1
|
Wroblewski LE, Peek RM. Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:25-52. [PMID: 38231214 PMCID: PMC10924282 DOI: 10.1007/978-3-031-47331-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human pathogen Helicobacter pylori is the strongest known risk factor for gastric disease and cancer, and gastric cancer remains a leading cause of cancer-related death across the globe. Carcinogenic mechanisms associated with H. pylori are multifactorial and are driven by bacterial virulence constituents, host immune responses, environmental factors such as iron and salt, and the microbiota. Infection with strains that harbor the cytotoxin-associated genes (cag) pathogenicity island, which encodes a type IV secretion system (T4SS) confer increased risk for developing more severe gastric diseases. Other important H. pylori virulence factors that augment disease progression include vacuolating cytotoxin A (VacA), specifically type s1m1 vacA alleles, serine protease HtrA, and the outer-membrane adhesins HopQ, BabA, SabA and OipA. Additional risk factors for gastric cancer include dietary factors such as diets that are high in salt or low in iron, H. pylori-induced perturbations of the gastric microbiome, host genetic polymorphisms, and infection with Epstein-Barr virus. This chapter discusses in detail host factors and how H. pylori virulence factors augment the risk of developing gastric cancer in human patients as well as how the Mongolian gerbil model has been used to define mechanisms of H. pylori-induced inflammation and cancer.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Keikha M, Sahebkar A, Yamaoka Y, Karbalaei M. Helicobacter pylori cagA status and gastric mucosa-associated lymphoid tissue lymphoma: a systematic review and meta-analysis. JOURNAL OF HEALTH, POPULATION AND NUTRITION 2022; 41:2. [PMID: 34980267 PMCID: PMC8722127 DOI: 10.1186/s41043-021-00280-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Recent studies have investigated the role of Helicobacter pylori infection in the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. It is estimated that approximately 0.1% of people infected with H. pylori develop gastric MALT lymphoma. However, the role of the CagA antigen, the highest causative agent of H. pylori, in increasing the risk of gastric MALT lymphoma remains unclear and controversial. A systematic review and meta-analysis were conducted to evaluate the effect of cagA status on the development of gastric MALT lymphoma. Methods All articles evaluating the status of the cagA gene in the development of gastric MALT lymphoma were collected using systematic searches in online databases, including PubMed, Scopus, Embase, and Google Scholar, regardless of publication date. The association between cagA and gastric MALT lymphoma was assessed using the odds ratio (OR) summary. In addition, a random-effects model was used in cases with significant heterogeneity. Results A total of 10 studies met our inclusion criteria, among which 1860 patients participated. No association between cagA status and the development of MALT lymphoma (extranodal marginal zone B-cell lymphoma) was found in this study (OR 1.30; 0.906–1.866 with 95% CIs; I2: 45.83; Q-value: 12.92). Surprisingly, a meaningful association was observed between cagA status and diffuse large B-cell lymphoma (OR 6.43; 2.45–16.84 with 95% CIs). We also observed an inverse association between vacA and gastric MALT lymphoma risk (OR 0.92; 0.57–1.50 with 95% CIs). Conclusions It seems that the infection with cagA-positive H. pylori strains does not have a meaningful effect on the gastric MALT lymphoma formation, while translocated CagA antigen into the B cells plays a crucial role in the development of diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan.,Global Oita Medical Advanced Research Center for Health, Oita University, Yufu, Oita, Japan
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
3
|
Zhang X, Li C, Chen D, He X, Zhao Y, Bao L, Wang Q, Zhou J, Xie Y. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion. Inflamm Res 2021; 71:141-155. [PMID: 34854954 DOI: 10.1007/s00011-021-01522-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The CagA (cytotoxin-related gene A, CagA) protein is an important factor for the pathogenicity of Helicobacter pylori (H. pylori). Although H. pylori has previously been shown to activate the NLRP3 inflammasome, it remains unclear what role CagA plays in this process. In the current study, we aimed to investigate the effect of CagA on NLRP3 activation and how it is linked to gastric cancer cell migration and invasion. METHODS CagA positive H. pylori strain (Hp/CagA+) and CagA gene knockout mutant (Hp/ΔCagA) infected and the pcDNA3.1/CagA plasmid transfected gastric epithelial cell lines, respectively. The morphological alterations of cells under a microscope; the NLRP3 inflammasome-related markers: NLRP3, caspase-1, and ASC protein levels were detected by Western blot, IL-1β and IL-18 levels were determined by ELISA; cell migration and invasion were determined by transwell assay; and the pyroptosis levels and intracellular ROS were determined by flow cytometry analysis. Then, pretreated with 5 mM NAC for 2 h and subsequently transfected with the pcDNA3.1/CagA plasmid for 48 h, the effects of NAC pretreatment on CagA-induced NLRP3 inflammasome-related markers expression and cell pyroptosis were examined, finally assessed the effect of CagA on migration and invasion in NLRP3-silenced cells. RESULTS We found that Hp/CagA+ strain infection and pcDNA3.1/CagA vector transfection result in NLRP3 inflammasome activation, generation of intracellular ROS, and increased invasion and migration of gastric cancer cells. Moreover, we found that ROS inhibition via NAC effectively blocks NLRP3 activation and pyroptosis. Silencing of NLRP3 reduces the effects of CagA on gastric cancer cell migration and invasion. CONCLUSION Our study shows that CagA can promote the invasion and migration of gastric cancer cells by activating NLRP3 inflammasome pathway. These findings provide novel insights into the mechanism of gastric cancer induction by H. pylori.
Collapse
Affiliation(s)
- XiaoYi Zhang
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou Province, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou Province, China
| | - Dingyu Chen
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - XiaoFeng He
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - LiYa Bao
- Affiliated Hospital, Guiyang Medical University, No. 9, Beijing Road, Guiyang, 550004, China
| | - Qingrong Wang
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - JianJiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China. .,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China. .,Affiliated Hospital, Guiyang Medical University, No. 9, Beijing Road, Guiyang, 550004, China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China. .,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China.
| |
Collapse
|
4
|
Keikha M, Karbalaei M. EPIYA motifs of Helicobacter pylori cagA genotypes and gastrointestinal diseases in the Iranian population: a systematic review and meta-analysis. New Microbes New Infect 2021; 41:100865. [PMID: 33912350 PMCID: PMC8066700 DOI: 10.1016/j.nmni.2021.100865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is one of the best risk factors for gastric cancer. Recent studies have examined the relationship between virulence factors, in particular CagA toxin, and the development of gastrointestinal diseases. According to the literature, there is a significant relationship between the polymorphism of cagA-EPIYA motifs and progression to severe clinical outcomes. The main goal of our study was to determine the possible association between cagA genotypes and the risk of severe clinical outcomes in the Iranian population. We investigated these ambiguities using a comprehensive meta-analysis study, in which we evaluated data from 1762 Iranian patients for a potential correlation between all cagA gene genotypes and gastrointestinal diseases. According to statistical analysis, the frequencies of cagA genotypes including ABC, ABCC, AB and ABCCC in the Iranian population were estimated at 80.18%, 22.81%, 5.52% and 2.76%, respectively; the ABD genotype was not detected in these PCR-based studies. There was a significant relationship between cagA genotypes ABCC and ABCCC and severe clinical outcomes of infection such as peptic ulcer and gastric cancer. Overall, it can be concluded that there is a positive correlation with the number of copies of EPIYA-C and the increase of gastric cancer. Therefore, according to our results, it seems that the EPIYA-ABCCC motif has a strong positive relationship with gastric cancer in the Iranian population.
Collapse
Affiliation(s)
- M. Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M. Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
5
|
Tegtmeyer N, Ghete TD, Schmitt V, Remmerbach T, Cortes MCC, Bondoc EM, Graf HL, Singer BB, Hirsch C, Backert S. Type IV secretion of Helicobacter pylori CagA into oral epithelial cells is prevented by the absence of CEACAM receptor expression. Gut Pathog 2020; 12:25. [PMID: 32435278 PMCID: PMC7222478 DOI: 10.1186/s13099-020-00363-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori typically colonizes the human stomach, but it can occasionally be detected in the oral cavity of infected persons. Clinical outcome as a result of gastric colonization depends on presence of the pathogenicity island cagPAI that encodes a type-IV secretion system (T4SS) for translocation of the effector protein CagA and ADP-heptose. Upon injection into target cells, CagA is phosphorylated, which can be demonstrated by in vitro infection of the gastric epithelial cell line AGS, resulting in cell elongation. Here we investigated whether H. pylori can exert these responses during interaction with cells from the oral epithelium. To this purpose, three oral epithelial cell lines, HN, CAL-27 and BHY, were infected with various virulent wild-type H. pylori strains, and CagA delivery and ADP-heptose-mediated pro-inflammatory responses were monitored. Results All three oral cell lines were resistant to elongation upon infection, despite similar bacterial binding capabilities. Moreover, T4SS-dependent CagA injection was absent. Resistance to CagA delivery was shown to be due to absence of CEACAM expression in these cell lines, while these surface molecules have recently been recognized as H. pylori T4SS receptors. Lack of CEACAM expression in HN, CAL-27 and BHY cells was overcome by genetic introduction of either CEACAM1, CEACAM5, or CEACAM6, which in each of the cell lines was proven sufficient to facilitate CagA delivery and phosphorylation upon H. pylori infection to levels similar to those observed with the gastric AGS cells. Pro-inflammatory responses, as measured by interleukin-8 ELISA, were induced to high levels in each cell line and CEACAM-independent. Conclusions These results show that lack of CEACAM receptors on the surface of the oral epithelial cells was responsible for resistance to H. pylori CagA-dependent pathogenic activities, and confirms the important role for the T4SS-dependent interaction of these receptors with H. pylori in the gastric epithelium.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Tabita Denisia Ghete
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Verena Schmitt
- 2Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Torsten Remmerbach
- 3Division of Clinical and Experimental Oral Medicine, Department of OMF-Surgery, Leipzig University Hospital, University of Leipzig, Leipzig, Germany
| | - Maria Celeste C Cortes
- 4Center for Basic Science Research (CBSR), Research and Biotechnology (R&B), St. Luke's Medical Center, Quezon City, Philippines
| | - Edgardo M Bondoc
- 5Institute for Digestive and Liver Diseases, St. Luke's Medical Center, Quezon City, Philippines
| | - Hans-Ludwig Graf
- 6Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Bernhard B Singer
- 2Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christian Hirsch
- 7Department of Paediatric Dentistry, University School of Dental Medicine, University of Leipzig, Leipzig, Germany
| | - Steffen Backert
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Sukhan DS, Vernygorodskyi SV, Haidukov NV, Ludkevich HP. Molecular and Genetic Aspects of Helicobacter pylori Interaction with Cells of Gastric Mucosa. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Dou X, Lee JY, Charness ME. Neuroprotective Peptide NAPVSIPQ Antagonizes Ethanol Inhibition of L1 Adhesion by Promoting the Dissociation of L1 and Ankyrin-G. Biol Psychiatry 2020; 87:656-665. [PMID: 31640849 PMCID: PMC7056560 DOI: 10.1016/j.biopsych.2019.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Ethanol causes developmental neurotoxicity partly by blocking adhesion mediated by the L1 neural cell adhesion molecule. This action of ethanol is antagonized by femtomolar concentrations of the neuropeptide NAPVSIPQ (NAP), an active fragment of the activity-dependent neuroprotective protein (ADNP). How femtomolar concentrations of NAP antagonize millimolar concentrations of ethanol is unknown. L1 sensitivity to ethanol requires L1 association with ankyrin-G; therefore, we asked whether NAP promotes the dissociation of ankyrin-G and L1. METHODS L1-ankyrin-G association was studied using immunoprecipitation, Western blotting, and immunofluorescence in NIH/3T3 cells transfected with wild-type and mutated human L1 genes. Phosphorylation of the ankyrin binding motif in the L1 cytoplasmic domain was studied after NAP treatment of intact cells, rat brain homogenates, and purified protein fragments. RESULTS Femtomolar concentrations of NAP stimulated the phosphorylation of tyrosine-1229 (L1-Y1229) at the ankyrin binding motif of the L1 cytoplasmic domain, leading to the dissociation of L1 from ankyrin-G and the spectrin-actin cytoskeleton. NAP increased the association of L1 and EphB2 and directly activated EphB2 phosphorylation of L1-Y1229. These actions of NAP were reproduced by P7A-NAP, a NAP variant that also blocks the teratogenic actions of ethanol, but not by I6A-NAP, which does not block ethanol teratogenesis as potently. Finally, knockdown of EPHB2 prevented ethanol inhibition of L1 adhesion in NIH/3T3 cells. CONCLUSIONS NAP potently antagonizes ethanol inhibition of L1 adhesion by stimulating EphB2 phosphorylation of L1-Y1229. EphB2 plays a critical role in synaptic development; its potent activation by NAP suggests that ADNP may mediate synaptic development partly by activating EphB2.
Collapse
Affiliation(s)
- Xiaowei Dou
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132
| | - Jerry Y. Lee
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132,Department of Neurology, Boston University, School of Medicine, Boston, MA 02119, To whom correspondence should be addressed. Michael E. Charness, M.D., VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132, Phone: 857-203-6011,
| |
Collapse
|
8
|
Ansari S, Akada J, Matsuo Y, Shiota S, Kudo Y, Okimoto T, Murakami K, Yamaoka Y. Epitope peptides of Helicobacter pylori CagA antibodies from sera by whole-peptide mapping. J Gastroenterol 2019; 54:1039-1051. [PMID: 31049715 PMCID: PMC6824978 DOI: 10.1007/s00535-019-01584-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Helicobacter pylori CagA has been found to be immuno-dominant protein and utilized for the diagnosis of the infection with cagA-positive strains. It is important to characterize the peptide epitopes capable of detecting serum anti-CagA antibodies to understand CagA immunogenicity. METHODS Sera from 171 Japanese patients were subjected for the epitope mapping study. Eighty seven peptides were designed from the CagA consensus sequence and were used for ELISA protocol to test the serum samples. The reacting anti-CagA IgG amounts to specific peptides were measured and compared. RESULTS The study revealed a strong reactivity of two peptides (c7-NNTEPIYAQVNKKKAGQAT and c8-AGQATSPEEPIYAQVAKKV) in H. pylori-infected group. Interestingly, these two peptides contained the well-known EPIYA-A and EPIYA-B region, respectively, which are two out of three CagA phosphorylation domains. Tyrosine-phosphorylation of these peptides reduced their reactivity in most sera. Moreover, additional peptides' mapping and chimeric-peptides' experiments indicated that the amino acids (QV and KK) accommodated in right-side flanking regions of both EPIYA-motifs were essential for their strong reactivity, whereas the third EPIYA-motif containing peptide (c12-GRSASPEPIYATIDFDEA) with differing flanking amino acids was not reactive in most cases. CONCLUSIONS Our results suggest that the amino acid sequences constituted in the two reactive peptides are the important immunogenic regions of CagA which would be useful to develop next-generation peptide-based diagnostic assays.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu-city, Oita 879-5593, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu-city, Oita 879-5593, Japan
| | - Yuichi Matsuo
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu-city, Oita 879-5593, Japan,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Seiji Shiota
- Department of General Medicine, Almeida Memorial Hospital, Oita, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu-city, Oita 879-5593, Japan,Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu-city, Oita 879-5593, Japan,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd. Houston, Texas 77030, USA
| |
Collapse
|
9
|
Doohan D, Miftahussurur M, Matsuo Y, Kido Y, Akada J, Matsuhisa T, Yee TT, Htet K, Aftab H, Vilaichone RK, Mahachai V, Ratanachu-Ek T, Tshering L, Waskito LA, Fauzia KA, Uchida T, Syam AF, Rezkitha YAA, Yamaoka Y. Characterization of a novel Helicobacter pylori East Asian-type CagA ELISA for detecting patients infected with various cagA genotypes. Med Microbiol Immunol 2019; 209:29-40. [PMID: 31549252 DOI: 10.1007/s00430-019-00634-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
Currently, Western-type CagA is used in most commercial Helicobacter pylori CagA ELISA kits for CagA detection rather than East Asian-type CagA. We evaluated the ability of the East Asian-type CagA ELISA developed by our group to detect anti-CagA antibody in patients infected with different cagA genotypes of H. pylori from four different countries in South Asia and Southeast Asia. The recombinant CagA protein was expressed and later purified using GST-tag affinity chromatography. The East Asian-type CagA-immobilized ELISA was used to measure the levels of anti-CagA antibody in 750 serum samples from Bhutan, Indonesia, Myanmar, and Bangladesh. The cutoff value of the serum antibody in each country was determined via Receiver-Operating Characteristic (ROC) analysis. The cutoff values were different among the four countries studied (Bhutan, 18.16 U/mL; Indonesia, 6.01 U/mL; Myanmar, 10.57 U/mL; and Bangladesh, 6.19 U/mL). Our ELISA had better sensitivity, specificity, and accuracy of anti-CagA antibody detection in subjects predominantly infected with East Asian-type CagA H. pylori (Bhutan and Indonesia) than in those infected with Western-type CagA H. pylori predominant (Myanmar and Bangladesh). We found positive correlations between the anti-CagA antibody and antral monocyte infiltration in subjects from all four countries. There was no significant association between bacterial density and the anti-CagA antibody in the antrum or the corpus. The East Asian-type CagA ELISA had improved detection of the anti-CagA antibody in subjects infected with East Asian-type CagA H. pylori. The East Asian-type CagA ELISA should, therefore, be used in populations predominantly infected with East Asian-type CagA.
Collapse
Affiliation(s)
- Dalla Doohan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Muhammad Miftahussurur
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia.,Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Yuichi Matsuo
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Takeshi Matsuhisa
- Department of Gastroenterology, Tama-Nagayama University Hospital of Nippon Medical School, Tama, Japan
| | - Than Than Yee
- Department of GI and HBP Surgery, No (2), Defense Service General Hospital (1000 Bedded), Nay Pyi Taw, Myanmar
| | - Kyaw Htet
- Department of GI and HBP Surgery, No (1), Defense Service General Hospital (1000 Bedded), Mingalodon, Yangon, Myanmar
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka, Bangladesh
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Department of Medicine, Thammasat University Hospital, Pathum Thani, Thailand
| | - Varocha Mahachai
- GI and Liver Center, Bangkok Medical Center, Bangkok, 10310, Thailand
| | | | - Lotay Tshering
- Department of Surgery, Jigme Dorji Wangchuck National Referral Hospital, Thimphu, 11001, Bhutan
| | - Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia.,Faculty of Medicine, University of Muhammadiyah Surabaya, Surabaya, 60113, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan. .,Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60131, Indonesia. .,Department of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N. Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel) 2019; 11:cancers11081163. [PMID: 31412675 PMCID: PMC6721621 DOI: 10.3390/cancers11081163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The gastric pathogen and carcinogen Helicobacter pylori(H. pylori) encodes a type IV secretion system for translocation of the effector protein CagA into host cells. Injected CagA becomes tyrosine-phosphorylated at the five amino acid residue Glutamate-Proline- Isoleucine-Tyrosine-Alanine (EPIYA)-sequence motifs. These phosphorylated EPIYA-sites represent recognition motifs for binding of multiple host factors, which then manipulate signaling pathways to trigger gastric disease. Thus, efficient detection of single phosphorylated EPIYA-motifs in CagA is required. Detection of phospho-CagA is primarily performed using commercial pan-phosphotyrosine antibodies. However, those antibodies were originally generated to recognize many phosphotyrosines in various mammalian proteins and are not optimized for use in bacteria. To address this important limitation, we synthesized 11-mer phospho- and non-phospho-peptides from EPIYA-motifs A, B, and C, and produced three phospho-specific and three non-phospho-specific rabbit polyclonal CagA antibodies. These antibodies specifically recognized the corresponding phosphorylated and non-phosphorylated EPIYA-motifs, while the EPIYA-C antibodies also recognized the related East-Asian EPIYA-D motif. Otherwise, no cross-reactivity of the antibodies among EPIYAs was observed. Western blotting demonstrated that each EPIYA-motif can be predominantly phosphorylated during H. pylori infection. This represents the first complete set of phospho-specific antibodies for an effector protein in bacteria, providing useful tools to gather information for the categorization of CagA phosphorylation, cancer signaling, and gastric disease progression.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Andrés Julián Gutiérrez-Escobar
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany.
| |
Collapse
|
11
|
Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species. Curr Top Microbiol Immunol 2019; 413:297-321. [PMID: 29536364 DOI: 10.1007/978-3-319-75241-9_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.
Collapse
|
12
|
Falkeis-Veits C, Vieth M. Non-malignant Helicobacter pylori-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:121-134. [PMID: 31016630 DOI: 10.1007/5584_2019_362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection of the human stomach is associated with chronic gastritis, peptic ulcer disease or gastric carcinoma, and thus a high burden for the public health systems worldwide. Fortunately, only a small subfraction of up to 15-20% of infected individuals will develop serious complications. Unfortunately, it is not always known upfront, who will be affected by serious diesease outcome. For risk stratifications, it is therefore necessary to establish a common terminology and grading system, that can be applied worldwide to compare population data. The updated Sydney System for classification of gastritis with its semi-quantitative analogue scale is the system, that is currently used worldwide. Additionally, pathologists should always try to classify the etiology of the inflammatory infiltrates in the stomach to instruct the clinicians for choosing a proper treatment regime. Risk factors such as intestinal metaplasia, atrophy and scoring systems to classify these risk factors into a clinical context such as OLGA and OLGIM are discussed. Also, special forms of gastritis like lymphocytic gastritis, autoimmune gastritis and peptic ulcer disease are explained and discussed e.g. how to diagnose and how to treat. Extra-gastric sequelae of H. pylori infections inside and outside the stomach are shown in this chapter as well. Important host and bacterial risk factors such as pathogenicity islands are dicussed to draw a complete landscape around a H. pylori infection, that still can be diagnosed in patients. However, it needs to be noted that some countries have almost no H. pylori infection anymore, while others have still a very high frequency of infections with or without serious complications. The understanding and application of risk assessements may help to save money and quality of life. Extra-gastric H. pylori infections are rarely reported in the literature until today. The pathogenitiy is still under debate, but especially in the bile ducts and gallbladder, several pathological conditions may be also based on H. pylori infection, and will be also discussed.
Collapse
Affiliation(s)
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany.
| |
Collapse
|
13
|
Genetic Polymorphisms in Inflammatory and Other Regulators in Gastric Cancer: Risks and Clinical Consequences. Curr Top Microbiol Immunol 2019; 421:53-76. [PMID: 31123885 DOI: 10.1007/978-3-030-15138-6_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection is associated with the development of a chronic inflammatory response, which may induce peptic ulcers, gastric cancer (GC), and mucosa-associated lymphoid tissue (MALT) lymphoma. Chronic H. pylori infection promotes the genetic instability of gastric epithelial cells and interferes with the DNA repair systems in host cells. Colonization of the stomach with H. pylori is an important cause of non-cardia GC and gastric MALT lymphoma. The reduction of GC development in patients who underwent anti-H. pylori eradication schemes has also been well described. Individual susceptibility to GC development depends on the host's genetic predisposition, H. pylori virulence factors, environmental conditions, and geographical determinants. Biological determinants are urgently sought to predict the clinical course of infection in individuals with confirmed H. pylori infection. Possible candidates for such biomarkers include genetic aberrations such as single-nucleotide polymorphisms (SNPs) found in various cytokines/growth factors (e.g., IL-1β, IL-2, IL-6, IL-8, IL-10, IL-13, IL-17A/B, IFN-γ, TNF, TGF-β) and their receptors (IL-RN, TGFR), innate immunity receptors (TLR2, TLR4, CD14, NOD1, NOD2), enzymes involved in signal transduction cascades (PLCE1, PKLR, PRKAA1) as well as glycoproteins (MUC1, PSCA), and DNA repair enzymes (ERCC2, XRCC1, XRCC3). Bacterial determinants related to GC development include infection with CagA-positive (particularly with a high number of EPIYA-C phosphorylation motifs) and VacA-positive isolates (in particular s1/m1 allele strains). The combined genotyping of bacterial and host determinants suggests that the accumulation of polymorphisms favoring host and bacterial features increases the risk for precancerous and cancerous lesions in patients.
Collapse
|
14
|
Javed S, Skoog EC, Solnick JV. Impact of Helicobacter pylori Virulence Factors on the Host Immune Response and Gastric Pathology. Curr Top Microbiol Immunol 2019; 421:21-52. [PMID: 31123884 DOI: 10.1007/978-3-030-15138-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori chronically infects nearly half the world's population, yet most of those infected remain asymptomatic throughout their lifetime. The outcome of infection-peptic ulcer disease or gastric cancer versus asymptomatic colonization-is a product of host genetics, environmental influences, and differences in bacterial virulence factors. Here, we review the current understanding of the cag pathogenicity island (cagPAI), the vacuolating cytotoxin (VacA), and a large family of outer membrane proteins (OMPs), which are among the best understood H. pylori virulence determinants that contribute to disease. Each of these virulence factors is characterized by allelic and phenotypic diversity that is apparent within and across individuals, as well as over time, and modulates inflammation. From the bacterial perspective, inflammation is probably a necessary evil because it promotes nutrient acquisition, but at the cost of reduction in bacterial load and therefore decreases the chance of transmission to a new host. The general picture that emerges is one of a chronic bacterial infection that is dependent on both inducing and carefully regulating the host inflammatory response. A better understanding of these regulatory mechanisms may have implications for the control of chronic inflammatory diseases that are increasingly common causes of human morbidity and mortality.
Collapse
Affiliation(s)
- Sundus Javed
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Emma C Skoog
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Jay V Solnick
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA. .,Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Tegtmeyer N, Harrer A, Schmitt V, Singer BB, Backert S. Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA byHelicobacter pylori. Cell Microbiol 2018; 21:e12965. [DOI: 10.1111/cmi.12965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Verena Schmitt
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Bernhard B. Singer
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| |
Collapse
|
16
|
Unusual Manifestation of Live Staphylococcus saprophyticus, Corynebacterium urinapleomorphum, and Helicobacter pylori in the Gallbladder with Cholecystitis. Int J Mol Sci 2018; 19:ijms19071826. [PMID: 29933576 PMCID: PMC6073424 DOI: 10.3390/ijms19071826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Culture-independent studies have identified DNA of bacterial pathogens in the gallbladder under pathological conditions, yet reports on the isolation of corresponding live bacteria are rare. Thus, it is unclear which pathogens, or pathogen communities, can colonize the gallbladder and cause disease. Using light microscopy, scanning electron microscopy, culture techniques, phylogenetic analysis, urease assays and Western blotting, we investigated the presence of live bacterial communities in the gallbladder of a cholecystitis patient after cholecystectomy. 16S rRNA gene sequencing of isolated bacterial colonies revealed the presence of pathogens most closely resembling Corynebacterium urinapleomorphum nov. sp., Staphylococcus saprophyticus and Helicobacter pylori. The latter colonies were confirmed as H. pylori by immunohistochemistry and biochemical methods. H. pylori cultured from the gallbladder exhibited both the same DNA fingerprinting and Western cagA gene sequence with ABC-type EPIYA (Glu-Pro-Ile-Tyr-Ala) phosphorylation motifs as isolates recovered from the gastric mucus of the same patient, suggesting that gastric H. pylori can also colonize other organs in the human body. Taken together, here we report, for the first time, the identification and characterization of a community consisting of live S. saprophyticus; C. urinapleomorphum, and H. pylori in the gallbladder of a patient with acute cholecystitis. Their potential infection routes and roles in pathogenesis are discussed.
Collapse
|
17
|
Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol 2018; 13:1041-1054. [PMID: 29927340 DOI: 10.2217/fmb-2018-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) has an essential role in the pathogenesis of gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma and gastric cancer. The severity of the host inflammatory responses against the bacteria have been straightly associated with a special bacterial virulence factor, the cag pathogenicity island, which is a type IV secretion system (T4SS) to deliver CagA into the host cells. Besides cag-T4SS, the chromosomes of H. pylori can encode another three T4SSs, including comB, tfs3 and tfs4. In this review, we systematically reviewed the four T4SSs of H. pylori and explored their roles in the pathogenesis of gastroduodenal diseases. The information summarized in this review might provide valuable insights into the pathogenic mechanism for H. pylori.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ying Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
18
|
Vaziri F, Tarashi S, Fateh A, Siadat SD. New insights of Helicobacter pylori host-pathogen interactions: The triangle of virulence factors, epigenetic modifications and non-coding RNAs. World J Clin Cases 2018; 6:64-73. [PMID: 29774218 PMCID: PMC5955730 DOI: 10.12998/wjcc.v6.i5.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, MicroRNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.
Collapse
Affiliation(s)
- Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
19
|
Backert S, Haas R, Gerhard M, Naumann M. The Helicobacter pylori Type IV Secretion System Encoded by the cag Pathogenicity Island: Architecture, Function, and Signaling. Curr Top Microbiol Immunol 2018. [DOI: 10.1007/978-3-319-75241-9_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Harrer A, Boehm M, Backert S, Tegtmeyer N. Overexpression of serine protease HtrA enhances disruption of adherens junctions, paracellular transmigration and type IV secretion of CagA by Helicobacter pylori. Gut Pathog 2017; 9:40. [PMID: 28770008 PMCID: PMC5526239 DOI: 10.1186/s13099-017-0189-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The serine protease HtrA is an important factor for regulating stress responses and protein quality control in bacteria. In recent studies, we have demonstrated that the gastric pathogen Helicobacter pylori can secrete HtrA into the extracellular environment, where it cleaves-off the ectodomain of the tumor suppressor and adherens junction protein E-cadherin on gastric epithelial cells. RESULTS E-cadherin cleavage opens cell-to-cell junctions, allowing paracellular transmigration of the bacteria across polarized monolayers of MKN-28 and Caco-2 epithelial cells. However, rapid research progress on HtrA function is mainly hampered by the lack of ΔhtrA knockout mutants, suggesting that htrA may represent an essential gene in H. pylori. To circumvent this major handicap and to investigate the role of HtrA further, we overexpressed HtrA by introducing a second functional htrA gene copy in the chromosome and studied various virulence properties of the bacteria. The resulting data demonstrate that overexpression of HtrA in H. pylori gives rise to elevated rates of HtrA secretion, cleavage of E-cadherin, bacterial transmigration and delivery of the type IV secretion system (T4SS) effector protein CagA into polarized epithelial cells, but did not affect IL-8 chemokine production or the secretion of vacuolating cytotoxin VacA and γ-glutamyl-transpeptidase GGT. CONCLUSIONS These data provide for the first time genetic evidence in H. pylori that HtrA is a novel major virulence factor controlling multiple pathogenic activities of this important microbe.
Collapse
Affiliation(s)
- Aileen Harrer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Manja Boehm
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
21
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
22
|
Structural Insights into Helicobacter pylori Cag Protein Interactions with Host Cell Factors. Curr Top Microbiol Immunol 2017; 400:129-147. [PMID: 28124152 DOI: 10.1007/978-3-319-50520-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The most virulent strains of Helicobacter pylori carry a genomic island (cagPAI) containing a set of 27-31 genes. The encoded proteins assemble a syringe-like apparatus to inject the cytotoxin-associated gene A (CagA) protein into gastric cells. This molecular device belongs to the type IV secretion system (T4SS) family albeit with unique characteristics. The cagPAI-encoded T4SS and its effector protein CagA have an intricate relationship with the host cell, with multiple interactions that only start to be deciphered from a structural point of view. On the one hand, the major roles of the interactions between CagL and CagA (and perhaps CagI and CagY) and host cell factors are to facilitate H. pylori adhesion and to mediate the injection of the CagA oncoprotein. On the other hand, CagA interactions with host cell partners interfere with cellular pathways to subvert cell defences and to promote H. pylori infection. Although a clear mechanism for CagA translocation is still lacking, the structural definition of CagA and CagL domains involved in interactions with signalling proteins are progressively coming to light. In this chapter, we will focus on the structural aspects of Cag protein interactions with host cell molecules, critical molecular events precluding H. pylori-mediated gastric cancer development.
Collapse
|
23
|
Bernardini G, Figura N, Ponzetto A, Marzocchi B, Santucci A. Application of proteomics to the study of Helicobacter pylori and implications for the clinic. Expert Rev Proteomics 2017; 14:477-490. [PMID: 28513226 DOI: 10.1080/14789450.2017.1331739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world's population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers. Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection. Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.
Collapse
Affiliation(s)
- Giulia Bernardini
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Natale Figura
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Antonio Ponzetto
- b Dipartimento di Scienze Mediche , Università degli Studi di Torino , Torino , Italy
| | - Barbara Marzocchi
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| |
Collapse
|
24
|
Backert S, Tegtmeyer N. Type IV Secretion and Signal Transduction of Helicobacter pylori CagA through Interactions with Host Cell Receptors. Toxins (Basel) 2017; 9:E115. [PMID: 28338646 PMCID: PMC5408189 DOI: 10.3390/toxins9040115] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a highly successful human bacterium, which is exceptionally equipped to persistently inhabit the human stomach. Colonization by this pathogen is associated with gastric disorders ranging from chronic gastritis and peptic ulcers to cancer. Highly virulent H. pylori strains express the well-established adhesins BabA/B, SabA, AlpA/B, OipA, and HopQ, and a type IV secretion system (T4SS) encoded by the cag pathogenicity island (PAI). The adhesins ascertain intimate bacterial contact to gastric epithelial cells, while the T4SS represents an extracellular pilus-like structure for the translocation of the effector protein CagA. Numerous T4SS components including CagI, CagL, CagY, and CagA have been shown to target the integrin-β₁ receptor followed by translocation of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine and CagA-containing outer membrane vesicles may also play a role in the delivery process. Translocated CagA undergoes tyrosine phosphorylation in C-terminal EPIYA-repeat motifs by oncogenic Src and Abl kinases. CagA then interacts with an array of host signaling proteins followed by their activation or inactivation in phosphorylation-dependent and phosphorylation-independent fashions. We now count about 25 host cell binding partners of intracellular CagA, which represent the highest quantity of all currently known virulence-associated effector proteins in the microbial world. Here we review the research progress in characterizing interactions of CagA with multiple host cell receptors in the gastric epithelium, including integrin-β₁, EGFR, c-Met, CD44, E-cadherin, and gp130. The contribution of these interactions to H. pylori colonization, signal transduction, and gastric pathogenesis is discussed.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany.
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany.
| |
Collapse
|
25
|
Backert S, Schmidt TP, Harrer A, Wessler S. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori's Attack on Tight and Adherens Junctions. Curr Top Microbiol Immunol 2017; 400:195-226. [PMID: 28124155 DOI: 10.1007/978-3-319-50520-6_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Thomas P Schmidt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020, Salzburg, Austria
| | - Aileen Harrer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Silja Wessler
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020, Salzburg, Austria.
| |
Collapse
|
26
|
Hashinaga M, Suzuki R, Akada J, Matsumoto T, Kido Y, Okimoto T, Kodama M, Murakami K, Yamaoka Y. Differences in amino acid frequency in CagA and VacA sequences of Helicobacter pylori distinguish gastric cancer from gastric MALT lymphoma. Gut Pathog 2016; 8:54. [PMID: 27833662 PMCID: PMC5101760 DOI: 10.1186/s13099-016-0137-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Helicobacter pylori is a pathogenic bacterium that causes various gastrointestinal diseases. The most common gastric malignancies associated with H. pylori are gastric cancer and lymphoma of mucosa associated lymphoid tissue (MALT). Helicobacter pylori virulence genes, namely cagA and vacA, are known to be associated with malignancy development. Conventionally, cagA and vacA were classified by looking at partial sequences of the genes. However, such genotyping has hardly proven useful predicting different risks for gastric cancer or MALT lymphoma. In search of new loci that distinguish these diseases, we investigated the full sequences of cagA and vacA. Results We compared cagA and vacA sequences of 18 and 12 H. pylori strains obtained, respectively, from patients with gastric cancer and MALT lymphoma in Oita, Japan. Conventional genotyping of cagA and vacA showed no significant difference between the two diseases. We further investigated the full protein sequences of CagA and VacA to identify loci where allele frequency was significantly different between the diseases. We found four such loci on CagA, and three such loci on VacA. We also inspected the corresponding loci on the genes of 22 gastritis strains that potentially lead to gastric cancer or MALT lymphoma in the long run. Significant differences were observed at one CagA locus between gastritis and MALT lymphoma strains, and at one VacA locus between gastritis and gastric cancer strains. Conclusions We found novel candidate loci in H. pylori virulence genes in association with two different types of gastric malignancies that could not be differentiated by conventional genotyping. Biological connotations of the amino acid polymorphisms merit further study. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0137-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masahiko Hashinaga
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan ; Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan ; Faculty of Welfare and Health Science, Oita University, 700 Dannoharu, Oita, Oita 870-1192 Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan ; Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX USA
| |
Collapse
|
27
|
Abstract
Helicobacter pylori is estimated to infect more than half of the worlds human population and represents a major risk factor for chronic gastritis, peptic ulcer disease, MALT lymphoma, and gastric adenocarcinoma. H. pylori infection and clinical consequences are controlled by highly complex interactions between the host, colonizing bacteria, and environmental parameters. Important bacterial determinants linked with gastric disease development include the cag pathogenicity island encoding a type IV secretion system (T4SS), the translocated effector protein CagA, vacuolating cytotoxin VacA, adhesin BabA, urease, serine protease HtrA, secreted outer membrane vesicles, and many others. The high quantity of these factors and allelic changes in the corresponding genes reveals a sophisticated picture and problems in evaluating the impact of each distinct component. Extensive work has been performed to pinpoint molecular processes related to H. pylori-triggered pathogenesis using Mongolian gerbils, mice, primary tissues, as well as novel in vitro model systems such as gastroids. The manipulation of host signaling cascades by the bacterium appears to be crucial for inducing pathogenic downstream activities and gastric disease progression. Here, we review the most recent advances in this important research area.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Neddermann
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|