Mishra B. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Martins R, Machado PC, Pinto LFB, Silva MR, Schenkel FS, Brito LF, Pedrosa VB. Genome-wide association study and pathway analysis for fat deposition traits in nellore cattle raised in pasture-based systems. J Anim Breed Genet 2020; 138:360-378. [PMID: 33232564 DOI: 10.1111/jbg.12525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Genome-wide association study (GWAS) is a powerful tool to identify candidate genes and genomic regions underlying key biological mechanisms associated with economically important traits. In this context, the aim of this study was to identify genomic regions and metabolic pathways associated with backfat thickness (BFT) and rump fat thickness (RFT) in Nellore cattle, raised in pasture-based systems. Ultrasound-based measurements of BFT and RFT (adjusted to 18 months of age) were collected in 11,750 animals, with 39,903 animals in the pedigree file. Additionally, 1,440 animals were genotyped using the GGP-indicus 35K SNP chip, containing 33,623 SNPs after the quality control. The single-step GWAS analyses were performed using the BLUPF90 family programs. Candidate genes were identified through the Ensembl database incorporated in the BioMart tool, while PANTHER and REVIGO were used to identify the key metabolic pathways and gene networks. A total of 18 genomic regions located on 10 different chromosomes and harbouring 23 candidate genes were identified for BFT. For RFT, 22 genomic regions were found on 14 chromosomes, with a total of 29 candidate genes identified. The results of the pathway analyses showed important genes for BFT, including TBL1XR1, AHCYL2, SLC4A7, AADAT, VPS53, IDH2 and ETS1, which are involved in lipid metabolism, synthesis of cellular amino acids, transport of solutes, transport between Golgi Complex membranes, cell differentiation and cellular development. The main genes identified for RFT were GSK3β, LRP1B, EXT1, GRB2, SORCS1 and SLMAP, which are involved in metabolic pathways such as glycogen synthesis, lipid transport and homeostasis, polysaccharide and carbohydrate metabolism. Polymorphisms located in these candidate genes can be incorporated in commercial genotyping platforms to improve the accuracy of imputation and genomic evaluations for carcass fatness. In addition to uncovering biological mechanisms associated with carcass quality, the key gene pathways identified can also be incorporated in biology-driven genomic prediction methods.
Collapse
Affiliation(s)
- Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Pamela C Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Marcio R Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes, Brazil
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
17
|
Gagaoua M, Terlouw EMC, Mullen AM, Franco D, Warner RD, Lorenzo JM, Purslow PP, Gerrard D, Hopkins DL, Troy D, Picard B. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci 2020; 172:108311. [PMID: 33002652 DOI: 10.1016/j.meatsci.2020.108311] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Over the last two decades, proteomics have been employed to decipher the underlying factors contributing to variation in the quality of muscle foods, including beef tenderness. One such approach is the application of high-throughput protein analytical platforms in the identification of meat quality biomarkers. To broaden our understanding about the biological mechanisms underpinning meat tenderization across a large number of studies, an integromics study was performed to review the current status of protein biomarker discovery targeting beef tenderness. This meta-analysis is the first to gather and propose a comprehensive list of 124 putative protein biomarkers derived from 28 independent proteomics-based experiments, from which 33 robust candidates were identified worthy of evaluation using targeted or untargeted data-independent acquisition proteomic methods. We further provide an overview of the interconnectedness of the main biological pathways impacting tenderness determination after multistep analyses including Gene Ontology annotations, pathway and process enrichment and literature mining, and specifically discuss the major proteins and pathways most often reported in proteomics research.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - E M Claudia Terlouw
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Peter P Purslow
- Centro de Investigacion Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7001BBO, Argentina
| | - David Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - David L Hopkins
- NSW DPI, Centre for Red Meat and Sheep Development, Cowra, NSW 2794, Australia
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Brigitte Picard
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|