1
|
Saito T, Wang S, Ohkawa K, Ohara H, Kondo S. Deep learning with a small dataset predicts chromatin remodelling contribution to winter dormancy of apple axillary buds. TREE PHYSIOLOGY 2024; 44:tpae072. [PMID: 38905284 DOI: 10.1093/treephys/tpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognize prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.
Collapse
Affiliation(s)
- Takanori Saito
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Shanshan Wang
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Katsuya Ohkawa
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Hitoshi Ohara
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha 277-0882, Japan
| | - Satoru Kondo
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| |
Collapse
|
2
|
Wang Y, Zhang K, Chen D, Liu K, Chen W, He F, Tong Z, Luo Q. Co-expression network analysis and identification of core genes in the interaction between wheat and Puccinia striiformis f. sp. tritici. Arch Microbiol 2024; 206:241. [PMID: 38698267 DOI: 10.1007/s00203-024-03925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 05/05/2024]
Abstract
The epidemic of stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), would reduce wheat (Triticum aestivum) yields seriously. Traditional experimental methods are difficult to discover the interaction between wheat and Pst. Multi-omics data analysis provides a new idea for efficiently mining the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for differentially expressed genes (DEGs) between low susceptibility and high susceptibility samples, and carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-expression network, identified the core genes and interacted gene pairs from the conservative modules. Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-expression network and drew the wheat NLR gene co-expression network. In order to provide accessible information for related researchers, we built a web-based visualization platform to display the data. Based on the analysis, we found that resistance-related genes such as TaPR1, TaWRKY18 and HSP70 were highly expressed in the network. They were likely to be involved in the biological processes of Pst infecting wheat. This study can assist scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst interaction patterns.
Collapse
Affiliation(s)
- Yibo Wang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, National Tobacco Genetic Engineering Research Centre, Kunming, 650021, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Zhang
- Yunnan Tobacco Quality Inspection & Supervision Station, Kunming, 650106, People's Republic of China
| | - Dan Chen
- Yunnan Tobacco Quality Inspection & Supervision Station, Kunming, 650106, People's Republic of China
| | - Kai Liu
- Yunnan Tobacco Quality Inspection & Supervision Station, Kunming, 650106, People's Republic of China
| | - Wei Chen
- Yunnan Tobacco Quality Inspection & Supervision Station, Kunming, 650106, People's Republic of China
| | - Fei He
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China
| | - Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, National Tobacco Genetic Engineering Research Centre, Kunming, 650021, China.
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Lu Y, Hu L, Yu L, Liang S, Qu H, Wang M, Hao Z, Yang L, Shi J, Chen J. Physiological and transcriptomic analysis revealed that the accumulation of reactive oxygen species caused the low temperature sensitivity of Liriodendron × sinoamericanum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112020. [PMID: 38311251 DOI: 10.1016/j.plantsci.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Liriodendron × sinoamericanum is widely cultivated in southern China as an excellent wood and garden ornamental trees. However, its intolerance to low temperature limits its application to high latitudes. Understanding the molecular mechanism of low temperature sensitivity of Liriodendron × sinoamericanum is very important for its further application. In this study, combined with physiological and transcriptomic analysis, it was revealed that low temperature stress can lead to water loss and decreased photosynthetic capacity of Liriodendron × sinoamericanum leaves. The accelerated accumulation of reactive oxygen species (ROS) caused by the imbalance of cell REDOX homeostasis is one of the important reasons for the low temperature sensitivity. Further analysis showed that several transcription factors could be involved in regulating the synthesis and degradation of ROS, among which LsNAC72 and LsNAC73a could regulate the accumulation of O2- and H2O2 in leaves by affecting the expression level of LsAPX, LsSOD, LsPAO, and LsPOD.
Collapse
Affiliation(s)
- Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Lingfeng Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Long Yu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Shuang Liang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Haoxian Qu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Mingqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in the Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
5
|
Peng T, Guo C, Yang J, Wan X, Wang W, Zhang J, Bao M, Zhang J. Transcriptome analysis revealed molecular basis of cold response in Prunus mume. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:34. [PMID: 37312744 PMCID: PMC10248647 DOI: 10.1007/s11032-023-01376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 06/15/2023]
Abstract
Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional woody flower and fruit tree restrictedly cultivated in northern area due to its inability to survive harsh winters and early springs. In the current study, RNA-seq and physiological assay were used to study the cold response of P. mume 'Xuemei'. A total of 4705 genes were identified as differentially expressed genes (DEGs) in the 21 pairwise comparisons among seven time points under 0 °C cold treatment, and 3678 of them showed differential levels compared with control at normal temperature. The gene expression profiles indicated that the number of upregulated genes increased with prolongation of treatment time throughout the whole 48 h. Hierarchical clustering suggested three obvious phases of the gene expression profiles. Gene ontology (GO) analysis of the 4705 DEGs resulted in 102 significantly enriched GO items in which the transcription activity was dominant. 225 DEGs were predicted to encode transcription factor (TF) genes. Some important TFs (ERF, CBF, WRKY, NAC, MYB, bHLH) were strongly induced during the whole cold treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that plant signal transduction pathways such as plant hormone and calcium (Ca2+) were notable. Metabolic pathways such as sugar metabolism, especially RFOs (raffinose family oligosaccharides) were activated, which was accompanied by the accumulation of soluble sugars. SOD and POD enzyme activities coupled with reactive oxygen species (ROS)-related gene expression profile implied a gradually induced ROS scavenging system under cold treatment. These results might shed light on the sensitivity to cold stress in Japanese apricot and provide new insights into hardiness studies in P. mume and its related species. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01376-2.
Collapse
Affiliation(s)
- Ting Peng
- College of Agriculture, Guizhou University, Guiyang, 550000 People’s Republic of China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Cong Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430070 People’s Republic of China
| | - Jie Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning, 437100 People’s Republic of China
| | - Xueli Wan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Wenwu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Junwei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
6
|
Liu M, Liu G, Wang G, Song S, Zhang P, Liu X, Li Y, Mao X, Bao Z, Ma F. Identification and functional characterization of AcMYB113 in anthocyanin metabolism of Aesculus chinensis Bunge var. chinensis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107709. [PMID: 37094493 DOI: 10.1016/j.plaphy.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Anthocyanins can be induced by environmental factors such as low-temperature and play essential roles in plant color formation. In this study, leaves of Aesculus chinensis Bunge var. chinensis with different colors under natural low-temperature in autumn were collected and grouped into green leaf (GL) and red leaf (RL). To reveal the underlying mechanism of color formation in RL, a combined analysis of the metabolome and transcriptome was conducted with GL and RL. Metabolic analyses revealed that total anthocyanin content and primary anthocyanin components were increased RL relative to GL and cyanidin was the main anthocyanin compound in RL. Transcriptome analysis provided a total of 18720 differentially expressed genes (DEGs), of which 9150 DEGs were upregulated and 9570 DEGs were downregulated in RL relative to GL. KEGG analysis showed that DEGs were mainly enriched in flavonoid biosynthesis, phenylalanine metabolism, and phenylpropanoid biosynthesis. Furthermore, co-expression network analysis indicated that 56 AcMYB transcription factors were highly expressed in RL compared with GL, among which AcMYB113 (an R2R3-MYB TF) had a strong correlation with anthocyanins. Overexpression of AcMYB113 in apple resulted in dark-purple transgenic calluses. In addition, the transient expression experiment showed that AcMYB113 enhanced anthocyanin synthesis by activating pathways of anthocyanin biosynthesis in leaves of Aesculus chinensis Bunge var. chinensis. Taken together, our findings reveal new insights into the molecular mechanism of anthocyanin accumulation in RL and provide candidate genes for the breeding of anthocyanin-rich cultivars.
Collapse
Affiliation(s)
- Minmin Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Genzhong Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Guodong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shiyan Song
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiaofang Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuling Li
- Institute of ornamental plants, Shandong Academy of Forestry, Jinan, Shandong, China
| | - Xiuhong Mao
- Institute of ornamental plants, Shandong Academy of Forestry, Jinan, Shandong, China.
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China.
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China.
| |
Collapse
|
7
|
Li L, Han C, Yang J, Tian Z, Jiang R, Yang F, Jiao K, Qi M, Liu L, Zhang B, Niu J, Jiang Y, Li Y, Yin J. Comprehensive Transcriptome Analysis of Responses during Cold Stress in Wheat (Triticum aestivum L.). Genes (Basel) 2023; 14:genes14040844. [PMID: 37107602 PMCID: PMC10137996 DOI: 10.3390/genes14040844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Wheat production is often impacted by pre-winter freezing damage and cold spells in later spring. To study the influences of cold stress on wheat seedlings, unstressed Jing 841 was sampled once at the seedling stage, followed by 4 °C stress treatment for 30 days and once every 10 days. A total of 12,926 differentially expressed genes (DEGs) were identified from the transcriptome. K-means cluster analysis found a group of genes related to the glutamate metabolism pathway, and many genes belonging to the bHLH, MYB, NAC, WRKY, and ERF transcription factor families were highly expressed. Starch and sucrose metabolism, glutathione metabolism, and plant hormone signal transduction pathways were found. Weighted Gene Co-Expression Network Analysis (WGCNA) identified several key genes involved in the development of seedlings under cold stress. The cluster tree diagram showed seven different modules marked with different colors. The blue module had the highest correlation coefficient for the samples treated with cold stress for 30 days, and most genes in this module were rich in glutathione metabolism (ko00480). A total of eight DEGs were validated using quantitative real-time PCR. Overall, this study provides new insights into the physiological metabolic pathways and gene changes in a cold stress transcriptome, and it has a potential significance for improving freezing tolerance in wheat.
Collapse
|
8
|
Tang M, Liu L, Hu X, Zheng H, Wang Z, Liu Y, Zhu Q, Cui L, Xie S. Genome-wide characterization of R2R3-MYB gene family in Santalum album and their expression analysis under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1142562. [PMID: 36938022 PMCID: PMC10017448 DOI: 10.3389/fpls.2023.1142562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Sandalwood (Santalum album) is a high-value multifunctional tree species that is rich in aromatic substances and is used in medicine and global cosmetics. Due to the scarcity of land resources in tropical and subtropical regions, land in temperate regions is a potential resource for the development of S. album plantations in order to meet the needs of S. album production and medicine. The R2R3-MYB transcription factor family is one of the largest in plants and plays an important role in the response to various abiotic stresses. However, the R2R3-MYB gene family of S. album has not been studied. In this study, 144 R2R3-MYB genes were successfully identified in the assembly genome sequence, and their characteristics and expression patterns were investigated under various durations of low temperature stress. According to the findings, 31 of the 114 R2R3-MYB genes showed significant differences in expression after cold treatment. Combining transcriptome and weighted gene co-expression network analysis (WGCNA) revealed three key candidate genes (SaMYB098, SaMYB015, and SaMYB068) to be significantly involved in the regulation of cold resistance in S. album. The structural characteristics, evolution, and expression pattern of the R2R3-MYB gene in S. album were systematically examined at the whole genome level for the first time in this study. It will provide important information for future research into the function of the R2R3-MYB genes and the mechanism of cold stress response in S. album.
Collapse
Affiliation(s)
- Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Le Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Xu Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Haoyue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Zukai Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Qing Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shangqian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| |
Collapse
|
9
|
Soorni A, Karimi M, Al Sharif B, Habibi K. Genome-wide screening and characterization of long noncoding RNAs involved in flowering/bolting of Lactuca sativa. BMC PLANT BIOLOGY 2023; 23:3. [PMID: 36588159 PMCID: PMC9806901 DOI: 10.1186/s12870-022-04031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) is considered the most important vegetable in the leafy vegetable group. However, bolting affects quality, gives it a bitter taste, and as a result makes it inedible. Bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although bolting/flowering responsive genes have been identified in most sensitive and non-sensitive species, non-coding RNA molecules like long non-coding RNAs (lncRNAs) have not been investigated in lettuce. Hence, in this study, potential long non-coding RNAs that regulate flowering /bolting were investigated in two lettuce strains S24 (resistant strain) and S39 (susceptible strain) in different flowering times to better understand the regulation of lettuce bolting mechanism. For this purpose, we used two RNA-seq datasets to discover the lncRNA transcriptome profile during the transition from vegetative to reproductive phase. RESULTS For identifying unannotated transcripts in these datasets, a 7-step pipeline was employed to filter out these transcripts and terminate with 293 novel lncRNAs predicted by PLncPRO and CREMA. These transcripts were then utilized to predict cis and trans flowering-associated targets and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Computational predictions of target gene function showed the involvement of putative flowering-related genes and enrichment of the floral regulators FLC, CO, FT, and SOC1 in both datasets. Finally, 17 and 18 lncRNAs were proposed as competing endogenous target mimics (eTMs) for novel and known lncRNA miRNAs, respectively. CONCLUSION Overall, this study provides new insights into lncRNAs that control the flowering time of plants known for bolting, such as lettuce, and opens new windows for further study.
Collapse
Affiliation(s)
- Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | | - Batoul Al Sharif
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Khashayar Habibi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
10
|
Li J, Gao X, Chen X, Fan Z, Zhang Y, Wang Z, Shi J, Wang C, Zhang H, Wang L, Zhao Q. Comparative transcriptome responses of leaf and root tissues to salt stress in wheat strains with different salinity tolerances. Front Genet 2023; 14:1015599. [PMID: 36911411 PMCID: PMC9996022 DOI: 10.3389/fgene.2023.1015599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Salinity stress is a major adverse environmental factor that can limit crop yield and restrict normal land use. The selection of salt-tolerant strains and elucidation of the underlying mechanisms by plant breeding scientists are urgently needed to increase agricultural production in arid and semi-arid regions. Results: In this study, we selected the salt-tolerant wheat (Triticum aestivum) strain ST9644 as a model to study differences in expression patterns between salt-tolerant and salt-sensitive strains. High-throughput RNA sequencing resulted in more than 359.10 Gb of clean data from 54 samples, with an average of 6.65 Gb per sample. Compared to the IWGSC reference annotation, we identified 50,096 new genes, 32,923 of which have functional annotations. Comparisons of abundances between salt-tolerant and salt-sensitive strains revealed 3,755, 5,504, and 4,344 genes that were differentially expressed at 0, 6, and 24 h, respectively, in root tissue under salt stress. KEGG pathway analysis of these genes showed that they were enriched for phenylpropanoid biosynthesis (ko00940), cysteine and methionine metabolism (ko00270), and glutathione metabolism (ko00480). We also applied weighted gene co-expression network analysis (WGCNA) analysis to determine the time course of root tissue response to salt stress and found that the acute response lasts >6 h and ends before 12 h. We also identified key alternative splicing factors showing different splicing patterns in salt-sensitive and salt-tolerant strains; however, only few of them were differentially expressed in the two groups. Conclusion: Our results offer a better understanding of wheat salt tolerance and improve wheat breeding.
Collapse
Affiliation(s)
- Jianfeng Li
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Xin Gao
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Xunji Chen
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Zheru Fan
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Yueqiang Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Zhong Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Jia Shi
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Chunsheng Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Hongzhi Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Lihong Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Qi Zhao
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| |
Collapse
|
11
|
Zhang X, Yang H, Li M, Bai Y, Chen C, Guo D, Guo C, Shu Y. A Pan-Transcriptome Analysis Indicates Efficient Downregulation of the FIB Genes Plays a Critical Role in the Response of Alfalfa to Cold Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3148. [PMID: 36432878 PMCID: PMC9692835 DOI: 10.3390/plants11223148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Alfalfa (Medicago sativa L.) is a perennial forage legume that is widely distributed throughout the world, and cold stress is an important environmental factor limiting the growth and production of alfalfa in cold regions. However, little is known of the molecular mechanisms regarding cold tolerance in alfalfa. Here, we conducted physiological metabolism assays and pan-transcriptome sequencing on eight cultivars of alfalfa under cold stress conditions. The results of the RNA-seq analysis showed that the genes are "oxidoreductase activity" and "transcription regulator activity", suggesting that genes with such functions are more likely to play important roles in the response to cold stress by alfalfa. In addition, to identify specific gene modules and hub genes in response to alfalfa cold stress, we applied weighted gene co-expression network (WGCNA) analyses to the RNA-seq data. Our results indicate that the modules of genes that focus on the ATPase complex, ribosome biogenesis, are more likely to be involved in the alfalfa response to cold stress. It is important to note that we identified two fibronectin (FIB) genes as hub genes in alfalfa in response to cold stress and that they negatively regulate alfalfa response to chilling stress, and it is possible that dormant alfalfa is more effective at down-regulating FIB expression and therefore more resistant to cold stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changhong Guo
- Correspondence: (C.G.); (Y.S.); Tel.: +86-451-8806-0576 (Y.S. & C.G.)
| | - Yongjun Shu
- Correspondence: (C.G.); (Y.S.); Tel.: +86-451-8806-0576 (Y.S. & C.G.)
| |
Collapse
|
12
|
Liu Y, Cai Y, Li Y, Zhang X, Shi N, Zhao J, Yang H. Dynamic changes in the transcriptome landscape of Arabidopsis thaliana in response to cold stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983460. [PMID: 36110360 PMCID: PMC9468617 DOI: 10.3389/fpls.2022.983460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Plants must reprogram gene expression to adapt constantly changing environmental temperatures. With the increased occurrence of extremely low temperatures, the negative effects on plants, especially on growth and development, from cold stress are becoming more and more serious. In this research, strand-specific RNA sequencing (ssRNA-seq) was used to explore the dynamic changes in the transcriptome landscape of Arabidopsis thaliana exposed to cold temperatures (4°C) at different times. In total, 7,623 differentially expressed genes (DEGs) exhibited dynamic temporal changes during the cold treatments. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were enriched in cold response, secondary metabolic processes, photosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction pathways. Meanwhile, long non-coding RNAs (lncRNAs) were identified after the assembly of the transcripts, from which 247 differentially expressed lncRNAs (DElncRNAs) and their potential target genes were predicted. 3,621 differentially alternatively spliced (DAS) genes related to RNA splicing and spliceosome were identified, indicating enhanced transcriptome complexity due to the alternative splicing (AS) in the cold. In addition, 739 cold-regulated transcription factors (TFs) belonging to 52 gene families were identified as well. This research analyzed the dynamic changes of the transcriptome landscape in response to cold stress, which reveals more complete transcriptional patterns during short- and long-term cold treatment and provides new insights into functional studies of that how plants are affected by cold stress.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- RNA Institute, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
He L, Han Z, Zang Y, Dai F, Chen J, Jin S, Huang C, Cheng Y, Zhang J, Xu B, Qi G, Cao Y, Yan S, Xuan L, Zhang T, Si Z, Hu Y. Advanced genes expression pattern greatly contributes to divergence in Verticillium wilt resistance between Gossypium barbadense and Gossupium hirsutum. FRONTIERS IN PLANT SCIENCE 2022; 13:979585. [PMID: 35979082 PMCID: PMC9376480 DOI: 10.3389/fpls.2022.979585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Verticillium, representing one of the world's major pathogens, causes Verticillium wilt in important woody species, ornamentals, agricultural, etc., consequently resulting in a serious decline in production and quality, especially in cotton. Gossupium hirutum and Gossypium barbadense are two kinds of widely cultivated cotton species that suffer from Verticillium wilt, while G. barbadense has much higher resistance toward it than G. hirsutum. However, the molecular mechanism regarding their divergence in Verticillium wilt resistance remains largely unknown. In the current study, G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 were compared at 0, 12, 24, 48, 72, 96, 120, and 144 h post-inoculation (hpi) utilizing high throughput RNA-Sequencing. As a result, a total of 3,549 and 4,725 differentially expressed genes (DEGs) were identified, respectively. In particular, the resistant type Hai7124 displayed an earlier and faster detection and signaling response to the Verticillium dahliae infection and demonstrated higher expression levels of defense-related genes over TM-1 with respect to transcription factors, plant hormone signal transduction, plant-pathogen interaction, and nucleotide-binding leucine-rich repeat (NLR) genes. This study provides new insights into the molecular mechanisms of divergence in Verticillium wilt resistance between G. barbadense and G. hirsutum and important candidate genes for breeding V. dahliae resistant cotton cultivars.
Collapse
Affiliation(s)
- Lu He
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihao Zang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shangkun Jin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chujun Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Biyu Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoan Qi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiwen Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Photosynthesis Mediated by RBOH-Dependent Signaling Is Essential for Cold Stress Memory. Antioxidants (Basel) 2022; 11:antiox11050969. [PMID: 35624833 PMCID: PMC9137663 DOI: 10.3390/antiox11050969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cold tolerance is improved by cold stress acclimation (CS-ACC), and the cold tolerance level is ‘remembered’ by plants. However, the underlying signaling mechanisms remain largely unknown. Here, the CS memory mechanism was studied by bioinformation, plant physiological and photosynthetic parameters, and gene expression. We found that CS-ACC induced the acquisition of CS memory and enhanced the maintenance of acquired cold tolerance (MACT) in cucumber seedlings. The H2O2 content and NADPH oxidase activity encoded by CsRBOH was maintained at higher levels during recovery after CS-ACC and inhibition of RBOH-dependent signaling after CS-ACC resulted in a decrease in the H2O2 content, NADPH oxidase activity, and MACT. CsRBOH2, 3, 4, and 5 showed high expression during recovery after CS-ACC. Many BZR-binding sites were identified in memory-responsive CsRBOHs promoters, and CsBZR1 and 3 showed high expression during recovery after CS-ACC. Inhibition of RBOH-dependent signaling or brassinosteroids affected the maintenance of the expression of these memory-responsive CsRBOHs and CsBZRs. The photosynthetic efficiency (PE) decreased but then increased with the prolonged recovery after CS-ACC, and was higher than the control at 48 h of recovery; however, inhibition of RBOH-dependent signaling resulted in a lower PE. Further etiolated seedlings experiments showed that a photosynthetic capacity was necessary for CS memory. Therefore, photosynthesis mediated by RBOH-dependent signaling is essential for CS memory.
Collapse
|
15
|
Wang P, Liu D, Yang FH, Ge H, Zhao X, Chen HG, Du T. Identification of key gene networks controlling vernalization development characteristics of Isatis indigotica by full-length transcriptomes and gene expression profiles. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2679-2693. [PMID: 34975240 PMCID: PMC8703213 DOI: 10.1007/s12298-021-01110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Isatis indigotica Fort., as a common Chinese medicinal raw material, will lose its medicinal value if it blooms early, so it is highly valuable to clarify the induction mechanism of the vernalization of I. indigotica at low temperature. In this study, the concentrations of soluble sugar, proline, glutathione and zeatin in two germplasms of I. indigotica with different degrees of low temperature tolerance (Y1 and Y2) were determined at 10 days, 20 days and 30 days of low-temperature treatment, and the full-length transcriptome of 24 samples was sequenced by Nanopore sequencing with Oxford Nanopore Technologies (ONT). After that, the data of transcripts involved in the vernalization of I. indigotica at low temperature were obtained, and these transcripts were identified using weighted gene co-expression network analysis (WGCNA). The results revealed the massive accumulation of soluble sugar and proline in Y1 and Y2 after low temperature induction. A total of 18,385 new transcripts, 6168 transcription factors and 470 lncRNAs were obtained. Differential expression analysis showed that gibberellin, flavonoids, fatty acids and some processes related to low temperature response were significantly enriched. Eight key transcripts were identified by WGCNA, among which ONT.14640.1, ONT.9119.1, ONT.13080.2 and ONT.16007.1 encodes a flavonoid transporter, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), growth factor gene and L-aspartate oxidase in plants, respectively. It indicated that secondary metabolites such as hormones and flavonoids play an important role in the vernalization of I. indigotica. qRT-PCR proved the reliability of transcriptome results. These results provide important insights on the low-temperature vernalization of I. indigotica, and provide a research basis for analyzing the vernalization mechanism of I. indigotica. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01110-2.
Collapse
Affiliation(s)
- Pan Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Dong Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Fu-Hong Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
- Pingliang Academy of Agricultural Sciences, Pingliang, 744000 China
| | - Hui Ge
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Xin Zhao
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Hong-Gang Chen
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Tao Du
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| |
Collapse
|