1
|
Carvalho F, Carreaux A, Sartori-Rupp A, Tachon S, Gazi AD, Courtin P, Nicolas P, Dubois-Brissonnet F, Barbotin A, Desgranges E, Bertrand M, Gloux K, Schouler C, Carballido-López R, Chapot-Chartier MP, Milohanic E, Bierne H, Pagliuso A. Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria. Nat Commun 2024; 15:8499. [PMID: 39358320 PMCID: PMC11447242 DOI: 10.1038/s41467-024-52633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.
Collapse
Affiliation(s)
- Filipe Carvalho
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexis Carreaux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Anastasia D Gazi
- Ultrastructural Bioimaging Facility, Institut Pasteur, Paris, France
| | - Pascal Courtin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | | | - Aurélien Barbotin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Desgranges
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthieu Bertrand
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Karine Gloux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Malas J, Russo DC, Bollengier O, Malaska MJ, Lopes RMC, Kenig F, Meyer-Dombard DR. Biological functions at high pressure: transcriptome response of Shewanella oneidensis MR-1 to hydrostatic pressure relevant to Titan and other icy ocean worlds. Front Microbiol 2024; 15:1293928. [PMID: 38414766 PMCID: PMC10896736 DOI: 10.3389/fmicb.2024.1293928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
High hydrostatic pressure (HHP) is a key driver of life's evolution and diversification on Earth. Icy moons such as Titan, Europa, and Enceladus harbor potentially habitable high-pressure environments within their subsurface oceans. Titan, in particular, is modeled to have subsurface ocean pressures ≥ 150 MPa, which are above the highest pressures known to support life on Earth in natural ecosystems. Piezophiles are organisms that grow optimally at pressures higher than atmospheric (0.1 MPa) pressure and have specialized adaptations to the physical constraints of high-pressure environments - up to ~110 MPa at Challenger Deep, the highest pressure deep-sea habitat explored. While non-piezophilic microorganisms have been shown to survive short exposures at Titan relevant pressures, the mechanisms of their survival under such conditions remain largely unelucidated. To better understand these mechanisms, we have conducted a study of gene expression for Shewanella oneidensis MR-1 using a high-pressure experimental culturing system. MR-1 was subjected to short-term (15 min) and long-term (2 h) HHP of 158 MPa, a value consistent with pressures expected near the top of Titan's subsurface ocean. We show that MR-1 is metabolically active in situ at HHP and is capable of viable growth following 2 h exposure to 158 MPa, with minimal pressure training beforehand. We further find that MR-1 regulates 264 genes in response to short-term HHP, the majority of which are upregulated. Adaptations include upregulation of the genes argA, argB, argC, and argF involved in arginine biosynthesis and regulation of genes involved in membrane reconfiguration. MR-1 also utilizes stress response adaptations common to other environmental extremes such as genes encoding for the cold-shock protein CspG and antioxidant defense related genes. This study suggests Titan's ocean pressures may not limit life, as microorganisms could employ adaptations akin to those demonstrated by terrestrial organisms.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Daniel C. Russo
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Olivier Bollengier
- Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, Nantes, France
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rosaly M. C. Lopes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Fabien Kenig
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - D'Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes-An Overview of Challenges and Responses. Foods 2023; 13:14. [PMID: 38201041 PMCID: PMC10778341 DOI: 10.3390/foods13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors-pressure values (100-600 MPa), time of operation (a few-several minutes), and temperature of operation (room temperature or lower)-using a liquid medium responsible for pressure transfer. The combination of these three factors results in the inactivation of microorganisms, thus extending food shelf life and improving the food's microbiological safety. HPP can provide high value for the sensory and quality characteristics of products and reduce the population of pathogenic microorganisms such as L. monocytogenes to the required safety level. Nevertheless, the technology is not without impact on the cellular response of pathogens. L. monocytogenes cells surviving the HPP treatment may have multiple damages, which may impact the activation of mechanisms involved in the repair of cellular damage, increased virulence, or antibiotic resistance, as well as an increased expression of genes encoding pathogenicity and antibiotic resistance. This review has demonstrated that HPP is a technology that can reduce L. monocytogenes cells to below detection levels, thus indicating the potential to provide the desired level of safety. However, problems have been noted related to the possibilities of cell recovery during storage and changes in virulence and antibiotic resistance due to the activation of gene expression mechanisms, and the lack of a sufficient number of studies explaining these changes has been reported.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (W.C.-W.); (A.Z.)
| | | | | |
Collapse
|
4
|
Koo A, Ghate V, Zhou W. Acid adaptation increased the resistance of Escherichia coli O157:H7 in bok choy ( Brassica rapa subsp. chinensis) juice to high-pressure processing. Appl Environ Microbiol 2023; 89:e0060223. [PMID: 37874288 PMCID: PMC10686058 DOI: 10.1128/aem.00602-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Based on the U.S. Food and Drug Administration regulations, E. coli O157:H7 is a pertinent pathogen in high acid juices that needs to be inactivated during the pasteurization process. The results of this study suggest that the effect of acid adaptation should be considered in the selection of HPP parameters for E. coli O157:H7 inactivation to ensure that pasteurization objectives are achieved.
Collapse
Affiliation(s)
- Andrea Koo
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Kent Ridge, Singapore
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| | - Vinayak Ghate
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| | - Weibiao Zhou
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Kent Ridge, Singapore
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
5
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. High-Pressure Processing-Impacts on the Virulence and Antibiotic Resistance of Listeria monocytogenes Isolated from Food and Food Processing Environments. Foods 2023; 12:3899. [PMID: 37959018 PMCID: PMC10650155 DOI: 10.3390/foods12213899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
High-pressure processing (HPP) is one of the non-thermal methods of food preservation considered to be safe but may cause an increase/decrease in virulence potential and antibiotic resistance. The aim of the present study was to evaluate the survival of L. monocytogenes isolates after high-pressure processing (200 and 400 MPa for 5 min) and to determine changes in phenotypic and genotypic antibiotic resistance and virulence after this treatment. The 400 MPa treatment was shown to be effective in reducing pathogens to safe levels; however, the potential for cell recovery during storage was observed. In addition, studies on changes in virulence indicated possibilities related to a decrease in actA gene expression, overexpression of the hly and osfX gene, and an increase in biofilm-forming ability. The studies on changes in antibiotic resistance of isolates showed that all isolates showing initial susceptibility to lincomycin, fosfomycin, trimethoprim/sulfamethoxazole, and tetracycline became resistant to these antibiotics, which was associated with an increase in the values of minimum inhibitory concentrations. An increase in the expression of antibiotic resistance genes (mainly tetA_1, tetA_3, tetC) was also observed (mainly after the application of 200 MPa pressure), which was isolate dependent. However, it is noteworthy that the induced changes were permanent, i.e., they persisted even after the restoration of optimal environmental conditions. The results presented in our work indicate that the stress occurring during HPP can affect both phenotypic and genotypic changes in the virulence and antibiotic resistance potential of pathogens isolated from food and food processing environments. The potential associated with cell recovery and persistence of changes may influence the spread of virulent isolates of pathogens with increased antibiotic resistance in the food and food processing environment.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (W.C.-W.); (A.Z.)
| | | | | |
Collapse
|
6
|
Anast JM, Etter AJ, Schmitz‐Esser S. Comparative analysis of Listeria monocytogenes plasmid transcriptomes reveals common and plasmid-specific gene expression patterns and high expression of noncoding RNAs. Microbiologyopen 2022; 11:e1315. [PMID: 36314750 PMCID: PMC9484302 DOI: 10.1002/mbo3.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent research demonstrated that some Listeria monocytogenes plasmids contribute to stress survival. However, only a few studies have analyzed gene expression patterns of L. monocytogenes plasmids. In this study, we identified four previously published stress-response-associated transcriptomic data sets which studied plasmid-harboring L. monocytogenes strains but did not include an analysis of the plasmid transcriptomes. The four transcriptome data sets encompass three distinct plasmids from three different L. monocytogenes strains. Differential gene expression analysis of these plasmids revealed that the number of differentially expressed (DE) L. monocytogenes plasmid genes ranged from 30 to 45 with log2 fold changes of -2.2 to 6.8, depending on the plasmid. Genes often found to be DE included the cadmium resistance genes cadA and cadC, a gene encoding a putative NADH peroxidase, the putative ultraviolet resistance gene uvrX, and several uncharacterized noncoding RNAs (ncRNAs). Plasmid-encoded ncRNAs were consistently among the highest expressed genes. In addition, one of the data sets utilized the same experimental conditions for two different strains harboring distinct plasmids. We found that the gene expression patterns of these two L. monocytogenes plasmids were highly divergent despite the identical treatments. These data suggest plasmid-specific gene expression responses to environmental stimuli and differential plasmid regulation mechanisms between L. monocytogenes strains. Our findings further our understanding of the dynamic expression of L. monocytogenes plasmid-encoded genes in diverse environmental conditions and highlight the need to expand the study of L. monocytogenes plasmid genes' functions.
Collapse
Affiliation(s)
- Justin M. Anast
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| | - Andrea J. Etter
- Department of Nutrition and Food SciencesThe University of VermontBurlingtonVermontUSA
| | - Stephan Schmitz‐Esser
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| |
Collapse
|
7
|
Bar N, Nikparvar B, Jayavelu ND, Roessler FK. Constrained Fourier estimation of short-term time-series gene expression data reduces noise and improves clustering and gene regulatory network predictions. BMC Bioinformatics 2022; 23:330. [PMID: 35945515 PMCID: PMC9364503 DOI: 10.1186/s12859-022-04839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/12/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Biological data suffers from noise that is inherent in the measurements. This is particularly true for time-series gene expression measurements. Nevertheless, in order to to explore cellular dynamics, scientists employ such noisy measurements in predictive and clustering tools. However, noisy data can not only obscure the genes temporal patterns, but applying predictive and clustering tools on noisy data may yield inconsistent, and potentially incorrect, results. RESULTS To reduce the noise of short-term (< 48 h) time-series expression data, we relied on the three basic temporal patterns of gene expression: waves, impulses and sustained responses. We constrained the estimation of the true signals to these patterns by estimating the parameters of first and second-order Fourier functions and using the nonlinear least-squares trust-region optimization technique. Our approach lowered the noise in at least 85% of synthetic time-series expression data, significantly more than the spline method ([Formula: see text]). When the data contained a higher signal-to-noise ratio, our method allowed downstream network component analyses to calculate consistent and accurate predictions, particularly when the noise variance was high. Conversely, these tools led to erroneous results from untreated noisy data. Our results suggest that at least 5-7 time points are required to efficiently de-noise logarithmic scaled time-series expression data. Investing in sampling additional time points provides little benefit to clustering and prediction accuracy. CONCLUSIONS Our constrained Fourier de-noising method helps to cluster noisy gene expression and interpret dynamic gene networks more accurately. The benefit of noise reduction is large and can constitute the difference between a successful application and a failing one.
Collapse
Affiliation(s)
- Nadav Bar
- grid.5947.f0000 0001 1516 2393Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 4, Trondheim, NO-7491 Norway
| | - Bahareh Nikparvar
- grid.5947.f0000 0001 1516 2393Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 4, Trondheim, NO-7491 Norway
| | - Naresh Doni Jayavelu
- grid.34477.330000000122986657Division of Medical Genetics, Department of Medicine, University of Washington Seattle, Seattle, WA 98195-7720 USA
| | - Fabienne Krystin Roessler
- grid.5947.f0000 0001 1516 2393Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 4, Trondheim, NO-7491 Norway
| |
Collapse
|
8
|
Chen YA, Chen GW, Ku HH, Huang TC, Chang HY, Wei CI, Tsai YH, Chen TY. Differential Proteomic Analysis of Listeria monocytogenes during High-Pressure Processing. BIOLOGY 2022; 11:biology11081152. [PMID: 36009779 PMCID: PMC9405252 DOI: 10.3390/biology11081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under sub-lethal to lethal damage by different levels of HPP treatments were conducted by label-free quantitative proteomic analysis. HPP might promote translation initiation due to upregulation of most ribosomal subunits and initiation factors. However, protein synthesis was arrested according to the shortage of proteins responsible for elongation, termination and recycling. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods. Abstract High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under HPP at 200 and 400 MPa for 3 min were investigated by label-free quantitative proteomic analysis and functional enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes. HPP treatment at 400 MPa exhibited significant effects on proteins involved in translation, carbon, carbohydrate, lipid and energy metabolism, and peptidoglycan biosynthesis. HPP increased most ribosomal subunits and initiation factors, suggesting it might shift ribosomal biogenesis to translation initiation. However, protein synthesis was impaired by the shortage of proteins responsible for elongation, termination and recycling. HPP stimulated several ATP-dependent Clp proteases, and the global transcriptional regulator Spx, associating with activation of the stress-activated sigma factor Sigma B (σB) and the transcriptional activator positive regulatory factor A (PrfA) regulons. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Hao-Hsiang Ku
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Medical Sciences, Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Cheng-I Wei
- Department of Nutrition &Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5124); Fax: +886-2-2462-8750
| |
Collapse
|
9
|
Liu X, Zhang L, Pang X, Wu Y, Wu Y, Shu Q, Chen Q, Zhang X. Synergistic antibacterial effect and mechanism of high hydrostatic pressure and mannosylerythritol Lipid-A on Listeria monocytogenes. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
11
|
Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W. Effects of osmotic and high pressure stress on expression of virulence factors among Enterococcus spp. isolated from food of animal origin. Food Microbiol 2021; 102:103900. [PMID: 34809932 DOI: 10.1016/j.fm.2021.103900] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023]
Abstract
The aim of study was to determine the occurrence of virulence factors and virulence-related genes among enterococci isolated from food of animal origin and effects of osmotic and high pressure stress on expression of virulence-related genes. The number of 78 isolates were analyzed. None of them showed a strong ability to form biofilm, 38.5% (n = 30) had the slime production ability, 41% (n = 32) had gelatinase activity, γ -type hemolysis was observed in 55% of isolates, and α-type hemolysis in 45%. All of the isolates carried 1-13 virulence-related genes. The most common genes were gelE (85.9%), sprE (78.2%) and asa1 (75.6%). There were also observed changes in the expression of the gelE, esp, asa1 and cylL genes in response to various NaCl concentration and high pressure processing. Results obtained in this study indicate that enterococci isolated from food may act as reservoirs of virulence genes. The presence of virulence factors among enterococci, especially the ability to biofilm formation is important for food safety and the protection of public health. The results presented in our work demonstrate that stress that can occur during food preservation and food processing can induce the changes in the virulence-related genes expression.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726, Olsztyn, Poland.
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| |
Collapse
|
12
|
Chen GW, Chen YA, Chang HY, Huang TC, Chen TY. Combined impact of high-pressure processing and slightly acidic electrolysed water on Listeria monocytogenes proteomes. Food Res Int 2021; 147:110494. [PMID: 34399490 DOI: 10.1016/j.foodres.2021.110494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022]
Abstract
Slightly acidic electrolysed water (SAEW) and high-pressure processing (HPP) are well-established non-thermal preservation technologies. This study investigated the deactivation mechanisms of Listeria monocytogenes by label-free quantitative proteomics analysis. Samples were treated through HPP (300 MPa for 3 min), SAEW (20 ppm available chlorine concentration), and their combinations. The KEGG pathway analysis found SAEW + HPP induced differentially expressed proteins (DEPs) associated to biofunctions of ribosomes, secondary metabolite biosynthesis, microbial metabolism in diverse environments, carbon metabolism, and biosynthesis of amino acid and aminoacyl-transfer RNA. The results showed these non-thermal treatments were able to induce the shifting of ribosome biogenesis to initiate translation in L. monocytogenes. During protein translation, the initiation stage was upregulated. However, subsequent elongation, termination, and recycling of used ribosomes were retarded. Comparing various treatments, the combination of hurdles showed greater deactivation of L. monocytogenes than any single one. The approaches developed in this study provided crucial information for minimally processing in the food industries on the application of foodborne listeriosis prevention.
Collapse
Affiliation(s)
- Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yi-An Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
13
|
Nikparvar B, Subires A, Capellas M, Hernandez-Herrero M, Crauwels P, Riedel CU, Bar N. A Diffusion Model to Quantify Membrane Repair Process in Listeria monocytogenes Exposed to High Pressure Processing Based on Fluorescence Microscopy Data. Front Microbiol 2021; 12:598739. [PMID: 34054742 PMCID: PMC8155719 DOI: 10.3389/fmicb.2021.598739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
The effects of environmental stresses on microorganisms have been well-studied, and cellular responses to stresses such as heat, cold, acids, and salts have been extensively discussed. Although high pressure processing (HPP) is becoming more popular as a preservation method in the food industry, the characteristics of the cellular damage caused by high pressure are unclear, and the microbial response to this stress has not yet been well-explored. We exposed the pathogen Listeria monocytogenes to HPP (400 MPa, 8 min, 8°C) and found that the high pressure created plasma membrane pores. Using a common staining technique involving propidium iodide (PI) combined with high-frequency fluorescence microscopy, we monitored the rate of diffusion of PI molecules into hundreds of bacterial cells through these pores on days 0, 1, 2, 3, and 4 after pressurization. We also developed a mathematical dynamic model based on mass transfer and passive diffusion laws, calibrated using our microscopy experiments, to evaluate the response of bacteria to HPP. We found that the rate of diffusion of PI into the cells decreased over the 4 consecutive days after exposure to HPP, indicating repair of the pressure-created membrane pores. The model suggested a temporal change in the size of pores until closure. To the best of our knowledge, this is the first time that pressure-created membrane pores have been quantitatively described and shown to diminish with time. In addition, we found that the membrane repair rate in response to HPP was linear, and growth was temporarily arrested at the population level during the repair period. These results support the existence of a progressive repair process in some of the cells that take up PI, which can therefore be considered as being sub-lethally injured rather than dead. Hence, we showed that a subgroup of bacteria survived HPP and actively repaired their membrane pores.
Collapse
Affiliation(s)
- Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alicia Subires
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Marta Capellas
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Peter Crauwels
- Department of Biology, Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Christian U Riedel
- Department of Biology, Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Duru IC, Bucur FI, Andreevskaya M, Ylinen A, Crauwels P, Grigore-Gurgu L, Nikparvar B, Rode TM, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. The complete genome sequence of Listeria monocytogenes strain S2542 and expression of selected genes under high-pressure processing. BMC Res Notes 2021; 14:137. [PMID: 33858503 PMCID: PMC8048338 DOI: 10.1186/s13104-021-05555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The study aims to generate the whole genome sequence of L. monocytogenes strain S2542 and to compare it to the genomes of strains RO15 and ScottA. In addition, we aimed to compare gene expression profiles of L. monocytogenes strains S2542, ScottA and RO15 after high-pressure processing (HPP) using ddPCR. RESULTS The whole genome sequence of L. monocytogenes S2542 indicates that this strain belongs to serotype 4b, in contrast to the previously reported serotype 1/2a. Strain S2542 appears to be more susceptible to the treatment at 400 MPa compared to RO15 and ScottA strains. In contrast to RO15 and ScottA strains, viable cell counts of strain S2542 were below the limit of detection after HPP (400 MPa/8 min) when stored at 8 °C for 24 and 48 h. The transcriptional response of all three strains to HPP was not significantly different.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Margarita Andreevskaya
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Blueprint Genetics, Espoo, Finland
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone Mari Rode
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Nikparvar B, Andreevskaya M, Duru IC, Bucur FI, Grigore-Gurgu L, Borda D, Nicolau AI, Riedel CU, Auvinen P, Bar N. Analysis of temporal gene regulation of Listeria monocytogenes revealed distinct regulatory response modes after exposure to high pressure processing. BMC Genomics 2021; 22:266. [PMID: 33853520 PMCID: PMC8045354 DOI: 10.1186/s12864-021-07461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathogen Listeria (L.) monocytogenes is known to survive heat, cold, high pressure, and other extreme conditions. Although the response of this pathogen to pH, osmotic, temperature, and oxidative stress has been studied extensively, its reaction to the stress produced by high pressure processing HPP (which is a preservation method in the food industry), and the activated gene regulatory network (GRN) in response to this stress is still largely unknown. RESULTS We used RNA sequencing transcriptome data of L. monocytogenes (ScottA) treated at 400 MPa and 8∘C, for 8 min and combined it with current information in the literature to create a transcriptional regulation database, depicting the relationship between transcription factors (TFs) and their target genes (TGs) in L. monocytogenes. We then applied network component analysis (NCA), a matrix decomposition method, to reconstruct the activities of the TFs over time. According to our findings, L. monocytogenes responded to the stress applied during HPP by three statistically different gene regulation modes: survival mode during the first 10 min post-treatment, repair mode during 1 h post-treatment, and re-growth mode beyond 6 h after HPP. We identified the TFs and their TGs that were responsible for each of the modes. We developed a plausible model that could explain the regulatory mechanism that L. monocytogenes activated through the well-studied CIRCE operon via the regulator HrcA during the survival mode. CONCLUSIONS Our findings suggest that the timely activation of TFs associated with an immediate stress response, followed by the expression of genes for repair purposes, and then re-growth and metabolism, could be a strategy of L. monocytogenes to survive and recover extreme HPP conditions. We believe that our results give a better understanding of L. monocytogenes behavior after exposure to high pressure that may lead to the design of a specific knock-out process to target the genes or mechanisms. The results can help the food industry select appropriate HPP conditions to prevent L. monocytogenes recovery during food storage.
Collapse
Affiliation(s)
- Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ilhan C Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Florentina I Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca I Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|