1
|
Zhang X, Tang M, Zhou Q, Lu J, Zhang H, Tang X, Ma L, Zhang J, Chen D, Gao Y. A broad host phage, CP6, for combating multidrug-resistant Campylobacter prevalent in poultry meat. Poult Sci 2024; 103:103548. [PMID: 38442560 DOI: 10.1016/j.psj.2024.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Junxian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiujun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Lina Ma
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Jing Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Dawei Chen
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Yushi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
2
|
Chagneau S, Gaucher ML, Fravalo P, Thériault WP, Thibodeau A. Intestinal Colonization of Campylobacter jejuni and Its Hepatic Dissemination Are Associated with Local and Systemic Immune Responses in Broiler Chickens. Microorganisms 2023; 11:1677. [PMID: 37512849 PMCID: PMC10385864 DOI: 10.3390/microorganisms11071677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Campylobacter jejuni is an important foodborne pathogen. Despite the lack of clinical signs associated with its colonization in poultry, it has been reported to interact with the intestinal immune system. However, little is known about the interaction between C. jejuni and the chicken immune system, especially in the context of hepatic dissemination. Therefore, to follow up on our previous study showing intestinal colonization and hepatic spread of C. jejuni, cecal tonsils and liver samples were collected from these birds to determine the mRNA levels of chemokines and cytokines. Serum samples were also collected to determine serum amyloid A (SAA) concentrations and specific IgY titers. Lack of Th17 induction was observed in the cecal tonsils of only the liver-contaminated groups. This hepatic dissemination was accompanied by innate, Th1 and Th2 immune responses in livers, as well as an increase in SAA concentrations and specific IgY levels in sera. Campylobacter appears to be able to restrain the induction of the chicken gut immunity in particular conditions, possibly enhancing its hepatic dissemination and thus eliciting systemic immune responses. Although Campylobacter is often recognized as a commensal-like bacterium in chickens, it seems to modulate the gut immune system and induce systemic immunity.
Collapse
Affiliation(s)
- Sophie Chagneau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Chaire Agroalimentaire du Conservatoire National des Arts et Métiers, 22440 Ploufragan, France
| | - William P Thériault
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Santé Publique (CReSP), Université de Montréal, Montréal, QC H3N 1X9, Canada
| |
Collapse
|
3
|
Chagneau S, Gaucher ML, Thériault WP, Fravalo P, Thibodeau A. Observations supporting hypothetical commensalism and competition between two Campylobacter jejuni strains colonizing the broiler chicken gut. Front Microbiol 2023; 13:1071175. [PMID: 36817113 PMCID: PMC9937062 DOI: 10.3389/fmicb.2022.1071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Campylobacter jejuni is the most prevalent bacterial foodborne pathogen in humans. Given the wide genetic diversity of C. jejuni strains found in poultry production, a better understanding of the relationships between these strains within chickens could lead to better control of this pathogen on farms. In this study, 14-day old broiler chickens were inoculated with two C. jejuni strains (103 or 107 CFU of D2008b and 103 CFU of G2008b, alone or together) that were previously characterized in vitro and that showed an opposite potential to compete for gut colonization in broilers. Liver samples and ileal and cecal contents were collected and used to count total C. jejuni and to quantify the presence of each strain using a strain specific qPCR or PCR approach. Ileal tissue samples were also collected to analyze the relative expression level of tight junction proteins. While a 103 CFU inoculum of D2008b alone was not sufficient to induce intestinal colonization, this strain benefited from the G2008b colonization for its establishment in the gut and its extraintestinal spread. When the inoculum of D2008b was increased to 107 CFU - leading to its intestinal and hepatic colonization - a dominance of G2008b was measured in the gut and D2008b was found earlier in the liver for birds inoculated by both strains. In addition, a transcript level decrease of JAM2, CLDN5 and CLDN10 at 7 dpi and a transcript level increase of ZO1, JAM2, OCLN, CLDN10 were observed at 21 dpi for groups of birds having livers contaminated by C. jejuni. These discoveries suggest that C. jejuni would alter the intestinal barrier function probably to facilitate the hepatic dissemination. By in vitro co-culture assay, a growth arrest of D2008b was observed in the presence of G2008b after 48 h of culture. Based on these results, commensalism and competition seem to occur between both C. jejuni strains, and the dynamics of C. jejuni intestinal colonization and liver spread in broilers appear to be strain dependent. Further in vivo experimentations should be conducted to elucidate the mechanisms of commensalism and competition between strains in order to develop adequate on-farm control strategies.
Collapse
Affiliation(s)
- Sophie Chagneau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,*Correspondence: Sophie Chagneau, ✉
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - William P. Thériault
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Chaire Agroalimentaire du Conservatoire National des Arts et Métiers, Paris, France
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Alexandre Thibodeau, ✉
| |
Collapse
|
4
|
Lopes GV, Ramires T, Kleinubing NR, Scheik LK, Fiorentini ÂM, Padilha da Silva W. Virulence factors of foodborne pathogen Campylobacterjejuni. Microb Pathog 2021; 161:105265. [PMID: 34699927 DOI: 10.1016/j.micpath.2021.105265] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
Campylobacter jejuni is a highly frequent cause of gastrointestinal foodborne disease in humans throughout the world. Disease outcomes vary from mild to severe diarrhea, and in rare cases the Guillain-Barré syndrome or reactive arthritis can develop as a post-infection complication. Transmission to humans usually occurs via the consumption of a range of foods, especially those associated with the consumption of raw or undercooked poultry meat, unpasteurized milk, and water-based environmental sources. When associated to food or water ingestion, the C. jejuni enters the human host intestine via the oral route and colonizes the distal ileum and colon. When it adheres and colonizes the intestinal cell surfaces, the C. jejuni is expected to express several putative virulence factors, which cause damage to the intestine either directly, by cell invasion and/or production of toxin(s), or indirectly, by triggering inflammatory responses. This review article highlights various C. jejuni characteristics - such as motility and chemotaxis - that contribute to the biological fitness of the pathogen, as well as factors involved in human host cell adhesion and invasion, and their potential role in the development of the disease. We have analyzed and critically discussed nearly 180 scientific articles covering the latest improvements in the field.
Collapse
Affiliation(s)
- Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Sher AA, Jerome JP, Bell JA, Yu J, Kim HY, Barrick JE, Mansfield LS. Experimental Evolution of Campylobacter jejuni Leads to Loss of Motility, rpoN (σ54) Deletion and Genome Reduction. Front Microbiol 2020; 11:579989. [PMID: 33240235 PMCID: PMC7677240 DOI: 10.3389/fmicb.2020.579989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Evolution experiments in the laboratory have focused heavily on model organisms, often to the exclusion of clinically relevant pathogens. The foodborne bacterial pathogen Campylobacter jejuni belongs to a genus whose genomes are small compared to those of its closest genomic relative, the free-living genus Sulfurospirillum, suggesting genome reduction during the course of evolution to host association. In an in vitro experiment, C. jejuni serially passaged in rich medium in the laboratory exhibited loss of flagellar motility-an essential function for host colonization. At early time points the motility defect was often reversible, but after 35 days of serial culture, motility was irreversibly lost in most cells in 5 independently evolved populations. Population re-sequencing revealed disruptive mutations to genes in the flagellar transcriptional cascade, rpoN (σ54)-therefore disrupting the expression of the genes σ54 regulates-coupled with deletion of rpoN in all evolved lines. Additional mutations were detected in virulence-related loci. In separate in vivo experiments, we demonstrate that a phase variable (reversible) motility mutant carrying an adenine deletion within a homopolymeric tract resulting in truncation of the flagellar biosynthesis gene fliR was deficient for colonization in a C57BL/6 IL-10-/- mouse disease model. Re-insertion of an adenine residue partially restored motility and ability to colonize mice. Thus, a pathogenic C. jejuni strain was rapidly attenuated by experimental laboratory evolution and demonstrated genomic instability during this evolutionary process. The changes observed suggest C. jejuni is able to evolve in a novel environment through genome reduction as well as transition, transversion, and slip-strand mutations.
Collapse
Affiliation(s)
- Azam A. Sher
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
| | - John P. Jerome
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julian Yu
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Hahyung Y. Kim
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Jeffrey E. Barrick
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020; 8:microorganisms8040531. [PMID: 32272707 PMCID: PMC7232156 DOI: 10.3390/microorganisms8040531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.
Collapse
|
7
|
Clinically Relevant Campylobacter jejuni Subtypes Are Readily Found and Transmitted within the Cattle Production Continuum but Present a Limited Foodborne Risk. Appl Environ Microbiol 2020; 86:AEM.02101-19. [PMID: 31862718 DOI: 10.1128/aem.02101-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence exists for the role that cattle play in the epidemiology of campylobacteriosis. In this study, the prevalence and distribution of Campylobacter jejuni were longitudinally examined at the subspecies level in the beef cattle production continuum. Animals were subdivided into two groups: those that were not administered antibiotics and those that were administered the antimicrobial growth promoter chlortetracycline and sulfamethazine (AS700). Samples were longitudinally collected throughout the confined feeding operation (CFO) period and during the slaughter process, and C. jejuni was isolated and genotyped to assess subtype richness and to elucidate transmission dynamics from farm to fork. The bacterium was frequently isolated from cattle, and the bacterial densities shed in feces increased over the CFO period. Campylobacter jejuni was also isolated from digesta, hides, the abattoir environment, and carcasses. The administration of AS700 did not conspicuously reduce the C. jejuni densities in feces or within the intestine but significantly reduced the bacterial densities and the diversity of subtypes on abattoir samples. All cattle carried multiple subtypes, including clinically relevant subtypes known to represent a risk to human health. Instances of intra-animal longitudinal transmission were observed. Although clinically relevant subtypes were transmitted to carcasses via direct contact and aerosols, the bacterium could not be isolated nor could its DNA be detected in ground beef regardless of treatment. Although the evidence indicated that beef cattle represent a significant reservoir for C. jejuni, including high-risk subtypes strongly associated with the bovine host, they do not appear to represent a significant risk for direct foodborne transmission. This implicates alternate routes of human transmission.IMPORTANCE Limited information is available on the transmission of Campylobacter jejuni subtypes in the beef production continuum and the foodborne risk posed to humans. Cattle were colonized by diverse subtypes of C. jejuni, and the densities of the bacterium shed in feces increased during the confined feeding period. Campylobacter jejuni was readily associated with the digesta, feces, and hides of cattle entering the abattoir, as well as the local environment. Moreover, C. jejuni cells were deposited on carcasses via direct contact and aerosols, but the bacterium was not detected in the ground beef generated from contaminated carcasses. We conclude that C. jejuni bacterial cells associated with beef cattle do not represent a significant risk through food consumption and suggest that clinically relevant subtypes are transmitted through alternate routes of exposure.
Collapse
|
8
|
Ushanov L, Lasareishvili B, Janashia I, Zautner AE. Application of Campylobacter jejuni Phages: Challenges and Perspectives. Animals (Basel) 2020; 10:E279. [PMID: 32054081 PMCID: PMC7070343 DOI: 10.3390/ani10020279] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and diverse biological entities in the biosphere. Due to the rise of multi-drug resistant bacterial strains during the past decade, phages are currently experiencing a renewed interest. Bacteriophages and their derivatives are being actively researched for their potential in the medical and biotechnology fields. Phage applications targeting pathogenic food-borne bacteria are currently being utilized for decontamination and therapy of live farm animals and as a biocontrol measure at the post-harvest level. For this indication, the United States Food and Drug Administration (FDA) has approved several phage products targeting Listeria sp., Salmonella sp. and Escherichia coli. Phage-based applications against Campylobacter jejuni could potentially be used in ways similar to those against Salmonella sp. and Listeria sp.; however, only very few Campylobacter phage products have been approved anywhere to date. The research on Campylobacter phages conducted thus far indicates that highly diverse subpopulations of C. jejuni as well as phage isolation and enrichment procedures influence the specificity and efficacy of Campylobacter phages. This review paper emphasizes conclusions from previous findings instrumental in facilitating isolation of Campylobacter phages and improving specificity and efficacy of the isolates.
Collapse
Affiliation(s)
- Leonid Ushanov
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Besarion Lasareishvili
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Irakli Janashia
- Institute of Entomology, Agricultural University of Georgia, 0159 Tbilisi, Georgia;
| | - Andreas E. Zautner
- Institute of Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Tetracycline Resistant Campylobacter jejuni Subtypes Emanating from Beef Cattle Administered Non-Therapeutic Chlortetracycline are Longitudinally Transmitted within the Production Continuum but are Not Detected in Ground Beef. Microorganisms 2019; 8:microorganisms8010023. [PMID: 31877744 PMCID: PMC7022225 DOI: 10.3390/microorganisms8010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
The impacts of the antimicrobial growth promoter (AGP), chlortetracycline with sulfamethazine (AS700), on the development of antimicrobial resistance and longitudinal transmission of Campylobacter jejuni within the beef production continuum were empirically determined. Carriage of tetracycline resistance determinants in the enteric bacterial community increased at a greater rate for AS700-treatment cattle. The majority of the bacteria from animals administered AS700 carried tetW. Densities of C. jejuni shed in feces increased over the confined feeding period, and the administration of AS700 did not conspicuously reduce C. jejuni densities in feces or within the intestine. The majority of C. jejuni isolates recovered were resistant to tetracycline, but the resistance rates to other antibiotics was low (≤20.1%). The richness of C. jejuni subtypes recovered from AS700-treated animals that were either resistant or susceptible to tetracycline was reduced, indicating selection pressure due to AGP administration. Moreover, a degree of subtype-specific resistance to tetracycline was observed. tetO was the primary tetracycline resistance determinant conferring resistance in C. jejuni isolates recovered from cattle and people. Clinically-relevant C. jejuni subtypes (subtypes that represent a risk to human health) that were resistant to tetracycline were isolated from cattle feces, digesta, hides, the abattoir environment, and carcasses, but not from ground beef. Thus, study findings indicate that clinically-relevant C. jejuni subtypes associated with beef cattle, including those resistant to antibiotics, do not represent a significant foodborne risk.
Collapse
|
10
|
Inglis GD, Boras VF, Webb AL, Suttorp VV, Hodgkinson P, Taboada EN. Enhanced microbiological surveillance reveals that temporal case clusters contribute to the high rates of campylobacteriosis in a model agroecosystem. Int J Med Microbiol 2019; 309:232-244. [PMID: 31076242 DOI: 10.1016/j.ijmm.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022] Open
Abstract
Infections by pathogenic Campylobacter species were determined in diarrheic (n = 2,217) and non-diarrheic control (n = 104) people in Southwestern Alberta (SWA), Canada over a 1-year period using specialized and conventional isolation, and direct PCR. Overall, 9.9% of diarrheic individuals were positive for C. jejuni (9.1%), C. upsaliensis (0.6%), and C. coli (0.5%). No C. lari was detected. Four diarrheic individuals were co-infected with C. jejuni and C. coli, and four different individuals were co-infected with C. jejuni and C. upsaliensis. Two control individuals were positive for C. jejuni. Approximately 50% of stools containing C. jejuni and/or C. coli were deemed negative by conventional isolation. Direct PCR for C. jejuni was less effective than culture-based detection. Most C. jejuni infections occurred in people living in the urban centers, but the prevalence of the bacterium was lower in females than males living in urban locations, and both males and females living in rural locations. Although C. jejuni was detected throughout the year, a trend for higher infection rates was observed in the late spring to early fall with a peak in August. Forty-six C. jejuni subtype clusters were identified, including 44 temporal case clusters attributed to 28 subtype groupings. The majority of infections (70.3%) were linked to subtypes associated with beef cattle. We conclude that many occurrences of pathogenic Campylobacter species were not detected by the conventional laboratory methodology, and temporal case clusters of C. jejuni subtypes associated with cattle contribute to the high rates of campylobacteriosis in SWA.
Collapse
Affiliation(s)
- G Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| | - Valerie F Boras
- Department of Laboratory Medicine, Chinook Regional Hospital, Lethbridge, AB, Canada
| | - Andrew L Webb
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Vivien V Suttorp
- Medical Officer of Health, Alberta Health Services, Lethbridge, AB, Canada
| | - Pamela Hodgkinson
- Environmental Public Health, Alberta Health Services, Medicine Hat, AB, Canada
| | - Eduardo N Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Soumaila Garba A, Thibodeau A, Perron A, Laurent-Lewandowski S, Letellier A, Fravalo P. In vitro efficacy of potentiated egg yolk powder against Campylobacter jejuni does not correlate with in vitro efficacy. PLoS One 2019; 14:e0212946. [PMID: 30845147 PMCID: PMC6405129 DOI: 10.1371/journal.pone.0212946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
Campylobacter jejuni is a zoonotic agent responsible for the foodborne gastroenteritis campylobacteriosis. Control of C. jejuni load in the poultry primary production is recognized as an avenue to reduce human exposure to the pathogen. As for now, no commercially applicable control methods exist at the farm. Several studies tested egg yolk powders, potentiated or not against C. jejuni, as feed additives for chicken and suggested that the quantity and quality of the antibodies presence in the yolk are determinant factors for the full success of this approach. Unfortunately, data from these studies inconsistently showed a reduction of cecal C. jejuni carriage. Our first goal wwas to characterize (quantification by ELISA, agglutination test, bacterial antigen recognition profiles by Western blot, bactericidal effect by serum killing assays and C. jejuni mobility by soft agar migation) the antibodies extracted from egg yolk powders originating from different egg production protocols. Secondly, these powders were microencapsulated and recharacterized. Finally the protected powders were tested as a feed additive to destabilize C. jejuni colonization in an in vivo assay. Despite the in vitro results indicating the ability of the egg yolk powders to recognize Campylobacter and potentially alter its colonization of the chicken caecum, these results were not confirmed in the in vivo trial despite that specific caecal IgY directed toward Campylobacter were detected in the groups receiving the protected powders. More research is needed on Campylobacter in order to effectively control this pathogen at the farm.
Collapse
Affiliation(s)
- Amina Soumaila Garba
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Audrey Perron
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sylvette Laurent-Lewandowski
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Ann Letellier
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Chaire de Recherche industrielle du CRSNG en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche et d'enseignement en salubrité alimentaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- * E-mail:
| |
Collapse
|
12
|
Lübke AL, Minatelli S, Riedel T, Lugert R, Schober I, Spröer C, Overmann J, Groß U, Zautner AE, Bohne W. The transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxis. BMC Microbiol 2018; 18:111. [PMID: 30200886 PMCID: PMC6131913 DOI: 10.1186/s12866-018-1254-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is one of the most common bacterial causes of food-borne enteritis worldwide. Chemotaxis in C. jejuni is known to be critical for the successful colonization of the host and key for the adaptation of the microbial species to different host environments. In C. jejuni, chemotaxis is regulated by a complex interplay of 13 or even more different chemoreceptors, also known as transducer-like proteins (Tlps). Recently, a novel chemoreceptor gene, tlp12, was described and found to be present in 29.5% of the investigated C. jejuni strains. RESULTS In this study, we present a functional analysis of Tlp12 with the aid of a tlp12 knockout mutant of the C. jejuni strain A17. Substrate specificity was investigated by capillary chemotaxis assays and revealed that Tlp12 plays an important role in chemotaxis towards glutamate and pyruvate. Moreover, the Δtlp12 mutant shows increased swarming motility in soft agar assays, an enhanced invasion rate into Caco-2 cells and an increased autoagglutination rate. The growth rate was slightly reduced in the Δtlp12 mutant. The identified phenotypes were in partial restored by complementation with the wild type gene. Tlp12-harboring C. jejuni strains display a strong association with chicken, whose excreta are known to contain high glutamate levels. CONCLUSIONS TLP12 is a chemoreceptor for glutamate and pyruvate recognition. Deletion of tlp12 has an influence on distinct physiological features, such as growth rate, swarming motility, autoagglutination and invasiveness.
Collapse
Affiliation(s)
- Anastasia-Lisa Lübke
- Institute for Medical Microbiology, University Medical Center, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Sabrina Minatelli
- Institute for Medical Microbiology, University Medical Center, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Raimond Lugert
- Institute for Medical Microbiology, University Medical Center, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Andreas E Zautner
- Institute for Medical Microbiology, University Medical Center, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center, Kreuzbergring 57, 37075, Göttingen, Germany.
| |
Collapse
|
13
|
Reddy S, Zishiri OT. Genetic characterisation of virulence genes associated with adherence, invasion and cytotoxicity in Campylobacter spp. isolated from commercial chickens and human clinical cases. Onderstepoort J Vet Res 2018; 85:e1-e9. [PMID: 29781670 PMCID: PMC6238761 DOI: 10.4102/ojvr.v85i1.1507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/06/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022] Open
Abstract
Virulence-associated genes have been recognised and detected in Campylobacter species. The majority of them have been proven to be associated with pathogenicity. This study aimed to detect the presence of virulence genes associated with pathogenicity and responsible for invasion, expression of adherence, colonisation and production of the cytolethal distending toxin (cdt) in Campylobacter jejuni and Campylobacter coli. Commercial chicken faecal samples were randomly sampled from chicken farms within the Durban metropolitan area in South Africa. Furthermore, human clinical Campylobacter spp. isolates were randomly sampled from a private pathology laboratory in South Africa. Out of a total of 100 chicken faecal samples, 78% (n = 78) were positive for Campylobacter growth on modified charcoal cefoperazone deoxycholate and from the random laboratory collection of 100 human clinical isolates, 83% (n = 83) demonstrated positive Campylobacter spp. growth following culturing methods. These samples were screened for the presence of the following virulence genes: cadF, hipO, asp, ciaB, dnaJ, pldA, cdtA, cdtB and cdtC. As expected, the cadF gene was present in 100% of poultry (n = 78) and human clinical isolates (n = 83). Campylobacter jejuni was the main species detected in both poultry and human clinical isolates, whilst C. coli were detected at a significantly lower percentage (p < 0.05). Eight per cent of the C. jejuni from human clinical isolates had all virulence genes that were investigated. Only one C. coli isolate demonstrated the presence of all the virulence genes investigated; however, the pldA virulence gene was detected in 100% of the C. coli isolates in poultry and a high percentage (71%) in human clinical C. coli isolates as well. The detection of cdt genes was found at higher frequency in poultry than human clinical isolates. The high prevalence rates of virulence genes detected in poultry and human clinical isolates demonstrate their significance in the pathogenicity of Campylobacter species.
Collapse
|
14
|
Thibodeau A, Fravalo P, Perron A, Lewandowski SL, Letellier A. Production and characterization of anti-Campylobacter jejuni IgY derived from egg yolks. Acta Vet Scand 2017; 59:80. [PMID: 29208016 PMCID: PMC5717825 DOI: 10.1186/s13028-017-0346-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/29/2017] [Indexed: 01/29/2023] Open
Abstract
Background Campylobacter jejuni is a major cause of foodborne disease having chickens as an important reservoir. Its control at the farm would lower the contamination of the final products and therefore also lower the risk of transmission to humans. At the farm, C. jejuni is rarely found in chickens before they reach 2 weeks of age. Past studies have shown that maternal antibodies could hamper C. jejuni gut colonization. The objective of this study was to compare protocols to use in order to produce anti-C. jejuni antibodies derived from egg yolks in the perspective to be used as feed additives for the control of chicken C. jejuni colonization. Laying hens were naturally contaminated with four well-characterized strains or injected with either outer membrane proteins or formalin-killed whole bacteria derived from these same strains. Eggs were collected and IgYs present in the yolks were extracted. The amount and the specificity of the recovered antibodies were characterized. Results It was observed that injection yielded eggs with superior concentrations of both total and anti-C. jejuni antibodies. Equivalent performances for antibodies recovered from all protocols were observed for the ability of the antibodies to agglutinate the live C. jejuni homologous strains, to hinder their motility or to lyse the bacteria. Western blot analyses showed that proteins from all strains could be recognized by all IgY extracts. All these characteristics were strain specific. The characterization assays were also made for heterologous strains and weaker results were observed when compared to the homologous strains. Conclusions Based on these results, only an IgY quantitative based selection can be made in regards to which protocol would give the best anti-C. jejuni IgY enriched egg-yolks as all tested protocols were equivalent in terms of the recovered antibody ability to recognized the tested C. jejuni strains.
Collapse
|
15
|
Chandrashekhar K, Kassem II, Rajashekara G. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond. Gut Microbes 2017; 8:323-334. [PMID: 28080213 PMCID: PMC5570417 DOI: 10.1080/19490976.2017.1279380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 02/03/2023] Open
Abstract
Chemotaxis, a process that mediates directional motility toward or away from chemical stimuli (chemoeffectors/ligands that can be attractants or repellents) in the environment, plays an important role in the adaptation of Campylobacter jejuni to disparate niches. The chemotaxis system consists of core signal transduction proteins and methyl-accepting-domain-containing Transducer like proteins (Tlps). Ligands binding to Tlps relay a signal to chemotaxis proteins in the cytoplasm which initiate a signal transduction cascade, culminating into a directional flagellar movement. Tlps facilitate substrate-specific chemotaxis in C. jejuni, which plays an important role in the pathogen's adaptation, pathobiology and colonization of the chicken gastrointestinal tract. However, the role of Tlps in C. jejuni's host tissue specific colonization, physiology and virulence remains not completely understood. Based on recent studies, it can be predicted that Tlps might be important targets for developing strategies to control C. jejuni via vaccines and antimicrobials.
Collapse
Affiliation(s)
- Kshipra Chandrashekhar
- Department of Food Animal Health and Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio, USA
| | - Issmat I. Kassem
- Department of Food Animal Health and Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio, USA
| | - Gireesh Rajashekara
- Department of Food Animal Health and Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
16
|
Thibodeau A, Letellier A, Yergeau É, Larrivière-Gauthier G, Fravalo P. Lack of Evidence That Selenium-Yeast Improves Chicken Health and Modulates the Caecal Microbiota in the Context of Colonization by Campylobacter jejuni. Front Microbiol 2017; 8:451. [PMID: 28367146 PMCID: PMC5355472 DOI: 10.3389/fmicb.2017.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Faced with ever-increasing demand, the industrial production of food animals is under pressure to increase its production. In order to keep productivity, quality, and safety standards up while reducing the use of antibiotics, farmers are seeking new feed additives. In chicken production, one of these additives is selenium. This element is expected to confer some advantages in terms of animal health and productivity, but its impact on chicken intestinal microbiota as well as on the carriage of foodborne pathogens is unknown. In this study, chickens raised in a level 2 animal facility were fed or not 0.3 ppm of in-feed selenium-yeast until 35 days of age and were inoculated or not with the foodborne pathogen Campylobacter jejuni at the age of 14 days. At the end of the study, body weight, seric IgY, intestinal IgA, seric gluthatione peroxydase activity, the caecal microbiota (analyzed by MiSeq 16S rRNA gene sequencing), and C. jejuni caecal levels were analyzed. The experiment was completely replicated twice, with two independent batches of chickens. This study revealed that, for healthy chickens raised in very good hygienic conditions, selenium-yeast does not influence the bird’s body weight and lowers their seric gluthatione peroxidase activity as well as their intestinal IgA concentrations. Furthermore, selenium-yeast did not modify the caecal microbiota or the colonization of C. jejuni. The results also showed that C. jejuni colonization does not impact any of the measured chicken health parameters and only slightly impacts the caecal microbiota. This study also clearly illustrated the need for true biological replication (independent animal trials) when assessing the microbiota shifts associated with treatments as the chickens microbiotas clearly clustered according to study replicate.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| | - Ann Letellier
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| | - Étienne Yergeau
- INRS-Institut Armand-Frappier Research Centre, Université du Québec, Laval QC, Canada
| | - Guillaume Larrivière-Gauthier
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| | - Philippe Fravalo
- Faculty of Veterinary Medicine, University of Montreal - NSERC Industrial Research Chair in Meat Safety, Saint-Hyacinthe QC, Canada
| |
Collapse
|
17
|
Trigui H, Thibodeau A, Fravalo P, Letellier A, P Faucher S. Survival in water of Campylobacter jejuni strains isolated from the slaughterhouse. SPRINGERPLUS 2015; 4:799. [PMID: 26702388 PMCID: PMC4688295 DOI: 10.1186/s40064-015-1595-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/05/2015] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni cause gastroenteritis in humans. The main transmission vector is the consumption or handling of contaminated chicken meat, since chicken can be colonized asymptomatically by C. jejuni. However, water has been implicated as the transmission vector in a few outbreaks. One possibility is the contamination of water effluent by C. jejuni originating from chicken farm. The ability of C. jejuni to be transmitted by water would be closely associated to its ability to survive in water. Therefore, in this study, we have evaluated the ability of reference strains and chicken-isolated strains to survive in water. Defined water media were used, since the composition of tap water is variable. We showed that some isolates survive better than others in defined freshwater (Fraquil) and that the survival was affected by temperature and the concentration of NaCl. By comparing the ability of C. jejuni to survive in water with other phenotypic properties previously tested, we showed that the ability to survive in water was negatively correlated with autoagglutination. Our data showed that not all chicken isolates have the same ability to survive in water, which is probably due to difference in genetic content.
Collapse
Affiliation(s)
- Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9 Canada
| | - Alexandre Thibodeau
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Philippe Fravalo
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Ann Letellier
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9 Canada
| |
Collapse
|
18
|
Thibodeau A, Fravalo P, Yergeau É, Arsenault J, Lahaye L, Letellier A. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive. PLoS One 2015; 10:e0131978. [PMID: 26161743 PMCID: PMC4498643 DOI: 10.1371/journal.pone.0131978] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/09/2015] [Indexed: 01/19/2023] Open
Abstract
Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9) CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- * E-mail: (AT); (AL)
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
| | - Étienne Yergeau
- National Research Council of Canada, Montréal, Québec, Canada
| | - Julie Arsenault
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
| | | | - Ann Letellier
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- * E-mail: (AT); (AL)
| |
Collapse
|