1
|
Limonta P, Marchesi S, Giannitti G, Casati L, Fontana F. The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers. Cancer Metastasis Rev 2024; 43:1611-1627. [PMID: 39316264 PMCID: PMC11554767 DOI: 10.1007/s10555-024-10210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Sara Marchesi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gaia Giannitti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
2
|
Qin J, Yuan H, An X, Liu R, Meng B. Macrophage-derived exosomes exacerbate postoperative cognitive dysfunction in mice through inflammation. J Neuroimmunol 2024; 394:578403. [PMID: 39047317 DOI: 10.1016/j.jneuroim.2024.578403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the impact of two-hit inflammation on postoperative cognitive dysfunction (POCD) in mice and the role of macrophage-derived exosomes in regulating this process. Mice models were used to mimic the state of two-hit inflammation, and cognitive function was assessed through behavioral experiments. Proinflammatory cytokine expression levels and blood-brain barrier (BBB)-associated functional proteins were measured using ELISA and Western blot, respectively. An in vitro macrophage inflammation two-hit model was created, and the role of exosomes was examined using the previously mentioned assays. Additionally, exosomes were injected into mice to further understand their impact in the two-hit inflammation model. Mice exposed to two-hit inflammation experienced impaired cognitive function, increased BBB permeability, and elevated levels of proinflammatory cytokines. Macrophages subjected to two-hit inflammation released higher levels of proinflammatory cytokines compared to the control group and other treatment groups. Treatment with an exosome inhibitor GW4869 effectively reduced the expression levels of proinflammatory cytokines in macrophages exposed to two-hit inflammation. Moreover, injection of macrophage-released exosomes into healthy mice induced inflammation, hippocampal damage, and cognitive disorders, which were mitigated by treatment with GW4869. In mice with two-hit inflammation, macrophage-released exosomes worsened cognitive disorders by promoting inflammation in the peripheral blood and central nervous system. However, treatment with GW4869 protected cognitive function by suppressing exosome release. These findings highlight the importance of two-hit inflammation in POCD and emphasize the critical role of exosomes as regulatory factors. This research provides valuable insights into the pathogenesis of POCD and potential intervention strategies.
Collapse
Affiliation(s)
- Jinling Qin
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Hui Yuan
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xiujun An
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Rongjun Liu
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Bo Meng
- Department of Anesthesiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Memarpour S, Raoufinia R, Saburi E, Razavi MS, Attaran M, Fakoor F, Rahimi HR. The future of diabetic wound healing: unveiling the potential of mesenchymal stem cell and exosomes therapy. AMERICAN JOURNAL OF STEM CELLS 2024; 13:87-100. [PMID: 38765803 PMCID: PMC11101987 DOI: 10.62347/ovbk9820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/22/2024]
Abstract
Diabetes mellitus (DM) is a significant public health problem and is one of the most challenging medical conditions worldwide. It is the severe complications that make this disease more intricate. A diabetic wound is one of these complications. Patients with diabetes are at higher risk of developing diabetic foot ulcers (DFU). Due to the ineffectiveness of Conventional treatments, growth in limb amputation, morbidity, and mortality have been recognized, which indicates the need for additional treatment. Mesenchymal stem cells (MSCs) can significantly improve wound healing. However, there are some risks related to stem cell therapy. Exosome therapy is a new treatment option for diabetic wounds that has shown promising results. However, an even more advanced form called cell-free therapy using exosomes has emerged. This upgraded version of stem cell therapy offers improved efficacy and eliminates the risk of cancer progression. Exosome therapy promotes wound healing from multiple angles, unlike traditional methods that primarily rely on the body's self-healing ability and only provide wound protection. Therefore, exosome therapy has the potential to replace conventional treatments effectively. However, further research is necessary to distinguish the optimal type of stem cells for therapy, ensure their safety, establish appropriate dosing, and identify the best management trail. The present study focused on the current literature on diabetic wound ulcers, their treatment, and mesenchymal stem cell and exosome therapy potential in DFU.
Collapse
Affiliation(s)
- Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical SciencesMashhad, Iran
| | - Ramin Raoufinia
- Medical Genetics Research Center, Mashhad University of Medical SciencesMashhad, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical SciencesNeyshabur, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical SciencesMashhad, Iran
| | - Masoud Sharifian Razavi
- Department of Internal Medicine, Ghaem Hospital, Mashhad University of Medical SciencesMashhad, Iran
| | - Matin Attaran
- Department of Obstetrics and Gynecology, Mashhad University of Medical SciencesMashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical SciencesTehran, Iran
| | - Hamid Reza Rahimi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical SciencesMashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| |
Collapse
|
5
|
Cheng X, Henick BS, Cheng K. Anticancer Therapy Targeting Cancer-Derived Extracellular Vesicles. ACS NANO 2024; 18:6748-6765. [PMID: 38393984 DOI: 10.1021/acsnano.3c06462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Extracellular vesicles (EVs) are natural lipid nanoparticles secreted by most types of cells. In malignant cancer, EVs derived from cancer cells contribute to its progression and metastasis by facilitating tumor growth and invasion, interfering with anticancer immunity, and establishing premetastasis niches in distant organs. In recent years, multiple strategies targeting cancer-derived EVs have been proposed to improve cancer patient outcomes, including inhibiting EV generation, disrupting EVs during trafficking, and blocking EV uptake by recipient cells. Developments in EV engineering also show promising results in harnessing cancer-derived EVs as anticancer agents. Here, we summarize the current understanding of the origin and functions of cancer-derived EVs and review the recent progress in anticancer therapy targeting these EVs.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical EngineeringNorth Carolina State University, Raleigh, North Carolina 27606, United States
| | - Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Wang H, Jayasankar N, Thamaraikani T, Viktor P, Mohany M, Al-Rejaie SS, Alammar HK, Anad E, Alhili F, Hussein SF, Amin AH, Lakshmaiya N, Ahsan M, Bahrami A, Akhavan-Sigari R. Quercetin modulates expression of serum exosomal long noncoding RNA NEAT1 to regulate the miR-129-5p/BDNF axis and attenuate cognitive impairment in diabetic mice. Life Sci 2024; 340:122449. [PMID: 38253310 DOI: 10.1016/j.lfs.2024.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Cognitive impairment poses a considerable health challenge in the context of type 2 diabetes mellitus (T2DM), emphasizing the need for effective interventions. This study delves into the therapeutic efficacy of quercetin, a natural flavonoid, in mitigating cognitive impairment induced by T2DM in murine models. MATERIALS AND METHODS Serum exosome samples were obtained from both T2DM-related and healthy mice for transcriptome sequencing, enabling the identification of differentially expressed mRNAs and long noncoding RNAs (lncRNAs). Subsequent experiments were conducted to ascertain the binding affinity between mmu-miR-129-5p, NEAT1 and BDNF. The structural characteristics and dimensions of isolated exosomes were scrutinized, and the expression levels of exosome-associated proteins were quantified. Primary mouse hippocampal neurons were cultured for in vitro validation, assessing the expression of pertinent genes as well as neuronal vitality, proliferation, and apoptosis capabilities. For in vivo validation, a T2DM mouse model was established, and quercetin treatment was administered. Changes in various parameters, cognitive ability, and the expression of insulin-related proteins, along with pivotal signaling pathways, were monitored. KEY FINDINGS Analysis of serum exosomes from T2DM mice revealed dysregulation of NEAT1, mmu-miR-129-5p, and BDNF. In vitro investigations demonstrated that NEAT1 upregulated BDNF expression by inhibiting mmu-miR-129-5p. Overexpression of mmu-miR-129-5p or silencing NEAT1 resulted in the downregulation of insulin-related protein expression, enhanced apoptosis, and suppressed neuronal proliferation. In vivo studies validated that quercetin treatment significantly ameliorated T2DM-related cognitive impairment in mice. SIGNIFICANCE These findings suggest that quercetin holds promise in inhibiting hippocampal neuron apoptosis and improving T2DM-related cognitive impairment by modulating the NEAT1/miR-129-5p/BDNF pathway within serum exosomes.
Collapse
Affiliation(s)
- Hui Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu 322000, China
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező, H-1084 Budapest, Hungary
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Enaam Anad
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | - Sinan F Hussein
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland.
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
7
|
Testa A, Quaglia F, Naranjo NM, Verrillo CE, Shields CD, Lin S, Pickles MW, Hamza DF, Von Schalscha T, Cheresh DA, Leiby B, Liu Q, Ding J, Kelly WK, Hooper DC, Corey E, Plow EF, Altieri DC, Languino LR. Targeting the αVβ3/NgR2 pathway in neuroendocrine prostate cancer. Matrix Biol 2023; 124:49-62. [PMID: 37956856 PMCID: PMC10823877 DOI: 10.1016/j.matbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVβ3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVβ3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo. Our group has recently identified a novel αVβ3 integrin binding partner, NgR2, responsible for regulating the expression of neuroendocrine markers and for inducing neuroendocrine differentiation in prostate cancer cells. Through in vitro functional assays, we here demonstrate that NgR2 is crucial in promoting cell adhesion to αVβ3 ligands. Moreover, we describe for the first time co-fractionation of αVβ3 integrin and NgR2 in small extracellular vesicles derived from metastatic prostate cancer patients' plasma. These prostate cancer patient-derived small extracellular vesicles have a functional impact on human monocytes, increasing their adhesion to fibronectin. The monocytes incubated with small extracellular vesicles do not show an associated change in conventional polarization marker expression and appear to be in an early stage that may be defined as "adhesion competent". Overall, these findings allow us to better understand integrin-directed signaling and cell-cell communication during cancer progression. Furthermore, our results pave the way for new diagnostic and therapeutic perspectives for patients affected by neuroendocrine prostate cancer.
Collapse
Affiliation(s)
- Anna Testa
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nicole M Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cecilia E Verrillo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher D Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Stephen Lin
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Maxwell W Pickles
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Drini F Hamza
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tami Von Schalscha
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, United States
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, United States
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Jianyi Ding
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - D Craig Hooper
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Edward F Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Kashani SA, Navabi R, Amini A, Hajinasrollah M, Jenab Y, Rabbani S, Nazari A, Pakzad M, Moazenchi M, Atrabi MJ, Samsonchi Z, Hezavehei M, Hosseini-Beheshti E, Shekari F, Hajizadeh-Saffar E, Baharvand H. Immunomodulatory potential of human clonal mesenchymal stem cells and their extracellular vesicle subpopulations in an inflammatory-mediated diabetic Rhesus monkey model. Life Sci 2023; 329:121950. [PMID: 37473804 DOI: 10.1016/j.lfs.2023.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
AIMS This study aimed to investigate the therapeutic potential of a homogenous clonal population of mesenchymal stem cells (cMSC) and their extracellular vesicles (cMSC-EV) subpopulations on isolated rat islets in vitro and in inflammatory-mediated type 1 diabetes (T1D) non-human primate models. MAIN METHODS EV subpopulations were isolated from human bone marrow-derived cMSC supernatant by low- and high-speed ultracentrifuge (EV-20K and EV-U110K) and sucrose density gradient (EV-S110K). The EVs were characterized generally and for the level of albumin, acetylcholinesterase (AChE) activity, co-isolate apoptotic markers, and expression of CD63+/annexin V+. Rat islet-derived single cells (iSCs) proliferation was measured using a Ki-67 proliferation assay. Diabetes was induced by multiple low-dose administrations of streptozotocin in rhesus monkeys. The diabetic monkeys were divided into three groups: the cMSC group, received two injections of 1.5 × 106 cMSC/kg body weight; the EV group received two injections of EVs isolated from 1.5 × 106 cMSC/kg, and the vehicle group received phosphate-buffered saline. KEY FINDINGS EV-S110K showed higher AChE activity, lower expression of CD63+/annexin V+, and lower apoptotic co-isolates. EV-S110K induced β-cell proliferation in vitro in a dose-dependent manner. The administration of EV-S110K and/or cMSC in diabetic monkeys demonstrated no significant changes in general diabetic indices and β-cell mass in the pancreas of the monkeys. Both treatments demonstrated a lowering trend in blood glucose levels and reduced pro-inflammatory cytokines. In contrast, regulatory T cells and anti-inflammatory cytokines were increased. SIGNIFICANCE cMSC and cMSC-EV provided initial evidence to attenuate clinical symptoms in inflammatory-mediated T1D non-human primates through immunomodulation.
Collapse
Affiliation(s)
- Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Amini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Animal Core Facility, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Jenab
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Jafari Atrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
9
|
Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B. New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways. Pharmaceutics 2023; 15:1904. [PMID: 37514090 PMCID: PMC10386711 DOI: 10.3390/pharmaceutics15071904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell-cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Collapse
Affiliation(s)
- Gréta Gombos
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 01 Bratislava, Slovakia
| | - Ludovit Danihel
- 3rd Surgical Clinic, Faculty of Medicine, Comenius University and Merciful Brothers University Hospital, 811 08 Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
10
|
Pan L, Zhang C, Zhang H, Ke T, Bian M, Yang Y, Chen L, Tan J. Osteoclast-Derived Exosomal miR-5134-5p Interferes with Alveolar Bone Homeostasis by Targeting the JAK2/STAT3 Axis. Int J Nanomedicine 2023; 18:3727-3744. [PMID: 37441084 PMCID: PMC10335290 DOI: 10.2147/ijn.s413692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Background In chronic periodontitis, exosomes transport various informative substances between osteoclasts and osteoblasts in alveolar bone. Herein, we aimed to investigate the effect of exosomal micro-ribonucleic acid (miRNA/miR)-5134-5p derived from osteoclasts on osteoblastic proliferation and differentiation and the development of periodontitis in vivo and in vitro. Methods The effects of OC-Exos on the proliferation and differentiation of osteoblasts were identified by Real-time quantitative reverse polymerase chain reaction (qRT-PCR), Western blot(WB), alkaline phosphatase(ALP) staining, etc. Exosomal miRNA expression was analyzed by sequencing. The sites of miRNA action were predicted through TargetScan and tested by double luciferase assay. After transfecting miR-5134-5p mimic/inhibitor into osteoblasts, we measured the proliferation and differentiation of osteoblasts by ALP staining and WB, etc. Furthermore, OC-Exos were injected into the gingival sulcus at the ligation site. Inflammation was observed by Hematoxylin-eosin (H&E) staining, the expression of inflammatory factors were detected by qRT-PCR, the resorption of alveolar bone was observed by Micro CT. Results Osteoblastic proliferation and differentiation were negatively regulated by OC-Exos in vitro. miRNA sequencing analysis revealed that miR-5134-5p expression was significantly elevated in OC-Exos, which also increased in osteoblasts following OC-Exo intervention. The dual-luciferase assay revealed that miR-5134-5p and Janus kinase 2 (JAK2) had binding sites. miR-5134-5p-mimics could upregulate miR-5134-5p expression in osteoblasts while downregulating Runt-related transcription factor 2(Runx2), phosphorylated-JAK2 (p-JAK2), and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3) expression and inhibited osteogenic differentiation. However, miR-5134-5p-inhibitor had the opposite effect. In vivo, the OC-Exo group demonstrated morphological disruption of periodontal tissue, massive inflammatory cell infiltration, upregulation of inflammatory factors mRNA expression, a significant decrease in BV/TV, and an increase in the cementoenamel junction and alveolar bone crest distance. Conclusion Osteoclast-derived exosomal miR-5134-5p inhibits osteoblastic proliferation and differentiation via the JAK2/STAT3 pathway. OC-Exos exacerbate periodontal tissue inflammation and accelerate alveolar bone resorption in mice with experimental periodontitis.
Collapse
Affiliation(s)
- Lai Pan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Chenyi Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Haizheng Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Ting Ke
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Mengyao Bian
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Yuxuan Yang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Jingyi Tan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| |
Collapse
|
11
|
Yang F, Li J, Ge Q, Zhang Y, Zhang M, Zhou J, Wang H, Du J, Gao S, Liang C, Meng J. Non-coding RNAs: emerging roles in the characterization of immune microenvironment and immunotherapy of prostate cancer. Biochem Pharmacol 2023:115669. [PMID: 37364622 DOI: 10.1016/j.bcp.2023.115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Prostate cancer is the most common tumor among men. Although the prognosis for early-stage prostate cancer is good, patients with advanced disease often progress to metastatic castration-resistant prostate cancer (mCRPC), which usually leads to death owing to resistance to existing treatments and lack of long-term effective therapy. In recent years, immunotherapy, especially immune checkpoint inhibitors (ICIs), has made great progress in the treatment of various solid tumors, including prostate cancer. However, the ICIs have only shown modest outcomes in mCRPC compared with other tumors. Previous studies have suggested that the suppressive tumor immune microenvironment (TIME) of prostate cancer leads to poor anti-tumor immune response and tumor resistance to immunotherapy. It has been reported that non-coding RNAs (ncRNAs) are capable of regulating upstream signaling at the transcriptional level, leading to a "cascade of changes" in downstream molecules. As a result, ncRNAs have been identified as an ideal class of molecules for cancer treatment. The discovery of ncRNAs provides a new perspective on TIME regulation in prostate cancer. ncRNAs have been associated with establishing an immunosuppressive microenvironment in prostate cancer through multiple pathways to modulate the immune escape of tumor cells which can promote resistance of prostate cancer to immunotherapy. Targeting these related ncRNAs presents an opportunity to improve the effectiveness of immunotherapy in this patient population.
Collapse
Affiliation(s)
- Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yuchen Zhang
- First School of Clinical Medicine, Anhui Medical University, Hefei 230022, China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Haitao Wang
- Center for Cancer Research, Clinical Research/NCI/NIH, Bethesda, MD 20892, USA
| | - Juan Du
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China; Gonghe County Hospital of Traditional Chinese Medicine, Hainan 813099, Qinghai, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
12
|
Jo H, Shim K, Jeoung D. Exosomes: Diagnostic and Therapeutic Implications in Cancer. Pharmaceutics 2023; 15:pharmaceutics15051465. [PMID: 37242707 DOI: 10.3390/pharmaceutics15051465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles produced by all cells, and they are present in various body fluids. Exosomes play crucial roles in tumor initiation/progression, immune suppression, immune surveillance, metabolic reprogramming, angiogenesis, and the polarization of macrophages. In this work, we summarize the mechanisms of exosome biogenesis and secretion. Since exosomes may be increased in the cancer cells and body fluids of cancer patients, exosomes and exosomal contents can be used as cancer diagnostic and prognostic markers. Exosomes contain proteins, lipids, and nucleic acids. These exosomal contents can be transferred into recipient cells. Therefore, this work details the roles of exosomes and exosomal contents in intercellular communications. Since exosomes mediate cellular interactions, exosomes can be targeted for developing anticancer therapy. This review summarizes current studies on the effects of exosomal inhibitors on cancer initiation and progression. Since exosomal contents can be transferred, exosomes can be modified to deliver molecular cargo such as anticancer drugs, small interfering RNAs (siRNAs), and micro RNAs (miRNAs). Thus, we also summarize recent advances in developing exosomes as drug delivery platforms. Exosomes display low toxicity, biodegradability, and efficient tissue targeting, which make them reliable delivery vehicles. We discuss the applications and challenges of exosomes as delivery vehicles in tumors, along with the clinical values of exosomes. In this review, we aim to highlight the biogenesis, functions, and diagnostic and therapeutic implications of exosomes in cancer.
Collapse
Affiliation(s)
- Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
Kwantwi LB. Exosome-mediated crosstalk between tumor cells and innate immune cells: implications for cancer progression and therapeutic strategies. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04833-9. [PMID: 37154928 DOI: 10.1007/s00432-023-04833-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
The increasing number of cancer-associated deaths despite the substantial improvement in diagnosis and treatment has sparked discussions on the need for novel biomarkers and therapeutic strategies for cancer. Exosomes have become crucial players in tumor development and progression, largely due to the diverse nature of their cargo content released to recipient cells. Importantly, exosome-mediated crosstalk between tumor and stromal cells is essential in reprogramming the tumor microenvironment to facilitate tumor progression. As a result, exosomes have gradually become a marker for the early diagnosis of many diseases and an important tool in drug delivery systems. However, the precise mechanisms by which exosomes participate in tumor progression remain elusive, multifaceted, and a double-edged sword, thus requiring further clarification. The available evidence suggests that exosomes can facilitate communication between innate immune cells and tumor cells to either support or inhibit tumor progression. Herein, this review focused on exosome-mediated intercellular communication between tumor cells and macrophages, neutrophils, mast cells, monocytes, dendritic cells, and natural killer cells. Specifically, how such intercellular communication affects tumor progression has been described. It has also been discussed that, depending on their cargo, exosomes can suppress or promote tumor cell progression. In addition, the potential application of exosomes and strategies to target exosomes in cancer treatment has been comprehensively discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
14
|
Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol 2023; 11:1060000. [PMID: 36960410 PMCID: PMC10028257 DOI: 10.3389/fcell.2023.1060000] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.
Collapse
Affiliation(s)
- Oxana E. Musatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- N.N.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: Yury P. Rubtsov,
| |
Collapse
|