1
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Ma C, Mei C, Liu J, Li H, Jiao M, Hu H, Zhang Y, Xiong J, He Y, Wei W, Yang H, Chen H. Effect of baicalin on eradicating biofilms of bovine milk derived Acinetobacter lwoffii. BMC Vet Res 2024; 20:212. [PMID: 38764041 PMCID: PMC11103975 DOI: 10.1186/s12917-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.
Collapse
Affiliation(s)
- Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Cui Mei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
3
|
Naidoo N, Zishiri OT. Comparative genomics analysis and characterization of Shiga toxin-producing Escherichia coli O157:H7 strains reveal virulence genes, resistance genes, prophages and plasmids. BMC Genomics 2023; 24:791. [PMID: 38124028 PMCID: PMC10731853 DOI: 10.1186/s12864-023-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has been linked to global disease outbreaks. These diseases include hemorrhagic colitis and hemolytic uremic syndrome. It is vital to know the features that make this strain pathogenic to understand the development of disease outbreaks. In the current study, a comparative genomic analysis was carried out to determine the presence of structural and functional features of O157:H7 strains obtained from 115 National Center for Biotechnology Information database. These strains of interest were analysed in the following programs: BLAST Ring Image Generator, PlasmidFinder, ResFinder, VirulenceFinder, IslandViewer 4 and PHASTER. Five strains (ECP19-198, ECP19-798, F7508, F8952, H2495) demonstrated a great homology with Sakai because of a few regions missing. Five resistant genes were identified, however, Macrolide-associated resistance gene mdf(A) was commonly found in all genomes. Majority of the strains (97%) were positive for 15 of the virulent genes (espA, espB, espF, espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC and tir). The plasmid analysis demonstrated that the IncF group was the most prevalent in the strains analysed. The prophage and genomic island analysis showed a distribution of bacteriophages and genomic islands respectively. The results indicated that structural and functional features of the many O157:H7 strains differ and may be a result of obtaining mobile genetic elements via horizontal gene transfer. Understanding the evolution of O157:H7 strains pathogenicity in terms of their structural and functional features will enable the development of detection and control of transmission strategies.
Collapse
Affiliation(s)
- Natalie Naidoo
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
4
|
Complete Genome Sequences of a Stress-Resistant Outbreak-Associated Shiga Toxin-Producing Escherichia coli O157:H7 Strain and a Variant with Enhanced Congo Red-Binding Capability. Microbiol Resour Announc 2023; 12:e0097422. [PMID: 36541783 PMCID: PMC9872708 DOI: 10.1128/mra.00974-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The genome sequences of Escherichia coli O157:H7 strain 380-94, which was isolated from a 1994 dry-cured salami outbreak, and a stronger Congo red-binding variant, RV06, were determined using long-read sequencing technology and de novo assembly. Both strains possessed one chromosome and one plasmid. Strain RV06 possessed a 4,769-bp deletion in the rcs region.
Collapse
|
5
|
Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci Rep 2022; 12:21104. [PMID: 36473894 PMCID: PMC9727105 DOI: 10.1038/s41598-022-25436-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris is a common inflammatory disorder affecting more than 80% of young adolescents. Cutibacterium acnes plays a role in the pathogenesis of acne lesions, although the mechanisms are poorly understood. The study aimed to explore the microbiome at different skin sites in adolescent acne and the role of biofilm production in promoting the growth and persistence of C. acnes isolates. Microbiota analysis showed a significantly lower alpha diversity in inflammatory lesions (LA) than in non-inflammatory (NI) lesions of acne patients and healthy subjects (HS). Differences at the species level were driven by the overabundance of C. acnes on LA than NI and HS. The phylotype IA1 was more represented in the skin of acne patients than in HS. Genes involved in lipids transport and metabolism, as well as potential virulence factors associated with host-tissue colonization, were detected in all IA1 strains independently from the site of isolation. Additionally, the IA1 isolates were more efficient in early adhesion and biomass production than other phylotypes showing a significant increase in antibiotic tolerance. Overall, our data indicate that the site-specific dysbiosis in LA and colonization by virulent and highly tolerant C. acnes phylotypes may contribute to acne development in a part of the population, despite the universal carriage of the microorganism. Moreover, new antimicrobial agents, specifically targeting biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne.
Collapse
|
6
|
Shen L, Zhang J, Xue J, Du L, Yuan L, Nie H, Dai S, Yu Q, Li Y. Regulation of ECP fimbriae-related genes by the transcriptional regulator RcsAB in Klebsiella pneumoniae NTUH-K2044. J Basic Microbiol 2022; 62:593-603. [PMID: 35132658 DOI: 10.1002/jobm.202100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Klebsiella pneumoniae is one of the major pathogens causing nosocomial infections. The regulator of capsule synthesis (Rcs) system is a complex signal transduction pathway that is involved in the regulation of virulence factors of K. pneumoniae as an important transcriptional regulator. The RcsAB box-like sequence was found to be present in the promoter-proximal regions of ykgK, one of the ECP fimbriae-related genes, which suggested the expression of ECP fimbriae may be regulated by RcsAB. The ykgK gene in K. pneumoniae has 86% similarity to the ecpR gene in Escherichia coli. Nucleotide sequence alignment revealed a similar ECP fimbriae gene cluster including six genes in K. pneumoniae, which was proved to be on the same operon in this study. The electrophoretic mobility shift assay and DNase I assay, relative fluorescence expression, β-galactosidase activity, and relative gene expression of ykgK in the wild-type and mutant strains were performed to determine the transcriptional regulation mechanism of RcsAB on ECP fimbriae. The mutant ΔykgK and complementary strain ΔykgK/cΔykgK were constructed to complete the Galleria mellonella larvae infection experiment and biofilm formation assay. This study showed that RcsAB binds directly to the promoter region of the ykgK gene to positively regulate ECP fimbriae-related gene clusters, and then positively affect the biofilm formation.
Collapse
Affiliation(s)
- Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jiaxue Zhang
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing, China
| | - Jian Xue
- Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hao Nie
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Sue Dai
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qian Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Sharma VK, Akavaram S, Bayles DO. Genomewide transcriptional response of Escherichia coli O157:H7 to norepinephrine. BMC Genomics 2022; 23:107. [PMID: 35135480 PMCID: PMC8822769 DOI: 10.1186/s12864-021-08167-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Chemical signaling between a mammalian host and intestinal microbes is health and maintenance of ‘healthy’ intestinal microbiota. Escherichia coli O157:H7 can hijack host- and microbiota-produced chemical signals for survival in a harsh and nutritionally competitive gastrointestinal environment and for intestinal colonization. Norepinephrine (NE) produced by sympathetic neurons of the enteric nervous system has been shown in vitro to induce expression of genes controlling E. coli O157:H7 swimming motility, acid resistance, and adherence to epithelial cells. A previous study used a microarray approach to identify differentially expressed genes in E. coli O157:H7 strain EDL933 in response to NE. To elucidate a comprehensive transcriptional response to NE, we performed RNA-Seq on rRNA-depleted RNA of E. coli O157:H7 strain NADC 6564, an isolate of a foodborne E. coli O157:H7 strain 86–24. The reads generated by RNA-Seq were mapped to NADC 6564 genome using HiSat2. The mapped reads were quantified by htseq-count against the genome of strain NADC 6564. The differentially expressed genes were identified by analyzing quantified reads by DESeq2. Results Of the 585 differentially expressed genes (≥ 2.0-fold; p < 0.05), many encoded pathways promoting ability of E. coli O157:H7 strain NADC 6564 to colonize intestines of carrier animals and to produce disease in an incidental human host through increased adherence to epithelial cells and production of Shiga toxins. In addition, NE exposure also induced the expression of genes encoding pathways conferring prolonged survival at extreme acidity, controlling influx/efflux of specific nutrients/metabolites, and modulating tolerance to various stressors. A correlation was also observed between the EvgS/EvgA signal transduction system and the ability of bacterial cells to survive exposure to high acidity for several hours. Many genes involved in nitrogen, sulfur, and amino acid uptake were upregulated while genes linked to iron (Fe3+) acquisition and transport were downregulated. Conclusion The availability of physiological levels of NE in gastrointestinal tract could serve as an important cue for E. coli O157:H7 to engineer its virulence, stress, and metabolic pathways for colonization in reservoir animals, such as cattle, causing illness in humans, and surviving outside of a host. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08167-z.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.,Current address: 4302 TX-332, Freeport, TX, 77541, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
8
|
Khambhati K, Patel J, Saxena V, A P, Jain N. Gene Regulation of Biofilm-Associated Functional Amyloids. Pathogens 2021; 10:490. [PMID: 33921583 PMCID: PMC8072697 DOI: 10.3390/pathogens10040490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023] Open
Abstract
Biofilms are bacterial communities encased in a rigid yet dynamic extracellular matrix. The sociobiology of bacterial communities within a biofilm is astonishing, with environmental factors playing a crucial role in determining the switch from planktonic to a sessile form of life. The mechanism of biofilm biogenesis is an intriguingly complex phenomenon governed by the tight regulation of expression of various biofilm-matrix components. One of the major constituents of the biofilm matrix is proteinaceous polymers called amyloids. Since the discovery, the significance of biofilm-associated amyloids in adhesion, aggregation, protection, and infection development has been much appreciated. The amyloid expression and assembly is regulated spatio-temporarily within the bacterial cells to perform a diverse function. This review provides a comprehensive account of the genetic regulation associated with the expression of amyloids in bacteria. The stringent control ensures optimal utilization of amyloid scaffold during biofilm biogenesis. We conclude the review by summarizing environmental factors influencing the expression and regulation of amyloids.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Jaykumar Patel
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Vijaylaxmi Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Parvathy A
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
9
|
Wang L, Wu Y, Cai P, Huang Q. The attachment process and physiological properties of Escherichia coli O157:H7 on quartz. BMC Microbiol 2020; 20:355. [PMID: 33213384 PMCID: PMC7677791 DOI: 10.1186/s12866-020-02043-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023] Open
Abstract
Background Manure application and sewage irrigation release many intestinal pathogens into the soil. After being introduced into the soil matrix, pathogens are commonly found to attach to soil minerals. Although the survival of mineral-associated Escherichia coli O157:H7 has been studied, a comprehensive understanding of the attachment process and physiological properties after attachment is still lacking. Results In this study, planktonic and attached Escherichia coli O157:H7 cells on quartz were investigated using RNA sequencing (RNA-seq) and the isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic method. Based on the transcriptomic and proteomic analyses and gene knockouts, functional two-component system pathways were required for efficient attachment; chemotaxis and the Rcs system were identified to play determinant roles in E. coli O157:H7 attachment on quartz. After attachment, the pyruvate catabolic pathway shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route. The survival rate of attached E. coli O157:H7 increased more than 10-fold under penicillin and vancomycin stress and doubled under alkaline pH and ferric iron stress. Conclusions These results contribute to the understanding of the roles of chemotaxis and the Rcs system in the attachment process of pathogens and indicate that the attachment of pathogens to minerals significantly elevates their resistance to antibiotics and environmental stress, which may pose a potential threat to public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02043-8.
Collapse
Affiliation(s)
- Liliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Balakrishnan S, Ibrahim KS, Duraisamy S, Sivaji I, Kandasamy S, Kumarasamy A, Kumar NS. Antiquorum sensing and antibiofilm potential of biosynthesized silver nanoparticles of Myristica fragrans seed extract against MDR Salmonella enterica serovar Typhi isolates from asymptomatic typhoid carriers and typhoid patients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2844-2856. [PMID: 31836973 DOI: 10.1007/s11356-019-07169-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Globally, Salmonella infection poses a major public health problem. Here, we report antibiofilm activity and quorum sensing inhibition of aqueous seeds extract of Myristica fragrans (nutmeg) and biosynthesized silver nanoparticles (AgNPs) against multidrug resistant (MDR) Salmonella enterica serovar Typhi (S. Typhi) isolated from typhoid patients and asymptomatic carriers. S. Typhi isolates revealed higher percentage (46%) of biofilm production identified by tissue culture plate (TCP) than Congo red agar (CRA) and tube adherence (TA) methods. The inhibition of biofilm-producing MDR S. Typhi isolates and pigment production of Chromobacterium violaceum (indicator bacteria) demonstrated the quorum sensing potential of nutmeg. The aqueous seed extract of nutmeg exhibited 87% of antibiofilm activity, while the biosynthesized AgNPs showed 99.1% of antibiofilm activity. Molecular docking studies of bioactive compounds of nutmeg against transcriptional regulatory protein RcsB and sensor kinase protein RcsC revealed interaction with the target proteins. It is proposed that biosynthesized AgNPs could be used as one of the effective candidates in treating asymptomatic typhoid carriers or typhoid patients and to control the subsistence of biofilm-producing S. Typhi strains or other pathogenic bacteria in the environment or industrial settings.
Collapse
Affiliation(s)
- Senthilkumar Balakrishnan
- Department of Medical Microbiology, College of Health and Medical Sciences, Haramaya University, Harar Campus, P.O. Box 235, Harar, Ethiopia.
| | - Kalibulla Syed Ibrahim
- PG and Research Department of Botany, PSG College of Arts & Science, Coimbatore, Tamil Nadu, 641014, India
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Senbagam Duraisamy
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Ilakkia Sivaji
- Department of Biotechnology, Muthayammal College of Arts & Science, Rasipuram, Tamil Nadu, 637408, India
| | - Selvam Kandasamy
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Tamil Nadu, 637501, India
| | - Anbarasu Kumarasamy
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | | |
Collapse
|
11
|
Sharma VK, Akavaram S, Schaut RG, Bayles DO. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7. BMC Genomics 2019; 20:196. [PMID: 30849935 PMCID: PMC6408774 DOI: 10.1186/s12864-019-5568-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains. Results The chromosome of NADC 6564 contained 5466 kb compared to reference strains Sakai (5498 kb) and EDL933 (5547 kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32–33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains. Conclusions These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors. Electronic supplementary material The online version of this article (10.1186/s12864-019-5568-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA
| | - Robert G Schaut
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.,Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, MS 36, P.O. Box 117, Oak Ridge, TN, 37831, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, Iowa, USA
| |
Collapse
|
12
|
Guo XP, Sun YC. New Insights into the Non-orthodox Two Component Rcs Phosphorelay System. Front Microbiol 2017; 8:2014. [PMID: 29089936 PMCID: PMC5651002 DOI: 10.3389/fmicb.2017.02014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023] Open
Abstract
The Rcs phosphorelay system, a non-orthodox two-component regulatory system, integrates environmental signals, regulates gene expression, and alters the physiological behavior of members of the Enterobacteriaceae family of Gram-negative bacteria. Recent studies of Rcs system focused on protein interactions, functions, and the evolution of Rcs system components and its auxiliary regulatory proteins. Herein we review the latest advances on the Rcs system proteins, and discuss the roles that the Rcs system plays in the environmental adaptation of various Enterobacteriaceae species.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Cimdins A, Simm R, Li F, Lüthje P, Thorell K, Sjöling Å, Brauner A, Römling U. Alterations of c-di-GMP turnover proteins modulate semi-constitutive rdar biofilm formation in commensal and uropathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28913868 PMCID: PMC5635171 DOI: 10.1002/mbo3.508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
Agar plate‐based biofilm of enterobacteria like Escherichia coli is characterized by expression of the extracellular matrix components amyloid curli and cellulose exopolysaccharide, which can be visually enhanced upon addition of the dye Congo Red, resulting in a red, dry, and rough (rdar) colony morphology. Expression of the rdar morphotype depends on the transcriptional regulator CsgD and occurs predominantly at ambient temperature in model strains. In contrast, commensal and pathogenic isolates frequently express the csgD‐dependent rdar morphotype semi‐constitutively, also at human host body temperature. To unravel the molecular basis of temperature‐independent rdar morphotype expression, biofilm components and c‐di‐GMP turnover proteins of seven commensal and uropathogenic E. coli isolates were analyzed. A diversity within the c‐di‐GMP signaling network was uncovered which suggests alteration of activity of the trigger phosphodiesterase YciR to contribute to (up)regulation of csgD expression and consequently semi‐constitutive rdar morphotype development.
Collapse
Affiliation(s)
- Annika Cimdins
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Simm
- Norwegian Veterinary Institute, Oslo, Norway
| | - Fengyang Li
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Lüthje
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Involvement of Two-Component Signaling on Bacterial Motility and Biofilm Development. J Bacteriol 2017; 199:JB.00259-17. [PMID: 28533218 DOI: 10.1128/jb.00259-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two-component signaling is a specialized mechanism that bacteria use to respond to changes in their environment. Nonpathogenic strains of Escherichia coli K-12 harbor 30 histidine kinases and 32 response regulators, which form a network of regulation that integrates many other global regulators that do not follow the two-component signaling mechanism, as well as signals from central metabolism. The output of this network is a multitude of phenotypic changes in response to changes in the environment. Among these phenotypic changes, many two-component systems control motility and/or the formation of biofilm, sessile communities of bacteria that form on surfaces. Motility is the first reversible attachment phase of biofilm development, followed by a so-called swim or stick switch toward surface organelles that aid in the subsequent phases. In the mature biofilm, motility heterogeneity is generated by a combination of evolutionary and gene regulatory events.
Collapse
|