1
|
Mindt M, Ferrer L, Bosch D, Cankar K, Wendisch VF. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2023; 107:1621-1634. [PMID: 36786915 PMCID: PMC10006044 DOI: 10.1007/s00253-023-12397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Indole has an increasing interest in the flavor and fragrance industry. It is used in dairy products, tea drinks, and fine fragrances due to its distinct floral odor typical of jasmine blossoms. The current production of indole based on isolation from coal tar is non-sustainable and its isolation from plants is often unprofitable due to low yields. To offer an alternative to the conventional production, biosynthesis of indole has been studied recently. A glucose-based indole production was achieved by employing the Corynebacterium glutamicum tryptophan synthase α-subunit (TrpA) or indole-3-glycerol phosphate lyase (IGL) from wheat Triticum aestivum in a genetically-engineered C. glutamicum strain. In addition, a highly efficient bioconversion process using C. glutamicum heterologously expressing tryptophanase gene (tnaA) from Providencia rettgeri as a biocatalyst was developed. In this work, de novo indole production from glucose was enabled by expressing the P. rettgeri tnaA in a tryptophan-producing C. glutamicum strain. By metabolic engineering of a C. glutamicum shikimate accumulating base strain, tryptophan production of 2.14 ± 0.02 g L-1 was achieved. Introduction of the tryptophanase form P. rettgeri enabled indole production, but to low titers, which could be improved by sequestering indole into the water-immiscible solvent tributyrin during fermentation and a titer of 1.38 ± 0.04 g L-1 was achieved. The process was accelerated by decoupling growth from production increasing the volumetric productivity about 4-fold to 0.08 g L-1 h-1. KEY POINTS: • Efficient de novo indole production via tryptophanases from glucose • Increased indole titers by product sequestration and improved precursor supply • Decoupling growth from production accelerated indole production.
Collapse
Affiliation(s)
- Melanie Mindt
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.,Translational Pharmacology, Faculty of Medicine OWL, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Katarina Cankar
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Ray D, Anand U, Jha NK, Korzeniewska E, Bontempi E, Proćków J, Dey A. The soil bacterium, Corynebacterium glutamicum, from biosynthesis of value-added products to bioremediation: A master of many trades. ENVIRONMENTAL RESEARCH 2022; 213:113622. [PMID: 35710026 DOI: 10.1016/j.envres.2022.113622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Ever since its discovery in 1957, Corynebacterium glutamicum has become a well-established industrial strain and is known for its massive capability of producing various amino acids (like L-lysine and L-glutamate) and other value-added chemicals. With the rising demand for these bio-based products, the revelation of the whole genome sequences of the wild type strains, and the astounding advancements made in the fields of metabolic engineering and systems biology, our perspective of C. glutamicum has been revolutionized and has expanded our understanding of its strain development. With these advancements, a new era for C. glutamicum supremacy in the field of industrial biotechnology began. This led to remarkable progress in the enhancement of tailor-made over-producing strains and further development of the substrate spectrum of the bacterium, to easily accessible, economical, and renewable resources. C. glutamicum has also been metabolically engineered and used in the degradation/assimilation of highly toxic and ubiquitous environmental contaminant, arsenic, present in water or soil. Here, we review the history, current knowledge, progress, achievements, and future trends relating to the versatile metabolic factory, C. glutamicum. This review paper is devoted to C. glutamicum which is one of the leading industrial microbes, and one of the most promising and versatile candidates to be developed. It can be used not only as a platform microorganism to produce different value-added chemicals and recombinant proteins, but also as a tool for bioremediation, allowing to enhance specific properties, for example in situ bioremediation.
Collapse
Affiliation(s)
- Durga Ray
- Department of Microbiology, St. Aloysius' College, Jabalpur, Madhya Pradesh, 482001, India.
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719, Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
4
|
First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella. Microorganisms 2022; 10:microorganisms10081609. [PMID: 36014025 PMCID: PMC9414547 DOI: 10.3390/microorganisms10081609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Bartonella (Rhizobiales: Bartonellaceae) encompasses facultative intracellular Gram-negative alphaproteobacteria that parasitize mainly erythrocytes and endothelial cells, as well as macrophages, monocytes and dendritic cells. Although they can infect numerous mammal species and arthropod vectors worldwide, reports of Bartonella infections in marsupials are scarce. In fact, such agents have only been detected in marsupials and/or associated ectoparasites in Australia and the United States of America until the present moment. The present study aimed to isolate and characterize molecularly, morphologically and phenotypically Bartonella infecting free-living marsupials sampled in the Brazilian Pantanal, the largest wetland in South America. Two marsupials were captured in December 2018 and six marsupials in February 2019, totaling eight small mammals sampled: five (62.5%) Thylamys macrurus and three (37.5%) Monodelphis domestica. All blood samples were submitted to qPCR for Bartonella spp. based on the nuoG gene, a pre-enrichment liquid culture and a chocolate agar solid culture. Bartonella sp. was isolated from 3 T. macrurus and one M. domestica. One Bartonella isolate obtained from a T. macrurus blood sample (strain 117A) that showed to be closely related to the Bartonella vinsonii complex and Bartonella machadoae was selected for whole genome sequencing using a hybrid approach based on Illumina NovaSeq and Nanopore sequencing platforms. This strain showed a genome of 2.35 Mbp, with an average C + G content of 38.8%, coding for 2013 genes, and a 29 kb plasmid with an average C + G content of 34.5%. In addition, this strain exhibited an average nucleotide identity (ANI) of 85% with Bartonella species belonging to the B. vinsonii group and 91% with B. machadoae. Phylogenomic analysis based on 291 protein coding genes shared by the genomes of 53 Bartonella species positioned this strain closely to B. machadoae. This new isolated species was named Bartonella harrusi sp. nov., which was characterized as having small capnophilic, microaerophilic and aerobic rods with an absence of pili and flagella. In conclusion, the present work describes the biochemical, phenotypic and genomic characteristics of Bartonella harrusi, a new species isolated from the T. macrurus blood samples of the Brazilian Pantanal. Finally, a review of the taxonomic classification of members of the genus Bartonella is proposed, based on the ANI values accessed by whole genome sequencing analyses.
Collapse
|
5
|
Prell C, Burgardt A, Meyer F, Wendisch VF. Fermentative Production of l-2-Hydroxyglutarate by Engineered Corynebacterium glutamicum via Pathway Extension of l-Lysine Biosynthesis. Front Bioeng Biotechnol 2021; 8:630476. [PMID: 33585425 PMCID: PMC7873477 DOI: 10.3389/fbioe.2020.630476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
l-2-hydroxyglutarate (l-2HG) is a trifunctional building block and highly attractive for the chemical and pharmaceutical industries. The natural l-lysine biosynthesis pathway of the amino acid producer Corynebacterium glutamicum was extended for the fermentative production of l-2HG. Since l-2HG is not native to the metabolism of C. glutamicum metabolic engineering of a genome-streamlined l-lysine overproducing strain was required to enable the conversion of l-lysine to l-2HG in a six-step synthetic pathway. To this end, l-lysine decarboxylase was cascaded with two transamination reactions, two NAD(P)-dependent oxidation reactions and the terminal 2-oxoglutarate-dependent glutarate hydroxylase. Of three sources for glutarate hydroxylase the metalloenzyme CsiD from Pseudomonas putida supported l-2HG production to the highest titers. Genetic experiments suggested a role of succinate exporter SucE for export of l-2HG and improving expression of its gene by chromosomal exchange of its native promoter improved l-2HG production. The availability of Fe2+ as cofactor of CsiD was identified as a major bottleneck in the conversion of glutarate to l-2HG. As consequence of strain engineering and media adaptation product titers of 34 ± 0 mM were obtained in a microcultivation system. The glucose-based process was stable in 2 L bioreactor cultivations and a l-2HG titer of 3.5 g L−1 was obtained at the higher of two tested aeration levels. Production of l-2HG from a sidestream of the starch industry as renewable substrate was demonstrated. To the best of our knowledge, this study is the first description of fermentative production of l-2HG, a monomeric precursor used in electrochromic polyamides, to cross-link polyamides or to increase their biodegradability.
Collapse
Affiliation(s)
- Carina Prell
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Zhang B, Jiang Y, Li Z, Wang F, Wu XY. Recent Progress on Chemical Production From Non-food Renewable Feedstocks Using Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 8:606047. [PMID: 33392171 PMCID: PMC7775722 DOI: 10.3389/fbioe.2020.606047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/31/2020] [Indexed: 11/13/2022] Open
Abstract
Due to the non-renewable nature of fossil fuels, microbial fermentation is considered a sustainable approach for chemical production using glucose, xylose, menthol, and other complex carbon sources represented by lignocellulosic biomass. Among these, xylose, methanol, arabinose, glycerol, and other alternative feedstocks have been identified as superior non-food sustainable carbon substrates that can be effectively developed for microbe-based bioproduction. Corynebacterium glutamicum is a model gram-positive bacterium that has been extensively engineered to produce amino acids and other chemicals. Recently, in order to reduce production costs and avoid competition for human food, C. glutamicum has also been engineered to broaden its substrate spectrum. Strengthening endogenous metabolic pathways or assembling heterologous ones enables C. glutamicum to rapidly catabolize a multitude of carbon sources. This review summarizes recent progress in metabolic engineering of C. glutamicum toward a broad substrate spectrum and diverse chemical production. In particularly, utilization of lignocellulosic biomass-derived complex hybrid carbon source represents the futural direction for non-food renewable feedstocks was discussed.
Collapse
Affiliation(s)
- Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Yan Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
8
|
Stumpf AK, Vortmann M, Dirks-Hofmeister ME, Moerschbacher BM, Philipp B. Identification of a novel chitinase from Aeromonas hydrophila AH-1N for the degradation of chitin within fungal mycelium. FEMS Microbiol Lett 2019; 366:5266298. [PMID: 30596975 DOI: 10.1093/femsle/fny294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/27/2018] [Indexed: 11/14/2022] Open
Abstract
Defined organic waste products are ideal and sustainable secondary feedstocks for production organisms in microbial biotechnology. Chitin from mycelia of fungal fermentation processes represents a homogeneous and constantly available waste product that can, however, not be utilised by typical bacterial production strains. Therefore, enzymes that degrade chitin within fungal mycelia have to be identified and expressed in production organisms. In this study, chitin-degrading bacteria were enriched and isolated from lake water with mycelia of Aspergillus tubingensis as sole organic growth substrate. This approach yielded solely strains of Aeromonas hydrophila. Comparison of the isolated strains with other A. hydrophila strains regarding their chitinolytic activities on fungal mycelia identified strain AH-1N as the best enzyme producer. From this strain, a chitinase (EC:3.2.1.14) was identified by peptide mass fingerprinting. Heterologous expression of the respective gene combined with mass spectrometry showed that the purified enzyme was capable of releasing chitobiose from fungal mycelia with a higher yield than a well-described chitinase from Serratia marcescens. Expression of the newly identified chitinase in biotechnological production strains could be the first step for making fungal mycelium accessible as a secondary feedstock. Additionally, the enrichment strategy proved to be feasible for identifying strains able to degrade fungal chitin.
Collapse
Affiliation(s)
- Anna K Stumpf
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Muenster, Corrensstraße 3, 48149 Münster, Germany
| | - Marina Vortmann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität (WWU) Muenster, Schlossplatz 8, 48143 Münster, Germany
| | | | - Bruno M Moerschbacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität (WWU) Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Muenster, Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
9
|
Sgobba E, Blöbaum L, Wendisch VF. Production of Food and Feed Additives From Non-food-competing Feedstocks: Valorizing N-acetylmuramic Acid for Amino Acid and Carotenoid Fermentation With Corynebacterium glutamicum. Front Microbiol 2018; 9:2046. [PMID: 30319554 PMCID: PMC6165865 DOI: 10.3389/fmicb.2018.02046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of food and feed amino acids such as L-glutamate and L-lysine and has been engineered for production of carotenoids such as lycopene. These fermentation processes are based on sugars present in molasses and starch hydrolysates. Due to competing uses of starch and sugars in human nutrition, this bacterium has been engineered for utilization of alternative feedstocks, for example, pentose sugars present in lignocellulosic and hexosamines such as glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc). This study describes strain engineering and fermentation using N-acetyl-D-muramic acid (MurNAc) as non-food-competing feedstock. To this end, the genes encoding the MurNAc-specific PTS subunits MurP and Crr and the etherase MurQ from Escherichia coli K-12 were expressed in C. glutamicumΔnanR. While MurP and MurQ were required to allow growth of C. glutamicumΔnanR with MurNAc, heterologous Crr was not, but it increased the growth rate in MurNAc minimal medium from 0.15 h-1 to 0.20 h-1. When in addition to murP-murQ-crr the GlcNAc-specific PTS gene nagE from C. glycinophilum was expressed in C. glutamicumΔnanR, the resulting strain could utilize blends of GlcNAc and MurNAc. Fermentative production of the amino acids L-glutamate and L-lysine, the carotenoid lycopene, and the L-lysine derived chemicals 1,5-diaminopentane and L-pipecolic acid either from MurNAc alone or from MurNAc-GlcNAc blends was shown. MurNAc and GlcNAc are the major components of the bacterial cell wall and bacterial biomass is an underutilized side product of large-scale bacterial production of organic acids, amino acids or enzymes. The proof-of-concept for valorization of MurNAc reached here has potential for biorefinery applications to convert non-food-competing feedstocks or side-streams to valuable products such as food and feed additives.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
10
|
Zhao N, Qian L, Luo G, Zheng S. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:9517-9529. [DOI: 10.1007/s00253-018-9358-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
11
|
Freudl R. Beyond amino acids: Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol 2017; 258:101-109. [DOI: 10.1016/j.jbiotec.2017.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
|