1
|
Aziz ZA, Mohamad AH, Mohamad Noordin N, Mohd Shariff N. Social-behavioral insights in understanding tuberculosis transmission pattern during the COVID-19 pandemic period in Kuala Lumpur, Malaysia: The MyTBNet study protocol. PLoS One 2024; 19:e0307921. [PMID: 39325760 PMCID: PMC11426513 DOI: 10.1371/journal.pone.0307921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/09/2024] [Indexed: 09/28/2024] Open
Abstract
Many countries have reported increase of TB incidence during the COVID-19 pandemic period, which demands dire attention as it may threaten global effort to end TB transmission. Services, are among many others, were disrupted by the COVID-19 pandemic during the years 2020 and 2021; but its impact on the TB transmission is not well understood. This retrospective population-based molecular and epidemiological cohort study aims to determine the pattern of TB transmission in Kuala Lumpur (an area with high population density, moderate TB burden and high rates of COVID-19 cases) for the cohort of Pulmonary TB (PTB) cases notified from 2020 until 2021 and factors associated with clustering or clear epidemiologic linkage. This study will be carried out from 2022 until 2024. The study will utilise comparative phylogenetic analysis to determine the degree of relatedness between different isolates, based on the genomes similarities, and overlay this with epidemiological, clinical and social network data to enhance understanding of the social-behavioural dynamics of TB transmission. Mycobacterium tuberculosis complex (MTBC) cultures will be genotyped using Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeats (MIRU-VNTR) and whole-genome sequence (WGS) for MTBC cluster isolates. Epidemiologic and genomic data will be overlaid on a social network constructed by means of interviews with patients, by using Social Network Analysis questionnaire, to determine the origins and transmission dynamics of the outbreak. The finding of this study would aid in the identification of TB transmission events, facilitating active case finding, TB screening, TB contact tracing, and the mapping of social contacts during critical period. This will contribute to building an effective preventive and preparedness strategy to interrupt TB transmission in Malaysia, tailored to the characteristics of the local population.
Collapse
Affiliation(s)
- Zirwatul Adilah Aziz
- TB and Leprosy Section, Disease Department, National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
- Emerging Infectious Disease Research Group, Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Abdul Hadi Mohamad
- School of Computer Science, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Noorliza Mohamad Noordin
- TB and Leprosy Section, Disease Department, National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Noorsuzana Mohd Shariff
- Emerging Infectious Disease Research Group, Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
2
|
Katale BZ, Rofael S, Elton L, Mbugi EV, Mpagama SG, Mtunga D, Mafie MG, Mbelele PM, Williams C, Mvungi HC, Williams R, Saku GA, Ruta JA, McHugh TD, Matee MI. Clinical application of whole-genome sequencing in the management of extensively drug-resistant tuberculosis: a case report. Ann Clin Microbiol Antimicrob 2024; 23:76. [PMID: 39175078 PMCID: PMC11342570 DOI: 10.1186/s12941-024-00737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS)-based prediction of drug resistance in Mycobacterium tuberculosis has the potential to guide clinical decisions in the design of optimal treatment regimens. METHODS We utilized WGS to investigate drug resistance mutations in a 32-year-old Tanzanian male admitted to Kibong'oto Infectious Diseases Hospital with a history of interrupted multidrug-resistant tuberculosis treatment for more than three years. Before admission, he received various all-oral bedaquiline-based multidrug-resistant tuberculosis treatment regimens with unfavourable outcomes. RESULTS Drug susceptibility testing of serial M. tuberculosis isolates using Mycobacterium Growth Incubator Tubes culture and WGS revealed resistance to first-line anti-TB drugs, bedaquiline, and fluoroquinolones but susceptibility to linezolid, clofazimine, and delamanid. WGS of serial cultured isolates revealed that the Beijing (Lineage 2.2.2) strain was resistant to bedaquiline, with mutations in the mmpR5 gene (Rv0678. This study also revealed the emergence of two distinct subpopulations of bedaquiline-resistant tuberculosis strains with Asp47f and Glu49fs frameshift mutations in the mmpR5 gene, which might be the underlying cause of prolonged resistance. An individualized regimen comprising bedaquiline, delamanid, pyrazinamide, ethionamide, and para-aminosalicylic acid was designed. The patient was discharged home at month 8 and is currently in the ninth month of treatment. He reported no cough, chest pain, fever, or chest tightness but still experienced numbness in his lower limbs. CONCLUSION We propose the incorporation of WGS in the diagnostic framework for the optimal management of patients with drug-resistant and extensively drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Tanzania Commission for Science and Technology (COSTECH), P.O. BOX 4302, Dar es Salaam, Tanzania.
| | - Sylvia Rofael
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Linzy Elton
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Erasto V Mbugi
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. BOX 65001, Dar es Salaam, Tanzania
| | - Stella G Mpagama
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Daphne Mtunga
- Central Tuberculosis Reference Laboratory, National Tuberculosis and Leprosy Programme, Muhimbili National Hospital, P.O Box 65000, Dar es Salaam, Tanzania
| | - Maryjesca G Mafie
- Central Tuberculosis Reference Laboratory, National Tuberculosis and Leprosy Programme, Muhimbili National Hospital, P.O Box 65000, Dar es Salaam, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. BOX 65001, Dar es Salaam, Tanzania
| | - Charlotte Williams
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Happiness C Mvungi
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Rachel Williams
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Gulinja A Saku
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Joanitha A Ruta
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Mecky I Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. BOX 65001, Dar es Salaam, Tanzania
| |
Collapse
|
3
|
Hlanze H, Mutshembele A, Reva ON. Universal Lineage-Independent Markers of Multidrug Resistance in Mycobacterium tuberculosis. Microorganisms 2024; 12:1340. [PMID: 39065108 PMCID: PMC11278869 DOI: 10.3390/microorganisms12071340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: This study was aimed to identify universal genetic markers of multidrug resistance (MDR) in Mycobacterium tuberculosis (Mtb) and establish statistical associations among identified mutations to enhance understanding of MDR in Mtb and inform diagnostic and treatment development. (2) Methods: GWAS analysis and the statistical evaluation of identified polymorphic sites within protein-coding genes of Mtb were performed. Statistical associations between specific mutations and antibiotic resistance were established using attributable risk statistics. (3) Results: Sixty-four polymorphic sites were identified as universal markers of drug resistance, with forty-seven in PE/PPE regions and seventeen in functional genes. Mutations in genes such as cyp123, fadE36, gidB, and ethA showed significant associations with resistance to various antibiotics. Notably, mutations in cyp123 at codon position 279 were linked to resistance to ten antibiotics. The study highlighted the role of PE/PPE and PE_PGRS genes in Mtb's evolution towards a 'mutator phenotype'. The pathways of acquisition of mutations forming the epistatic landscape of MDR were discussed. (4) Conclusions: This research identifies marker mutations across the Mtb genome associated with MDR. The findings provide new insights into the molecular basis of MDR acquisition in Mtb, aiding in the development of more effective diagnostics and treatments targeting these mutations to combat MDR tuberculosis.
Collapse
Affiliation(s)
- Hleliwe Hlanze
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hillcrest, Lynnwood Rd, Pretoria 0002, South Africa;
| | - Awelani Mutshembele
- South African Medical Research Council, TB Platform, 1 Soutpansberg Road, Private Bag X385, Pretoria 0001, South Africa;
| | - Oleg N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hillcrest, Lynnwood Rd, Pretoria 0002, South Africa;
| |
Collapse
|
4
|
Mousavi-Sagharchi SMA, Afrazeh E, Seyyedian-Nikjeh SF, Meskini M, Doroud D, Siadat SD. New insight in molecular detection of Mycobacterium tuberculosis. AMB Express 2024; 14:74. [PMID: 38907086 PMCID: PMC11192714 DOI: 10.1186/s13568-024-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogenic bacterium that has claimed millions of lives since the Middle Ages. According to the World Health Organization's report, tuberculosis ranks among the ten deadliest diseases worldwide. The presence of an extensive array of genes and diverse proteins within the cellular structure of this bacterium has provided us with a potent tool for diagnosis. While the culture method remains the gold standard for tuberculosis diagnosis, it is possible that molecular diagnostic methods, emphasis on the identification of mutation genes (e.g., rpoB and gyrA) and single nucleotide polymorphisms, could offer a safe and reliable alternative. Over the past few decades, as our understanding of molecular genetics has expanded, methods have been developed based on gene expansion and detection. These methods typically commence with DNA amplification through nucleic acid targeted techniques such as polymerase chain reaction. Various molecular compounds and diverse approaches have been employed in molecular assays. In this review, we endeavor to provide an overview of molecular assays for the diagnosis of tuberculosis with their properties (utilization, challenges, and functions). The ultimate goal is to explore the potential of replacing traditional bacterial methods with these advanced molecular diagnostic techniques.
Collapse
Affiliation(s)
| | - Elina Afrazeh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Maryam Meskini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Delaram Doroud
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Wulandari DA, Hartati YW, Ibrahim AU, Pitaloka DAE, Irkham. Multidrug-resistant tuberculosis. Clin Chim Acta 2024; 559:119701. [PMID: 38697459 DOI: 10.1016/j.cca.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
One of predominant contributors to global mortality is tuberculosis (TB), an infection caused by Mycobacterium tuberculosis (MTB). Inappropriate and ineffectual treatment can lead to the development of drug-resistant TB. One of the most common forms of drug-resistant TB is multidrug-resistant tuberculosis (MDR-TB), caused by mutations in the rpoB and katG genes that lead to resistance to anti-TB drugs, rifampicin (RIF) and isoniazid (INH), respectively. Although culturing remains the gold standard, it is not rapid thereby delaying potential treatment and potentially increasing the incidence of MDR-TB. In contrast, molecular techniques provide a highly sensitive and specific alternative. This review discusses the classification of biomarkers used to detect MDR-TB, some of the commonly used anti-TB drugs, and DNA mutations in MTB that lead to anti-TB resistance. The objective of this review is to increase awareness of the need for rapid and precise detection of MDR-TB cases to decrease morbidity and mortality of this infectious disease worldwide.
Collapse
Affiliation(s)
- Dika Apriliana Wulandari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, 45363, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 10, Nicosia 99010, Turkey; Research Center for Science, Technology and Engineering (BILTEM), Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Dian Ayu Eka Pitaloka
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, 45363, Indonesia.
| |
Collapse
|
6
|
Barilar I, Fernando T, Utpatel C, Abujate C, Madeira CM, José B, Mutaquiha C, Kranzer K, Niemann T, Ismael N, de Araujo L, Wirth T, Niemann S, Viegas S. Emergence of bedaquiline-resistant tuberculosis and of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains with rpoB Ile491Phe mutation not detected by Xpert MTB/RIF in Mozambique: a retrospective observational study. THE LANCET. INFECTIOUS DISEASES 2024; 24:297-307. [PMID: 37956677 DOI: 10.1016/s1473-3099(23)00498-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND In 2021, an estimated 4800 people developed rifampicin-resistant tuberculosis in Mozambique, 75% of which went undiagnosed. Detailed molecular data on rifampicin-resistant and multidrug-resistant (MDR) tuberculosis are not available. Here, we aimed at gaining precise data on the determinants of rifampicin-resistant and MDR tuberculosis in Mozambique. METHODS In this retrospective observational study, we performed whole-genome sequencing of 704 rifampicin-resistant Mycobacterium tuberculosis complex (Mtbc) strains submitted to the National Tuberculosis Reference Laboratory (NTRL) in Maputo, Mozambique, between 2015 and 2021. Phylogenetic strain classification, genomic resistance prediction, and cluster analysis were performed. FINDINGS Between Jan 1, 2015, and July 31, 2021, 2606 Mtbc isolates with an isoniazid or rifampicin resistance were identified in the NTRL biobank, of which, 1483 (56·9%) were from men, 1114 (42·7%) from women, and nine (0·4%) were unknown. Genome-based drug-resistant prediction classified 704 Mtbc strains as rifampicin resistant. 628 (89%) of the 704 Mtbc strains were classified MDR; of those, 146 (23%) were pre-extensively drug resistant (pre-XDR; additional fluoroquinolone resistance), and 24 (4%) extensively drug resistant (XDR; combined fluoroquinolone and bedaquiline resistance). Overall, 61 (9%) of 704 strains revealed resistance to bedaquiline: five (7%) of 76 rifampicin resistant plus bedaquiline resistant, 32 (7%) of 458 MDR plus bedaquiline resistant, and 24 (100%) of 24 XDR. Prevalence of bedaquiline resistance increased from 3% in 2016 to 14% in 2021. The cluster rate (12 single-nucleotide polymorphism threshold) was 42% for rifampicin-resistant strains, 78% for MDR strains, 94% for pre-XDR strains, and 96% for XDR Mtbc strains. 31 (4%) of 704 Mtbc strains, belonging to a diagnostic escape outbreak strain previously described in Eswatini (group_56), had an rpoB Ile491Phe mutation which is not detected by Xpert MTB/RIF (no other rpoB mutation). Of these, 23 (74%) showed additional resistance to bedaquiline, 13 (42%) had bedaquiline and fluoroquinolone resistance, and two (6%) were bedaquiline, fluoroquinolone, and delamanid resistant. INTERPRETATION Pre-XDR resistance is highly prevalent among MDR Mtbc strains in Mozambique and so is bedaquiline resistance; and the frequency of bedaquiline resistance quadrupled over time and was found even in Mtbc strains without fluoroquinolone resistance. Importantly, strains with Ile491Phe mutation were frequent, accounting for 31% (n=10) of MDR plus bedaquiline-resistant strains and 54% (n=13) of XDR Mtbc strains. Given the current diagnostic algorithms and treatment regimens, both the emergence of rifampicin resistance due to Ile491Phe and bedaquiline resistance might jeopardise MDR tuberculosis prevention and care unless sequencing-based technology is rolled out. The potential cross border spread of diagnostic escape strains needs further investigation. FUNDING The German Ministry of Health through the Seq_MDRTB-Net project, the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy Precision Medicine in Inflammation and the Research Training Group 2501 TransEvo, the Leibniz Science Campus Evolutionary Medicine of the Lung, and the German Ministry of Education and Research via the German Center for Infection Research.
Collapse
Affiliation(s)
- Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | | | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | | | | | - Benedita José
- National Tuberculosis Control Program, Directorate of Public Health, Ministry of Health, Maputo, Mozambique
| | - Claudia Mutaquiha
- National Tuberculosis Control Program, Directorate of Public Health, Ministry of Health, Maputo, Mozambique
| | - Katharina Kranzer
- Biomedical Research and Training Institute, Harare, Zimbabwe; Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Munich, Germany
| | - Tanja Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Nalia Ismael
- Instituto Nacional de Saúde, Marracuene, Mozambique
| | - Leonardo de Araujo
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thierry Wirth
- Ecole Pratique des Hautes Etudes, Paris Sciences et Lettres University, Paris, France; Institut de Systématique, Evolution, Biodiversite, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France; Ecole Pratique des Hautes Etudes, Université des Antilles, Paris, France
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia.
| | - Sofia Viegas
- Instituto Nacional de Saúde, Marracuene, Mozambique
| |
Collapse
|
7
|
Hazra D, Lam C, Chawla K, Sintchenko V, Dhyani VS, Venkatesh BT. Impact of Whole-Genome Sequencing of Mycobacterium tuberculosis on Treatment Outcomes for MDR-TB/XDR-TB: A Systematic Review. Pharmaceutics 2023; 15:2782. [PMID: 38140122 PMCID: PMC10747601 DOI: 10.3390/pharmaceutics15122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence and persistence of drug-resistant tuberculosis is a major threat to global public health. Our objective was to assess the applicability of whole-genome sequencing (WGS) to detect genomic markers of drug resistance and explore their association with treatment outcomes for multidrug-resistant/extensively drug-resistant tuberculosis (MDR/XDR-TB). METHODS Five electronic databases were searched for studies published in English from the year 2000 onward. Two reviewers independently conducted the article screening, relevant data extraction, and quality assessment. The data of the included studies were synthesized with a narrative method and are presented in a tabular format. RESULTS The database search identified 949 published articles and 8 studies were included. An unfavorable treatment outcome was reported for 26.6% (488/1834) of TB cases, which ranged from 9.7 to 51.3%. Death was reported in 10.5% (194/1834) of total cases. High-level fluoroquinolone resistance (due to gyrA 94AAC and 94GGC mutations) was correlated as the cause of unfavorable treatment outcomes and reported in three studies. Other drug resistance mutations, like kanamycin high-level resistance mutations (rrs 1401G), rpoB Ile491Phe, and ethA mutations, conferring prothionamide resistance were also reported. The secondary findings from this systematic review involved laboratory aspects of WGS, including correlations with phenotypic DST, cost, and turnaround time, or the impact of WGS results on public health actions, such as determining transmission events within outbreaks. CONCLUSIONS WGS has a significant capacity to provide accurate and comprehensive drug resistance data for MDR/XDR-TB, which can inform personalized drug therapy to optimize treatment outcomes.
Collapse
Affiliation(s)
- Druti Hazra
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Connie Lam
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Vijay Shree Dhyani
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Bhumika T. Venkatesh
- Public Health Evidence South Asia, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
8
|
Molldrem S, Bagani S, Subrahmanyam V, Permar R, Matsiri O, Caiphus C, Kizito B, Modongo C, Shin SS. Botswana tuberculosis (TB) stakeholders broadly support scaling up next-generation whole genome sequencing: Ethical and practical considerations for Botswana and global health. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002479. [PMID: 37967081 PMCID: PMC10651001 DOI: 10.1371/journal.pgph.0002479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Global health agencies are increasingly promoting the scale-up of next-generation whole genome sequencing (NG-WGS) of pathogens into infectious disease control programs, including for tuberculosis (TB). However, little is known about how stakeholders in low-to-middle income countries (LMICs) understand the ethics, benefits, and risks of these proposals. We conducted a qualitative study in Greater Gaborone, Botswana to learn how TB stakeholders there viewed a potential scale-up of NG-WGS into Botswana's TB program. We conducted 30 interviews and four deliberative dialogues with TB stakeholders based in Greater Gaborone, the country's largest city and capital. We created and showed participants an animated video series about a fictional family that experienced TB diagnosis, treatment, contact tracing, and data uses that were informed by NG-WGS. We analyzed transcripts using reflexive thematic analysis. We found broad support for the scale-up of TB NG-WGS in Botswana, owing to perceived benefits. Support was qualified with statements about ensuring adequate planning, resource-allocation, community and stakeholder engagement, capacity-building, and assessing ethical norms around publishing data. Our results suggest that scaling up NG-WGS for TB in Botswana would be supported by stakeholders there, contingent upon the government and other entities adequately investing in the initiative. These findings are relevant to other LMICs considering scale-ups of NG-WGS and related technologies for infectious diseases and suggest the need for sustained research into the acceptability of pathogen sequencing in other contexts.
Collapse
Affiliation(s)
- Stephen Molldrem
- Institute for Bioethics and Health Humanities, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Vishnu Subrahmanyam
- Institute for Bioethics and Health Humanities, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rebecca Permar
- Program for Leadership and Character, Office of Academic Advising, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | | | | | | | | | - Sanghyuk S. Shin
- Sue & Bill Gross School of Nursing, University of California, Irvine, California, United States of America
| |
Collapse
|
9
|
Mejía-Ponce PM, Ramos-González EJ, Ramos-García AA, Lara-Ramírez EE, Soriano-Herrera AR, Medellín-Luna MF, Valdez-Salazar F, Castro-Garay CY, Núñez-Contreras JJ, De Donato-Capote M, Sharma A, Castañeda-Delgado JE, Zenteno-Cuevas R, Enciso-Moreno JA, Licona-Cassani C. Genomic epidemiology analysis of drug-resistant Mycobacterium tuberculosis distributed in Mexico. PLoS One 2023; 18:e0292965. [PMID: 37831695 PMCID: PMC10575498 DOI: 10.1371/journal.pone.0292965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Genomics has significantly revolutionized pathogen surveillance, particularly in epidemiological studies, the detection of drug-resistant strains, and disease control. Despite its potential, the representation of Latin American countries in the genomic catalogues of Mycobacterium tuberculosis (Mtb), the bacteria responsible for Tuberculosis (TB), remains limited. In this study, we present a whole genome sequencing (WGS)-based analysis of 85 Mtb clinical strains from 17 Mexican states, providing insights into local adaptations and drug resistance signatures in the region. Our results reveal that the Euro-American lineage (L4) accounts for 94% of our dataset, showing 4.1.2.1 (Haarlem, n = 32), and 4.1.1.3 (X-type, n = 34) sublineages as the most prevalent. We report the presence of the 4.1.1.3 sublineage, which is endemic to Mexico, in six additional locations beyond previous reports. Phenotypic drug resistance tests showed that 34 out of 85 Mtb samples were resistant, exhibiting a variety of resistance profiles to the first-line antibiotics tested. We observed high levels of discrepancy between phenotype and genotype associated with drug resistance in our dataset, including pyrazinamide-monoresistant Mtb strains lacking canonical variants of drug resistance. Expanding the Latin American Mtb genome databases will enhance our understanding of TB epidemiology and potentially provide new avenues for controlling the disease in the region.
Collapse
Affiliation(s)
- Paulina M. Mejía-Ponce
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
| | - Elsy J. Ramos-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Axel A. Ramos-García
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Alma R. Soriano-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Mitzy F. Medellín-Luna
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Posgrado en Ciencias Farmacobiológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Fernando Valdez-Salazar
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Claudia Y. Castro-Garay
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - José J. Núñez-Contreras
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | | | - Ashutosh Sharma
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Consejo Nacional de Ciencia y Tecnología, CONACYT, Ciudad de México, México
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Ciudad de México, México
| | - Jose Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Cuauhtémoc Licona-Cassani
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Ciudad de México, México
- Division of Integrative Biology, The Institute for Obesity Research, Tecnológico de Monterrey, Nuevo León, México
| |
Collapse
|
10
|
Shaw B, von Bredow B, Tsan A, Garner O, Yang S. Clinical Whole-Genome Sequencing Assay for Rapid Mycobacterium tuberculosis Complex First-Line Drug Susceptibility Testing and Phylogenetic Relatedness Analysis. Microorganisms 2023; 11:2538. [PMID: 37894195 PMCID: PMC10609454 DOI: 10.3390/microorganisms11102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The global rise of drug resistant tuberculosis has highlighted the need for improved diagnostic technologies that provide rapid and reliable drug resistance results. Here, we develop and validate a whole genome sequencing (WGS)-based test for identification of mycobacterium tuberculosis complex (MTB) drug resistance to rifampin, isoniazid, pyrazinamide, ethambutol, and streptomycin. Through comparative analysis of drug resistance results from WGS-based testing and phenotypic drug susceptibility testing (DST) of 38 clinical MTB isolates from patients receiving care in Los Angeles, CA, we found an overall concordance between methods of 97.4% with equivalent performance across culture media. Critically, prospective analysis of 11 isolates showed that WGS-based testing provides results an average of 36 days faster than phenotypic culture-based methods. We showcase the additional benefits of WGS data by investigating a suspected laboratory contamination event and using phylogenetic analysis to search for cryptic local transmission, finding no evidence of community spread amongst our patient population in the past six years. WGS-based testing for MTB drug resistance has the potential to greatly improve diagnosis of drug resistant MTB by accelerating turnaround time while maintaining accuracy and providing additional benefits for infection control, lab safety, and public health applications.
Collapse
Affiliation(s)
- Bennett Shaw
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
- Department of Pathology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Allison Tsan
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; (B.S.); (B.v.B.); (A.T.); (O.G.)
| |
Collapse
|
11
|
Dahiya B, Mehta N, Soni A, Mehta PK. Diagnosis of extrapulmonary tuberculosis by GeneXpert MTB/RIF Ultra assay. Expert Rev Mol Diagn 2023; 23:561-582. [PMID: 37318829 DOI: 10.1080/14737159.2023.2223980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Diagnosis of extrapulmonary tuberculosis (EPTB) is an arduous task owing to different anatomical locations, unusual clinical presentations, and sparse bacillary load in clinical specimens. Although GeneXpert® MTB/RIF is a windfall in TB diagnostics including EPTB, it yields low sensitivities but high specificities in many EPTB specimens. To further improve the sensitivity of GeneXpert®, GeneXpert® Ultra, a fully nested real-time PCR targeting IS6110, IS1081 and rpoB (Rv0664) has been endorsed by the WHO (2017), wherein melt curve analysis is utilized to detect rifampicin-resistance (RIF-R). AREA COVERED We described the assay chemistry/work design of Xpert Ultra and evaluated its performance in several EPTB types, that is, TB lymphadenitis, TB pleuritis, TB meningitis, and so on, against the microbiological reference standard or composite reference standard. Notably, Xpert Ultra exhibited better sensitivities than Xpert, but mostly at the compensation of specificity values. Moreover, Xpert Ultra exhibited low false-negative and false-positive RIF-R results, compared with Xpert. We also detailed other molecular tests, that is, Truenat MTBTM/TruPlus, commercial real-time PCR, line probe assay, and so on, for EPTB diagnosis. EXPERT OPINION A combination of clinical features, imaging, histopathological findings, and Xpert Ultra are adequate for definite EPTB diagnosis so as to initiate an early anti-tubercular therapy.
Collapse
Affiliation(s)
- Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Neeru Mehta
- Department of Medical Electronics, Ambedkar Delhi Skill & Entrepreneurship University, Shakarpur, New Delhi, India
| | - Aishwarya Soni
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
- Microbiology Department, Faculty of Allied Health Sciences, SGT University, Budhera, Gurgaon, India
| |
Collapse
|
12
|
First and Second-Line Anti-Tuberculosis Drug-Resistance Patterns in Pulmonary Tuberculosis Patients in Zambia. Antibiotics (Basel) 2023; 12:antibiotics12010166. [PMID: 36671366 PMCID: PMC9855139 DOI: 10.3390/antibiotics12010166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Drug-resistant tuberculosis has continued to be a serious global health threat defined by complexity as well as higher morbidity and mortality wherever it occurs, Zambia included. However, the paucity of information on drug-susceptibility patterns of both first-line and second-line anti-tuberculosis (anti-TB) drugs, including the new and repurposed drugs used in the management of drug-resistant tuberculosis in Zambia, was the major thrust for conducting this study. METHODS A total of 132 bacteriologically confirmed TB isolates were collected from patients with pulmonary TB during the period from April 2020 to December 2021 in Southern and Eastern Provinces of Zambia. Drug-resistance profiles were determined according to four first-line and five second-line anti-TB drugs. Standard mycobacteriological methods were used to isolate and determine phenotypic drug susceptibility. Data on the participants' social-demographic characteristics were obtained using a pre-test checklist. RESULTS Overall, the prevalence of resistance to one or more anti-TB drugs was 23.5% (31/132, 95% CI: 16.5-31.6%). A total of 9.8% (13/132, 95% CI: 5.3-16.2%) of the patients had multidrug-resistant TB and 1.2% were new cases, while 25.5% had a history of being previously treated for TB. Among those with mono-resistant TB strains, isoniazid (INH) resistance was the highest at 9.8% (13/132, 95% CI: 5.3-16.2%). Two (2/31) (6.5%) XDR-TB and one (1/31) (3.2%) pre-XDR-TB cases were identified among the MDR-TB patients. Previously treated patients were 40 times more likely (OR; 40.3, 95% CI: 11.1-146.5%) to have drug-resistant TB than those who had no history of being treated for TB. CONCLUSION This study has established a high rate of multidrug-resistant TB and has further identified both pre-XDR- and XDR-TB. There is a need to intensify surveillance of MDR- and XDR-TB to inform future guidelines for effective treatment and monitoring.
Collapse
|
13
|
Morey-León G, Andrade-Molina D, Fernández-Cadena JC, Berná L. Comparative genomics of drug-resistant strains of Mycobacterium tuberculosis in Ecuador. BMC Genomics 2022; 23:844. [PMID: 36544084 PMCID: PMC9769008 DOI: 10.1186/s12864-022-09042-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tuberculosis is a serious infectious disease affecting millions of people. In spite of efforts to reduce the disease, increasing antibiotic resistance has contributed to persist in the top 10 causes of death worldwide. In fact, the increased cases of multi (MDR) and extreme drug resistance (XDR) worldwide remains the main challenge for tuberculosis control. Whole genome sequencing is a powerful tool for predicting drug resistance-related variants, studying lineages, tracking transmission, and defining outbreaks. This study presents the identification and characterization of resistant clinical isolates of Mycobacterium tuberculosis including a phylogenetic and molecular resistance profile study by sequencing the complete genome of 24 strains from different provinces of Ecuador. RESULTS Genomic sequencing was used to identify the variants causing resistance. A total of 15/21 isolates were identified as MDR, 4/21 as pre-XDR and 2/21 as XDR, with three isolates discarded due to low quality; the main sub-lineage was LAM (61.9%) and Haarlem (19%) but clades X, T and S were identified. Of the six pre-XDR and XDR strains, it is noteworthy that five come from females; four come from the LAM sub-lineage and two correspond to the X-class sub-lineage. A core genome of 3,750 genes, distributed in 295 subsystems, was determined. Among these, 64 proteins related to virulence and implicated in the pathogenicity of M. tuberculosis and 66 possible pharmacological targets stand out. Most variants result in nonsynonymous amino acid changes and the most frequent genotypes were identified as conferring resistance to rifampicin, isoniazid, ethambutol, para-aminosalicylic acid and streptomycin. However, an increase in the resistance to fluoroquinolones was detected. CONCLUSION This work shows for the first time the variability of circulating resistant strains between men and women in Ecuador, highlighting the usefulness of genomic sequencing for the identification of emerging resistance. In this regard, we found an increase in fluoroquinolone resistance. Further sampling effort is needed to determine the total variability and associations with the metadata obtained to generate better health policies.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Universidad de Guayaquil, Guayaquil, Ecuador.
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - Derly Andrade-Molina
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Facultad de Ciencias, Unidad de Genómica Evolutiva, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
14
|
Comparative Performance of Line Probe Assay and GeneXpert in the Detection of Rifampicin Monoresistance in a TB-Endemic African Country. Antibiotics (Basel) 2022; 11:antibiotics11111489. [PMID: 36358145 PMCID: PMC9686643 DOI: 10.3390/antibiotics11111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Rapid, accurate and reliable assays are required for timely detection of drug-resistant tuberculosis and early initiation of second-line TB treatment as well as to minimize transmission of resistant strains. This study assessed diagnostic performance characteristics of two rapid molecular assays, line probe assay (LPA) and GeneXpert (MTB/RIF), in the detection rifampicin monoresistance using the phenotypic proportion method on Lowenstein−Jensen media as the gold standard. This study involved a total of 357 isolates, 74 rifampicin-resistant and 283 rifampicin-susceptible, collected at the Central Tuberculosis Reference Laboratory (CTRL) in Dar es Salaam, Tanzania, between 2016 and 2019. Sensitivity, specificity and positive and negative predictive values were used to assess the performance characteristics of the two assays while kappa coefficient was used to determine agreement of test results. The receiver operating curve (ROC) was used to determine the discriminatory ability of the test in distinguishing resistant and susceptible TB isolates. Our results showed that GeneXpert had sensitivity, specificity and positive and negative predictive values of 93.2, 82.7, 58.5 and 97.9%, respectively; the corresponding performance for LPA was 86.5, 97.5, 90.1 and 96.5%, respectively. Compared with conventional phenotypic DST results, GeneXpert had a moderate agreement (kappa 0.621, p < 0.001), while LPA had high agreement (0.853, p < 0.001). LPA showed an accuracy of 95.2% compared to GeneXpert’s 84.9%. ROC curve depicted the ability of the tests to distinguish rifampicin-sensitive and rifampicin-resistant strains to be 87.9% for GeneXpert and 92.0% for LPA. Our results indicate the superiority of LPA over GeneXpert regarding detection of rifampicin monoresistance. However, logistic challenges such as longer turnaround time and need for skilled laboratory personnel may limit its use.
Collapse
|
15
|
Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol 2022; 12:943545. [PMID: 36211964 PMCID: PMC9538507 DOI: 10.3389/fcimb.2022.943545] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023] Open
Abstract
Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.
Collapse
|
16
|
Che Y, Lin Y, Yang T, Chen T, Sang G, Chen Q, He T. Evaluation of whole-genome sequence to predict drug resistance of nine anti- tuberculosis drugs and characterize resistance genes in clinical rifampicin-resistant Mycobacterium tuberculosis isolates from Ningbo, China. Front Public Health 2022; 10:956171. [PMID: 36062095 PMCID: PMC9433565 DOI: 10.3389/fpubh.2022.956171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 01/24/2023] Open
Abstract
Setting Controlling drug-resistant tuberculosis in Ningbo, China. Objective Whole-genome sequencing (WGS) has not been employed to comprehensively study Mycobacterium tuberculosis isolates, especially rifampicin-resistant tuberculosis, in Ningbo, China. Here, we aim to characterize genes involved in drug resistance in RR-TB and create a prognostic tool for successfully predicting drug resistance in patients with TB. Design Drug resistance was predicted by WGS in a "TB-Profiler" web service after phenotypic drug susceptibility tests (DSTs) against nine anti-TB drugs among 59 clinical isolates. A comparison of consistency, sensitivity, specificity, and positive and negative predictive values between WGS and DST were carried out for each drug. Results The sensitivities and specificities for WGS were 95.92 and 90% for isoniazid (INH), 100 and 64.1% for ethambutol (EMB), 97.37 and 100% for streptomycin (SM), 75 and 100% for amikacin (AM), 80 and 96.3%for capreomycin (CAP), 100 and 97.22% for levofloxacin (LFX), 93.33 and 90.91% for prothionamide (PTO), and 70 and 97.96% for para-aminosalicylic acid (PAS). Around 53 (89.83%) and 6 (10.17%) of the isolates belonged to lineage two (East-Asian) and lineage four (Euro-American), respectively. Conclusion Whole-genome sequencing is a reliable method for predicting resistance to INH, RIF, EMB, SM, AM, CAP, LFX, PTO, and PAS with high consistency, sensitivity, and specificity. There was no transmission that occurred among the patients with RR-TB in Ningbo, China.
Collapse
Affiliation(s)
- Yang Che
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Yi Lin
- Center for Health Economics, Faculty of Humanities and Social Sciences, University of Nottingham, Ningbo, China
| | - Tianchi Yang
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Tong Chen
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Guoxin Sang
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Qin Chen
- Department of Disease Prevention and Health Promotion, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China,*Correspondence: Qin Chen
| | - Tianfeng He
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China,Tianfeng He
| |
Collapse
|
17
|
Bwalya P, Solo ES, Chizimu JY, Shrestha D, Mbulo G, Thapa J, Nakajima C, Suzuki Y. Characterization of embB mutations involved in ethambutol resistance in multi-drug resistant Mycobacterium tuberculosis isolates in Zambia. Tuberculosis (Edinb) 2022; 133:102184. [DOI: 10.1016/j.tube.2022.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
|
18
|
Saeed DK, Shakoor S, Razzak SA, Hasan Z, Sabzwari SF, Azizullah Z, Kanji A, Nasir A, Shafiq S, Ghanchi NK, Hasan R. Variants associated with Bedaquiline (BDQ) resistance identified in Rv0678 and efflux pump genes in Mycobacterium tuberculosis isolates from BDQ naïve TB patients in Pakistan. BMC Microbiol 2022; 22:62. [PMID: 35209842 PMCID: PMC8876534 DOI: 10.1186/s12866-022-02475-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the Rv0678, pepQ and atpE genes of Mycobacterium tuberculosis (MTB) have been reported to be associated with reduced antimycobacterial susceptibility to bedaquiline (BDQ). Resistance conferring mutations in treatment naïve MTB strains is likely to have implications for BDQ based new drug regimen that aim to shorten treatment duration. We therefore investigated the genetic basis of resistance to BDQ in MTB clinical isolates from BDQ naïve TB patients from Pakistan. In addition, mutations in genes associated with efflux pumps were investigated as an alternate mechanism of resistance. Methods Based on convenience sampling, we studied 48 MTB clinical isolates from BDQ naïve TB patients. These isolates (from our strain bank) included 38 MDR/pre-XDR/XDR (10 BDQ resistant, 8 BDQ intermediate and 20 BDQ susceptible) and 10 pan drug susceptible MTB isolates. All strains were subjected to whole genome sequencing and genomes were analysed to identify variants in Rv0678, pepQ, atpE, Rv1979c, mmpLS and mmpL5 and drug resistance associated efflux pump genes. Results Of the BDQ resistant and intermediate strains 44% (8/18) had variants in Rv0678 including; two reported mutations S63R/G, six previously unreported variants; L40F, R50Q and R107C and three frameshift mutations; G25fs, D64fs and D109fs. Variants in efflux pumps; Rv1273c (G462K), Rv0507c (R426H) and Rv1634c (E198R) were found to be present in drug resistant isolates including BDQ resistant and intermediate isolates. E198R in efflux pump gene Rv1634c was the most frequently occurring variant in BDQ resistant and intermediate isolates (n = 10). Conclusion We found RAVs in Rv0678 to be commonly associated with BDQ resistance. Further confirmation of the role of variants in efflux pump genes in resistance is required so that they may be incorporated in genome-based diagnostics for drug resistant MTB. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02475-4.
Collapse
Affiliation(s)
- Dania Khalid Saeed
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Safina Abdul Razzak
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Saba Faraz Sabzwari
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahida Azizullah
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Samreen Shafiq
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan. .,Faculty of Infectious and Tropical Diseases, London School Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
19
|
Mbelele PM, Utpatel C, Sauli E, Mpolya EA, Mutayoba BK, Barilar I, Dreyer V, Merker M, Sariko ML, Swema BM, Mmbaga BT, Gratz J, Addo KK, Pletschette M, Niemann S, Houpt ER, Mpagama SG, Heysell SK. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac042. [PMID: 35465240 PMCID: PMC9021016 DOI: 10.1093/jacamr/dlac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Rifampicin- or multidrug-resistant (RR/MDR) Mycobacterium tuberculosis complex (MTBC) strains account for considerable morbidity and mortality globally. WGS-based prediction of drug resistance may guide clinical decisions, especially for the design of RR/MDR-TB therapies. Methods We compared WGS-based drug resistance-predictive mutations for 42 MTBC isolates from MDR-TB patients in Tanzania with the MICs of 14 antibiotics measured in the Sensititre™ MycoTB assay. An isolate was phenotypically categorized as resistant if it had an MIC above the epidemiological-cut-off (ECOFF) value, or as susceptible if it had an MIC below or equal to the ECOFF. Results Overall, genotypically non-wild-type MTBC isolates with high-level resistance mutations (gNWT-R) correlated with isolates with MIC values above the ECOFF. For instance, the median MIC value (mg/L) for rifampicin-gNWT-R strains was >4.0 (IQR 4.0–4.0) compared with 0.5 (IQR 0.38–0.50) in genotypically wild-type (gWT-S, P < 0.001); isoniazid-gNWT-R >4.0 (IQR 2.0–4.0) compared with 0.25 (IQR 0.12–1.00) among gWT-S (P = 0.001); ethionamide-gNWT-R 15.0 (IQR 10.0–20.0) compared with 2.50 (IQR; 2.50–5.00) among gWT-S (P < 0.001). WGS correctly predicted resistance in 95% (36/38) and 100% (38/38) of the rifampicin-resistant isolates with ECOFFs >0.5 and >0.125 mg/L, respectively. No known resistance-conferring mutations were present in genes associated with resistance to fluoroquinolones, aminoglycosides, capreomycin, bedaquiline, delamanid, linezolid, clofazimine, cycloserine, or p-amino salicylic acid. Conclusions WGS-based drug resistance prediction worked well to rule-in phenotypic drug resistance and the absence of second-line drug resistance-mediating mutations has the potential to guide the design of RR/MDR-TB regimens in the future.
Collapse
Affiliation(s)
- Peter M. Mbelele
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Corresponding author. E-mail:
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Emmanuel A. Mpolya
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Beatrice K. Mutayoba
- Ministry of Health, National AIDS Control Program, Department of Preventive Services, Dodoma, Tanzania
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | | | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kennedy K. Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michel Pletschette
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stellah G. Mpagama
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Whole-Genome Sequencing Reveals Recent Transmission of Multidrug-Resistant Mycobacterium tuberculosis CAS1-Kili Strains in Lusaka, Zambia. Antibiotics (Basel) 2021; 11:antibiotics11010029. [PMID: 35052906 PMCID: PMC8773284 DOI: 10.3390/antibiotics11010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Globally, tuberculosis (TB) is a major cause of death due to antimicrobial resistance. Mycobacterium tuberculosis CAS1-Kili strains that belong to lineage 3 (Central Asian Strain, CAS) were previously implicated in the spread of multidrug-resistant (MDR)-TB in Lusaka, Zambia. Thus, we investigated recent transmission of those strains by whole-genome sequencing (WGS) with Illumina MiSeq platform. Twelve MDR CAS1-Kili isolates clustered by traditional methods (MIRU-VNTR and spoligotyping) were used. A total of 92% (11/12) of isolates belonged to a cluster (≤12 SNPs) while 50% (6/12) were involved in recent transmission events, as they differed by ≤5 SNPs. All the isolates had KatG Ser315Thr (isoniazid resistance), EmbB Met306 substitutions (ethambutol resistance) and several kinds of rpoB mutations (rifampicin resistance). WGS also revealed compensatory mutations including a novel deletion in embA regulatory region (−35A > del). Several strains shared the same combinations of drug-resistance-associated mutations indicating transmission of MDR strains. Zambian strains belonged to the same clade as Tanzanian, Malawian and European strains, although most of those were pan-drug-susceptible. Hence, complimentary use of WGS to traditional epidemiological methods provides an in-depth insight on transmission and drug resistance patterns which can guide targeted control measures to stop the spread of MDR-TB.
Collapse
|
21
|
Welekidan LN, Yimer SA, Skjerve E, Dejene TA, Homberset H, Tønjum T, Brynildsrud O. Whole Genome Sequencing of Drug Resistant and Drug Susceptible Mycobacterium tuberculosis Isolates From Tigray Region, Ethiopia. Front Microbiol 2021; 12:743198. [PMID: 34938276 PMCID: PMC8685502 DOI: 10.3389/fmicb.2021.743198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tuberculosis, mainly caused by Mycobacterium tuberculosis (Mtb), is an ancient human disease that gravely affects millions of people annually. We wanted to explore the genetic diversity and lineage-specific association of Mtb with drug resistance among pulmonary tuberculosis patients. Methods: Sputum samples were collected from pulmonary tuberculosis patients at six different healthcare institutions in Tigray, Ethiopia, between July 2018 and August 2019. DNA was extracted from 74 Mtb complex isolates for whole-genome sequencing (WGS). All genomes were typed and screened for mutations with known associations with antimicrobial resistance using in silico methods, and results were cross-verified with wet lab methods. Results: Lineage (L) 4 (55.8%) was predominant, followed by L3 (41.2%); L1 (1.5%) and L2 (1.5%) occurred rarely. The most frequently detected sublineage was CAS (38.2%), followed by Ural (29.4%), and Haarlem (11.8%). The recent transmission index (RTI) was relatively low. L4 and Ural strains were more resistant than the other strains to any anti-TB drug (P < 0.05). The most frequent mutations to RIF, INH, EMB, SM, PZA, ETH, FLQs, and 2nd-line injectable drugs occurred at rpoB S450L, katG S315T, embB M306I/V, rpsL K43R, pncA V139A, ethA M1R, gyrA D94G, and rrs A1401G, respectively. Disputed rpoB mutations were also shown in four (16%) of RIF-resistant isolates. Conclusion: Our WGS analysis revealed the presence of diverse Mtb genotypes. The presence of a significant proportion of disputed rpoB mutations highlighted the need to establish a WGS facility at the regional level to monitor drug-resistant mutations. This will help control the transmission of DR-TB and ultimately contribute to the attainment of 100% DST coverage for TB patients as per the End TB strategy.
Collapse
Affiliation(s)
- Letemichael Negash Welekidan
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Division of Biomedical Sciences, Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Solomon Abebe Yimer
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway.,Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Tsehaye Asmelash Dejene
- Division of Biomedical Sciences, Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Unit for Genome Dynamics, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ola Brynildsrud
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
22
|
Zwyer M, Çavusoglu C, Ghielmetti G, Pacciarini ML, Scaltriti E, Van Soolingen D, Dötsch A, Reinhard M, Gagneux S, Brites D. A new nomenclature for the livestock-associated Mycobacterium tuberculosis complex based on phylogenomics. OPEN RESEARCH EUROPE 2021; 1:100. [PMID: 37645186 PMCID: PMC10445919 DOI: 10.12688/openreseurope.14029.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 08/31/2023]
Abstract
Background: The bacteria that compose the Mycobacterium tuberculosis complex (MTBC) cause tuberculosis (TB) in humans and in different animals, including livestock. Much progress has been made in understanding the population structure of the human-adapted members of the MTBC by combining phylogenetics with genomics. Accompanying the discovery of new genetic diversity, a body of operational nomenclature has evolved to assist comparative and molecular epidemiological studies of human TB. By contrast, for the livestock-associated MTBC members, Mycobacterium bovis, M. caprae and M. orygis, there has been a lack of comprehensive nomenclature to accommodate new genetic diversity uncovered by emerging phylogenomic studies. We propose to fill this gap by putting forward a new nomenclature covering the main phylogenetic groups within M. bovis, M. caprae and M. orygis. Methods: We gathered a total of 8,736 whole-genome sequences (WGS) from public sources and 39 newly sequenced strains, and selected a subset of 829 WGS, representative of the worldwide diversity of M. bovis, M. caprae and M. orygis. We used phylogenetics and genetic diversity patterns inferred from WGS to define groups. Results: We propose to divide M. bovis, M. caprae and M. orygis in three main phylogenetic lineages, which we named La1, La2 and La3, respectively. Within La1, we identified several monophyletic groups, which we propose to classify into eight sublineages (La1.1-La1.8). These sublineages differed in geographic distribution, with some being geographically restricted and others globally widespread, suggesting different expansion abilities. To ease molecular characterization of these MTBC groups by the community, we provide phylogenetically informed, single nucleotide polymorphisms that can be used as barcodes for genotyping. These markers were implemented in KvarQ and TB-Profiler, which are platform-independent, open-source tools. Conclusions: Our results contribute to an improved classification of the genetic diversity within the livestock-associated MTBC, which will benefit future molecular epidemiological and evolutionary studies.
Collapse
Affiliation(s)
- Michaela Zwyer
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Cengiz Çavusoglu
- Department of Medical Microbiology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Giovanni Ghielmetti
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Dick Van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands Antilles
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anna Dötsch
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Miriam Reinhard
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Sebastien Gagneux
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Daniela Brites
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
23
|
Monde N, Zulu M, Tembo M, Handema R, Munyeme M, Malama S. Drug Resistant Tuberculosis in the Northern Region of Zambia: A Retrospective Study. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.735028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundZambia like many countries in sub-Saharan Africa is affected with drug resistant tuberculosis. However, the drug resistant tuberculosis situation over the years has not been described in various regions of the country. Consequently, this study aims to determine the drug resistant tuberculosis burden in northern regions of Zambia over a four-year period based on data generated from a Regional Tuberculosis Reference Laboratory.MethodTwo hundred and thirty two (232) Tuberculosis Drug Susceptibility Testing results over a four-year period (2016-2019) were reviewed. Data was collected from tuberculosis registers and patient request forms and entered into a pre-tested standardized checklist and later entered in Excel Computer software. Double blinded checking was done by two independent data clerks to minimize duplication of cases. Cleaned data was then imported in R programme for analysis. Bivariant and descriptive statistics were performed and reported.ResultsOf 232 Drug Susceptibility Testing results, 90.9% were drug resistant TB while 9% were drug susceptible. Fifty three percent (53%) of these were multi-drug resistant Tuberculosis and 32% were confirmed as Rifampicin Mono-resistance. Only 1.7% of the Multi-drug resistant Tuberculosis patients were Pre-extensively drug-resistant Tuberculosis. Copperbelt province had the largest proportion (46.0%) of multi-drug resistant tuberculosis patients followed by Luapula (8.1%) and North-Western (4.7%) provinces. In new and previously treated patients, the proportion of Multi-drug resistant tuberculosis was 71.8% and 28.7% respectively. History of previous anti-tuberculosis treatment and treatment failure were associated with multi-drug resistance TB.Conclusion and RecommendationThis study has shown a small increase in the proportions of drug resistant tuberculosis cases over the four years under review with high rates being recorded on the Copperbelt Province. Previous treatment to first line TB treatment and treatment failure were associated with development of Multi-drug resistance. We therefore recommend strengthened routine laboratory surveillance and improved case management of multi-drug resistant tuberculosis patients in the region.
Collapse
|
24
|
Characterization of Mutations Associated with Streptomycin Resistance in Multidrug-Resistant Mycobacterium tuberculosis in Zambia. Antibiotics (Basel) 2021; 10:antibiotics10101169. [PMID: 34680750 PMCID: PMC8532810 DOI: 10.3390/antibiotics10101169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Streptomycin (STR) is recommended for the management of multidrug-resistant tuberculosis (MDR-TB). Streptomycin resistance-conferring mutation types and frequency are shown to be influenced by genotypes of circulating strains in a population. This study aimed to characterize the mutations in MDR-TB isolates and examine their relationship with the genotypes in Zambia. A total of 138 MDR-TB isolates stored at the University Teaching Hospital Tuberculosis Reference Laboratory in Zambia were analyzed using spoligotyping and sequencing of STR resistance-associated genes. Streptomycin resistance was observed in 65.9% (91/138) of MDR-TB isolates. Mutations in rpsL, rrs, and gidB accounted for 33%, 12.1%, and 49.5%, respectively. Amino acid substitution K43R in rpsL was strongly associated with the CAS1_Kili genotype (p < 0.0001). The combination of three genes could predict 91.2% of STR resistance. Clustering of isolates based on resistance-conferring mutations and spoligotyping was observed. The clustering of isolates suggests that the increase in STR-resistant MDR-TB in Zambia is largely due to the spread of resistant strains from inadequate treatment. Therefore, rapid detection of STR resistance genetically is recommended before its use in MDR-TB treatment in Zambia.
Collapse
|
25
|
Olawoye IB, Uwanibe JN, Kunle-Ope CN, Davies-Bolorunduro OF, Abiodun TA, Audu RA, Salako BL, Happi CT. Whole genome sequencing of clinical samples reveals extensively drug resistant tuberculosis (XDR TB) strains from the Beijing lineage in Nigeria, West Africa. Sci Rep 2021; 11:17387. [PMID: 34462504 PMCID: PMC8405707 DOI: 10.1038/s41598-021-96956-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Multi-drug (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) continues to be a global public health problem especially in high TB burden countries like Nigeria. Many of these cases are undetected and go on to infect high risk individuals. Clinical samples from positive rifampicin resistant Xpert®MTB/Rif assay were subjected to direct whole genome sequencing and bioinformatics analysis to identify the full antibiotics resistance and lineage profile. We report two (2) XDR TB samples also belonging to the East-Asian/Beijing family of lineage 2 Mycobacterium tuberculosis complex from clinical samples in Nigeria. Our findings further reveal the presence of mutations that confer resistance to first-line drugs (rifampicin, isoniazid, ethambutol and pyrazanimide), second-line injectables (capreomycin, streptomycin, kanamycin and/or amikacin) and at least one of the fluoroquinolones (ofloxacin, moxifloxacin, levofloxacin and/or ciprofloxacin) in both samples. The genomic sequence data from this study not only provide the first evidence of XDR TB in Nigeria and West Africa, but also emphasize the importance of WGS in accurately detecting MDR and XDR TB, to ensure adequate and proper management treatment regimens for affected individuals. This will greatly aid in preventing the spread of drug resistance TB in high burden countries.
Collapse
Affiliation(s)
- Idowu B Olawoye
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Jessica N Uwanibe
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Chioma N Kunle-Ope
- Centre for Tuberculosis Research (CTBR), Microbiology Department, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos State, Nigeria
| | - Olabisi F Davies-Bolorunduro
- Centre for Tuberculosis Research (CTBR), Microbiology Department, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos State, Nigeria
| | - Temitope A Abiodun
- Centre for Tuberculosis Research (CTBR), Microbiology Department, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos State, Nigeria
| | - Rosemary A Audu
- Centre for Tuberculosis Research (CTBR), Microbiology Department, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos State, Nigeria
| | - Babatunde L Salako
- Centre for Tuberculosis Research (CTBR), Microbiology Department, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos State, Nigeria
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|
26
|
Agyare SA, Osei FA, Odoom SF, Mensah NK, Amanor E, Martyn-Dickens C, Owusu-Ansah M, Mohammed A, Yeboah EO. Treatment Outcomes and Associated Factors in Tuberculosis Patients at Atwima Nwabiagya District, Ashanti Region, Ghana: A Ten-Year Retrospective Study. Tuberc Res Treat 2021; 2021:9952806. [PMID: 34336281 PMCID: PMC8315879 DOI: 10.1155/2021/9952806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Tuberculosis poses a great threat to public health around the globe and affects persons mostly in their productive age, notwithstanding; everyone is susceptible to tuberculosis (TB) infection. To assess the effectiveness and performance of the tuberculosis control program activities, the percentage of cases with treatment success outcome is key. To control tuberculosis, interrupting transmission through effective treatment cannot be overemphasized. The study was conducted to determine factors associated with TB treatment outcome, in the Atwima Nwabiagya District from 2007-2017. METHOD A Retrospective review of routine/standard TB registers was carried out in five directly observed therapy short-course (DOTS) centres at the Atwima Nwabiagya District from January 2007 to December 2017. Demographic characteristics, clinical characteristics, and treatment outcomes were assessed. Bivariate and multivariate logistic regression was conducted to determine the predictors of successful treatment outcome. RESULTS Of the 891 TB client's data that was assessed in the district, the treatment success rate was 68.46%. Patients, aged ≤ 20 years (adjusted odds ratio (aOR) = 4.74, 95%CI = 1.75 - 12.83) and 51-60 years (aOR = 1.94, 95%CI = 1.12 - 3.39), having a pretreatment weight of 35-45 kg (aOR = 2.54, 95%CI = 1.32 - 4.87), 46-55 kg (aOR = 2.75, 95%CI = 1.44 - 5.27) and 56-65 kg (aOR = 3.04, 95%CI = 1.50 - 6.14) were associated with treatment success. However, retreatment patients (aOR = 0.31, 95%CI = 0.11 - 0.84) resulted in unsuccessful treatment outcome. CONCLUSION Successful treatment outcome among TB patients was about 20.00% and 30.00% lower compared to the national average treatment success rate and WHO target, respectively. Active monitoring, motivation, and counselling of retreatment patients and patients with advanced age are key to treatment success.
Collapse
Affiliation(s)
| | | | | | | | - Ernest Amanor
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Aliyu Mohammed
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | |
Collapse
|
27
|
Integrating tuberculosis screening into antenatal visits to improve tuberculosis diagnosis and care: Results from a pilot project in Pakistan. Int J Infect Dis 2021; 108:391-396. [PMID: 34087487 DOI: 10.1016/j.ijid.2021.05.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Active tuberculosis (TB) during pregnancy has an adverse effect on maternal and neonatal outcomes. This study analysed the results of a pilot project integrating TB screening into antenatal care (ANC) visits in a high-TB-burden, low-resource setting. METHODS Data were extracted from the TB screening pilot in obstetrician-gynaecologist clinics of six tertiary care facilities in Karachi, Pakistan from April to December 2017. Data from the verbal symptom screening conducted at each ANC visit for all women and the Xpert MTB/RIF testing for all symptomatic women to investigate TB yield were analysed by assessing the numbers screened, presumptive patients and active TB diagnoses among pregnant women and neonates. RESULTS Symptom screening was performed on 113,078 pregnant women, 2,965 (2.6%) of whom reported at least one TB symptom. Sputum samples were collected from 2,896 (97.7%) symptomatic women. Of the 27 (0.9%) newly diagnosed bacteriologically positive TB patients, 25 (93%) initiated TB treatment. No case of vertical TB transmission was reported among 26 live births. DISCUSSION TB screening is feasible and should be implemented during routine ANC visits in high-TB-burden settings. There is a need to explore a multi-faceted approach with inclusion of clinical examination and chest X-rays to diagnose TB in pregnant women.
Collapse
|
28
|
Kazaura M, Kamazima SR. Knowledge, attitudes and practices on tuberculosis infection prevention and associated factors among rural and urban adults in northeast Tanzania: A cross-sectional study. PLOS GLOBAL PUBLIC HEALTH 2021; 1:e0000104. [PMID: 36962113 PMCID: PMC10022383 DOI: 10.1371/journal.pgph.0000104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
Almost 10 million of the global population was infected with tuberculosis (TB) in 2017. Tanzania is among countries with high incidence of TB. Although control measures of TB are multi factorial, it is important to understand the individual's knowledge, attitudes and practices (KAP) in order to control TB infection. We conducted a cross-sectional study in northeast Tanzania; recruited and interviewed 1519 adults from two districts, one rural and another urban. We scored each participant using several questions for each construct of KAP. A study participant scoring at least 60% of the possible maximum scores was considered as having a good knowledge, positive attitude or good practices. And herein, a participant having positive TB attitude would mean they acknowledge TB exist, recognizes its impact on health and would seek or advise TB-infected individuals to seek the correct remedies. We applied multiple linear regression analysis to assess independent individual-level factors related to TB on KAP scores in the rural and urban populations. Overall, less than half (44%) of the study participants had good overall knowledge about TB infection and significantly more urban than rural adult population had good overall knowledge (p<0.001). Almost one in ten, (11%) of all study participants had positive attitudes towards TB infection. More urban study participants, (16%) had positive attitudes than their rural counterparts, 6%). Almost nine in ten (89%) of all study participants had good practices towards TB prevention and control; significantly more adults in urban, (97%) than the rural populations (56%) (p<0.01). Predictors of KAP scores were individual's education and main source of income. Adults in rural and urban northeast Tanzania have poor knowledge, attitudes and practices for TB infection and prevention. Strategies focusing on health education are important for control of TB, especially among rural communities.
Collapse
Affiliation(s)
- Method Kazaura
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | |
Collapse
|
29
|
Jang JG, Chung JH. Diagnosis and treatment of multidrug-resistant tuberculosis. Yeungnam Univ J Med 2020; 37:277-285. [PMID: 32883054 PMCID: PMC7606956 DOI: 10.12701/yujm.2020.00626] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
Tuberculosis (TB) is still a major health problem worldwide. Especially, multidrug-resistant TB (MDR-TB), which is defined as TB that shows resistance to both isoniazid and rifampicin, is a barrier in the treatment of TB. Globally, approximately 3.4% of new TB patients and 20% of the patients with a history of previous treatment for TB were diagnosed with MDR-TB. The treatment of MDR-TB requires medications for a long duration (up to 20-24 months) with less effective and toxic second-line drugs and has unfavorable outcomes. However, treatment outcomes are expected to improve due to the introduction of a new agent (bedaquiline), repurposed drugs (linezolid, clofazimine, and cycloserine), and technological advancement in rapid drug sensitivity testing. The World Health Organization (WHO) released a rapid communication in 2018, followed by consolidated guidelines for the treatment of MDR-TB in 2019 based on clinical trials and an individual patient data meta-analysis. In these guidelines, the WHO suggested reclassification of second-line anti-TB drugs and recommended oral treatment regimens that included the new and repurposed agents. The aims of this article are to review the treatment strategies of MDR-TB based on the 2019 WHO guidelines regarding the management of MDR-TB and the diagnostic techniques for detecting resistance, including phenotypic and molecular drug sensitivity tests.
Collapse
Affiliation(s)
- Jong Geol Jang
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin Hong Chung
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|