1
|
Owens LA, Friant S, Martorelli Di Genova B, Knoll LJ, Contreras M, Noya-Alarcon O, Dominguez-Bello MG, Goldberg TL. VESPA: an optimized protocol for accurate metabarcoding-based characterization of vertebrate eukaryotic endosymbiont and parasite assemblages. Nat Commun 2024; 15:402. [PMID: 38195557 PMCID: PMC10776621 DOI: 10.1038/s41467-023-44521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Protocols for characterizing taxonomic assemblages by deep sequencing of short DNA barcode regions (metabarcoding) have revolutionized our understanding of microbial communities and are standardized for bacteria, archaea, and fungi. Unfortunately, comparable methods for host-associated eukaryotes have lagged due to technical challenges. Despite 54 published studies, issues remain with primer complementarity, off-target amplification, and lack of external validation. Here, we present VESPA (Vertebrate Eukaryotic endoSymbiont and Parasite Analysis) primers and optimized metabarcoding protocol for host-associated eukaryotic community analysis. Using in silico prediction, panel PCR, engineered mock community standards, and clinical samples, we demonstrate VESPA to be more effective at resolving host-associated eukaryotic assemblages than previously published methods and to minimize off-target amplification. When applied to human and non-human primate samples, VESPA enables reconstruction of host-associated eukaryotic endosymbiont communities more accurately and at finer taxonomic resolution than microscopy. VESPA has the potential to advance basic and translational science on vertebrate eukaryotic endosymbiont communities, similar to achievements made for bacterial, archaeal, and fungal microbiomes.
Collapse
Affiliation(s)
- Leah A Owens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sagan Friant
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Contreras
- Center for Biophysics and Biochemistry, Venezuelan Institute of Scientific Research (IVIC), Caracas, Venezuela
| | - Oscar Noya-Alarcon
- Centro Amazónico de Investigación y Control de Enfermedades Tropicales-CAICET, Puerto Ayacucho, Amazonas, Venezuela
| | - Maria G Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
- Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Theologidis I, Karamitros T, Vichou AE, Kizis D. Nanopore-Sequencing Metabarcoding for Identification of Phytopathogenic and Endophytic Fungi in Olive ( Olea europaea) Twigs. J Fungi (Basel) 2023; 9:1119. [PMID: 37998924 PMCID: PMC10672464 DOI: 10.3390/jof9111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Metabarcoding approaches for the identification of plant disease pathogens and characterization of plant microbial populations constitute a rapidly evolving research field. Fungal plant diseases are of major phytopathological concern; thus, the development of metabarcoding approaches for the detection of phytopathogenic fungi is becoming increasingly imperative in the context of plant disease prognosis. We developed a multiplex metabarcoding method for the identification of fungal phytopathogens and endophytes in olive young shoots, using the MinION sequencing platform (Oxford Nanopore Technologies). Selected fungal-specific primers were used to amplify three different genomic DNA loci (ITS, beta-tubulin, and 28S LSU) originating from olive twigs. A multiplex metabarcoding approach was initially evaluated using healthy olive twigs, and further assessed with naturally infected olive twig samples. Bioinformatic analysis of basecalled reads was carried out using MinKNOW, BLAST+ and R programming, and results were also evaluated using the BugSeq cloud platform. Data analysis highlighted the approaches based on ITS and their combination with beta-tubulin as the most informative ones according to diversity estimations. Subsequent implementation of the method on symptomatic samples identified major olive pathogens and endophytes including genera such as Cladosporium, Didymosphaeria, Paraconiothyrium, Penicillium, Phoma, Verticillium, and others.
Collapse
Affiliation(s)
- Ioannis Theologidis
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control & Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Attica, Greece
| | - Aikaterini-Eleni Vichou
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Dimosthenis Kizis
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| |
Collapse
|
3
|
Belair M, Pensec F, Jany JL, Le Floch G, Picot A. Profiling Walnut Fungal Pathobiome Associated with Walnut Dieback Using Community-Targeted DNA Metabarcoding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2383. [PMID: 37376008 DOI: 10.3390/plants12122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Walnut dieback can be caused by several fungal pathogenic species, which are associated with symptoms ranging from branch dieback to fruit necrosis and blight, challenging the one pathogen-one disease concept. Therefore, an accurate and extensive description of the walnut fungal pathobiome is crucial. To this end, DNA metabarcoding represents a powerful approach provided that bioinformatic pipelines are evaluated to avoid misinterpretation. In this context, this study aimed to determine (i) the performance of five primer pairs targeting the ITS region in amplifying genera of interest and estimating their relative abundance based on mock communities and (ii) the degree of taxonomic resolution using phylogenetic trees. Furthermore, our pipelines were also applied to DNA sequences from symptomatic walnut husks and twigs. Overall, our results showed that the ITS2 region was a better barcode than ITS1 and ITS, resulting in significantly higher sensitivity and/or similarity of composition values. The ITS3/ITS4_KYO1 primer set allowed to cover a wider range of fungal diversity, compared to the other primer sets also targeting the ITS2 region, namely, GTAA and GTAAm. Adding an extraction step to the ITS2 sequence influenced both positively and negatively the taxonomic resolution at the genus and species level, depending on the primer pair considered. Taken together, these results suggested that Kyo set without ITS2 extraction was the best pipeline to assess the broadest fungal diversity, with a more accurate taxonomic assignment, in walnut organs with dieback symptoms.
Collapse
Affiliation(s)
- Marie Belair
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Flora Pensec
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Jean-Luc Jany
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| |
Collapse
|
4
|
Langa-Lomba N, Grimplet J, Sánchez-Hernández E, Martín-Ramos P, Casanova-Gascón J, Julián-Lagunas C, González-García V. Metagenomic Study of Fungal Microbial Communities in Two PDO Somontano Vineyards (Huesca, Spain): Effects of Age, Plant Genotype, and Initial Phytosanitary Status on the Priming and Selection of their Associated Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2251. [PMID: 37375877 DOI: 10.3390/plants12122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The study of microbial communities associated with different plants of agronomic interest has allowed, in recent years, to answer a number of questions related to the role and influence of certain microbes in key aspects of their autoecology, such as improving the adaptability of the plant host to different abiotic or biotic stresses. In this study, we present the results of the characterization, through both high-throughput sequencing and classical microbiological methods, of the fungal microbial communities associated with grapevine plants in two vineyards of different ages and plant genotypes located in the same biogeographical unit. The study is configured as an approximation to the empirical demonstration of the concept of "microbial priming" by analyzing the alpha- and beta-diversity present in plants from two plots subjected to the same bioclimatic regime to detect differences in the structure and taxonomic composition of the populations. The results were compared with the inventories of fungal diversity obtained by culture-dependent methods to establish, where appropriate, correlations between both microbial communities. Metagenomic data showed a differential enrichment of the microbial communities in the two vineyards studied, including the populations of plant pathogens. This is tentatively explained due to factors such as the different time of exposure to microbial infection, different plant genotype, and different starting phytosanitary situation. Thus, results suggest that each plant genotype recruits differential fungal communities and presents different profiles of associated potential microbial antagonists or communities of pathogenic species.
Collapse
Affiliation(s)
- Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Jerome Grimplet
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - José Casanova-Gascón
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Carmen Julián-Lagunas
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| | - Vicente González-García
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| |
Collapse
|
5
|
Gökdemir FŞ, İşeri ÖD, Sharma A, Achar PN, Eyidoğan F. Metagenomics Next Generation Sequencing (mNGS): An Exciting Tool for Early and Accurate Diagnostic of Fungal Pathogens in Plants. J Fungi (Basel) 2022; 8:1195. [PMID: 36422016 PMCID: PMC9699264 DOI: 10.3390/jof8111195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/19/2023] Open
Abstract
Crop output is directly impacted by infections, with fungi as the major plant pathogens, making accurate diagnosis of these threats crucial. Developing technology and multidisciplinary approaches are turning to genomic analyses in addition to traditional culture methods in diagnostics of fungal plant pathogens. The metagenomic next-generation sequencing (mNGS) method is preferred for genotyping identification of organisms, identification at the species level, illumination of metabolic pathways, and determination of microbiota. Moreover, the data obtained so far show that this new approach is promising as an emerging new trend in fungal disease detection. Another approach covered by mNGS technologies, known as metabarcoding, enables use of specific markers specific to a genetic region and allows for genotypic identification by facilitating the sequencing of certain regions. Although the core concept of mNGS remains constant across applications, the specific sequencing methods and bioinformatics tools used to analyze the data differ. In this review, we focus on how mNGS technology, including metabarcoding, is applied for detecting fungal pathogens and its promising developments for the future.
Collapse
Affiliation(s)
- Fatma Şeyma Gökdemir
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
| | - Özlem Darcansoy İşeri
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
- Institute of Food, Agriculture and Livestock Development, Başkent University, Ankara 06790, Turkey
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201313, Uttar Pradesh, India
| | - Premila N. Achar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Füsun Eyidoğan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara 06790, Turkey
- Institute of Food, Agriculture and Livestock Development, Başkent University, Ankara 06790, Turkey
| |
Collapse
|
6
|
Travadon R, Lawrence DP, Moyer MM, Fujiyoshi PT, Baumgartner K. Fungal species associated with grapevine trunk diseases in Washington wine grapes and California table grapes, with novelties in the genera Cadophora, Cytospora, and Sporocadus. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1018140. [PMID: 37746176 PMCID: PMC10512239 DOI: 10.3389/ffunb.2022.1018140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 09/26/2023]
Abstract
Grapevine trunk diseases cause serious economic losses to grape growers worldwide. The identification of the causal fungi is critical to implementing appropriate management strategies. Through a culture-based approach, we identified the fungal species composition associated with symptomatic grapevines from wine grapes in southeastern Washington and table grapes in the southern San Joaquin Valley of California, two regions with contrasting winter climates. Species were confirmed through molecular identification, sequencing two to six gene regions per isolate. Multilocus phylogenetic analyses were used to identify novel species. We identified 36 species from 112 isolates, with a combination of species that are new to science, are known causal fungi of grapevine trunk diseases, or are known causal fungi of diseases of other woody plants. The novel species Cadophora columbiana, Cytospora macropycnidia, Cytospora yakimana, and Sporocadus incarnatus are formally described and introduced, six species are newly reported from North America, and grape is reported as a new host for three species. Six species were shared between the two regions: Cytospora viticola, Diatrype stigma, Diplodia seriata, Kalmusia variispora, Phaeoacremonium minimum, and Phaeomoniella chlamydospora. Dominating the fungal community in Washington wine grape vineyards were species in the fungal families Diatrypaceae, Cytosporaceae and Sporocadaceae, whereas in California table grape vineyards, the dominant species were in the families Diatrypaceae, Togniniaceae, Phaeomoniellaceae and Hymenochaetaceae. Pathogenicity tests demonstrated that 10 isolates caused wood discoloration similar to symptomatic wood from which they were originally isolated. Growth rates at temperatures from 5 to 35°C of 10 isolates per region, suggest that adaptation to local climate might explain their distribution.
Collapse
Affiliation(s)
- Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Michelle M. Moyer
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Phillip T. Fujiyoshi
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
7
|
Azevedo-Nogueira F, Rego C, Gonçalves HMR, Fortes AM, Gramaje D, Martins-Lopes P. The road to molecular identification and detection of fungal grapevine trunk diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:960289. [PMID: 36092443 PMCID: PMC9459133 DOI: 10.3389/fpls.2022.960289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions.
Collapse
Affiliation(s)
- Filipe Azevedo-Nogueira
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília Rego
- LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Margarida Fortes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - David Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, Logroño, Spain
| | - Paula Martins-Lopes
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Jiménez Luna I, Doll D, Ashworth VETM, Trouillas FP, Rolshausen PE. Comparative Profiling of Wood Canker Pathogens from Spore Traps and Symptomatic Plant Samples Within California Almond and Walnut Orchards. PLANT DISEASE 2022; 106:2182-2190. [PMID: 35077222 DOI: 10.1094/pdis-05-21-1057-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungi causing wood canker diseases are major factors limiting productivity and longevity of almond and walnut orchards. The goal of this study was to compare pathogen profiles from spore traps with those of plant samples collected from symptomatic almond and walnut trees and assess if profiles could be influenced by orchard type and age, rainfall amount and frequency, and/or neighboring trees. Three almond orchards and one walnut orchard with different characteristics were selected for this study. Fungal inoculum was captured weekly from nine trees per orchard using a passive spore-trapping device, during a 30-week period in the rainy season (October to April) and for two consecutive years. Fungal taxa identified from spore traps were compared with a collection of fungal isolates obtained from 61 symptomatic wood samples collected from the orchards. Using a culture-dependent approach coupled with molecular identification, we identified 18 known pathogenic species from 10 fungal genera (Ceratocystis destructans, Collophorina hispanica, Cytospora eucalypti, Diaporthe ampelina, Diaporthe chamaeropis/rhusicola, Diaporthe eres, Diaporthe novem, Diplodia corticola, Diplodia mutila, Diplodia seriata, Dothiorella iberica, Dothiorella sarmentorum, Dothiorella viticola, Eutypa lata, Neofusicoccum mediterraneum, Neofusicoccum parvum, Neoscytalidium dimidiatum, and Pleurostoma richardsiae), plus two unidentified Cytospora and Diaporthe species. However, only four species were identified with both methods (Diplodia mutila, Diplodia seriata, Dothiorella Iberica, and E. lata), albeit not consistently across orchards. Our results demonstrate a clear disparity between the two diagnostic methods and caution against using passive spore traps to predict disease risks. In particular, the spore trap approach failed to capture: insect-vectored pathogens such as Ceratocystis destructans that were often recovered from almond trunk and scaffold; Diaporthe chamaeropis/rhusicola commonly isolated from wood samples likely because Diaporthe species have a spatially restricted dispersal mechanism, as spores are exuded in a cirrus; and pathogenic species with low incidence in wood samples such as P. richardsiae and Collophorina hispanica. We propose that orchard inoculum is composed of both endemic taxa that are characterized by frequent and repeated trapping events from the same trees and isolated from plant samples, as well as immigrant taxa characterized by rare trapping events. We hypothesize that host type, orchard age, precipitation, and alternative hosts at the periphery of orchards are factors that could affect pathogen profile. We discuss the limitations and benefits of our methodology and experimental design to develop guidelines and prediction tools for fungal wood canker diseases in California orchards.
Collapse
Affiliation(s)
- Israel Jiménez Luna
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| | - David Doll
- University of California Agricultural and Natural Resources, Merced, CA 95343
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| | - Florent P Trouillas
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| |
Collapse
|
9
|
New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J Fungi (Basel) 2022; 8:jof8070737. [PMID: 35887492 PMCID: PMC9320658 DOI: 10.3390/jof8070737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
The fast and continued progress of high-throughput sequencing (HTS) and the drastic reduction of its costs have boosted new and unpredictable developments in the field of plant pathology. The cost of whole-genome sequencing, which, until few years ago, was prohibitive for many projects, is now so affordable that a new branch, phylogenomics, is being developed. Fungal taxonomy is being deeply influenced by genome comparison, too. It is now easier to discover new genes as potential targets for an accurate diagnosis of new or emerging pathogens, notably those of quarantine concern. Similarly, with the development of metabarcoding and metagenomics techniques, it is now possible to unravel complex diseases or answer crucial questions, such as "What's in my soil?", to a good approximation, including fungi, bacteria, nematodes, etc. The new technologies allow to redraw the approach for disease control strategies considering the pathogens within their environment and deciphering the complex interactions between microorganisms and the cultivated crops. This kind of analysis usually generates big data that need sophisticated bioinformatic tools (machine learning, artificial intelligence) for their management. Herein, examples of the use of new technologies for research in fungal diversity and diagnosis of some fungal pathogens are reported.
Collapse
|
10
|
Vanga BR, Panda P, Shah AS, Thompson S, Woolley RH, Ridgway HJ, Mundy DC, Bulman S. DNA metabarcoding reveals high relative abundance of trunk disease fungi in grapevines from Marlborough, New Zealand. BMC Microbiol 2022; 22:126. [PMID: 35538413 PMCID: PMC9088082 DOI: 10.1186/s12866-022-02520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/01/2022] [Indexed: 01/22/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are a threat to grape production worldwide, with a diverse collection of fungal species implicated in disease onset. Due to the long-term and complex nature of GTDs, simultaneous detection of multiple microbial species can enhance understanding of disease development. We used DNA metabarcoding of ribosomal internal transcribed spacer 1 (ITS1) sequences, supported by specific PCR and microbial isolation, to establish the presence of trunk pathogens across 11 vineyards (11–26 years old) over three years in Marlborough, the largest wine producing region in New Zealand. Using a reference database of trunk pathogen sequences, species previously associated with GTD, such as Cadophora luteo-olivacea, Diplodia seriata, Diplodia mutila, Neofusicoccum australe, and Seimatosporium vitis, were identified as highly represented across the vineyard region. The well-known pathogens Phaeomoniella chlamydospora and Eutypa lata had especially high relative abundance across the dataset, with P. chlamydospora reads present between 22 and 84% (average 52%) across the vineyards. Screening of sequences against broader, publicly available databases revealed further fungal species within families and orders known to contain pathogens, many of which appeared to be endemic to New Zealand. The presence of several wood-rotting basidiomycetes (mostly Hymenochaetales) was detected for the first time in the Marlborough vineyard region, notably, the native Inonotus nothofagii which was present at 1–2% relative abundance in two vineyards.
Collapse
Affiliation(s)
- Bhanupratap R Vanga
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Preeti Panda
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Anish S Shah
- Department of Pest Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, P O Box 84, Lincoln, 7647, New Zealand
| | - Sarah Thompson
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand
| | - Rebecca H Woolley
- Marlborough Wine Research Centre, The New Zealand Institute for Plant and Food Research Limited, PO Box 845, Blenheim, New Zealand
| | - Hayley J Ridgway
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand.,Department of Pest Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, P O Box 84, Lincoln, 7647, New Zealand
| | - Dion C Mundy
- Marlborough Wine Research Centre, The New Zealand Institute for Plant and Food Research Limited, PO Box 845, Blenheim, New Zealand
| | - Simon Bulman
- Canterbury Agriculture and Science Centre, The New Zealand Institute for Plant and Food Research Limited, Gerald St, Lincoln, 7608, New Zealand. .,Better Border Biosecurity (B3), Lincoln, 7608, New Zealand.
| |
Collapse
|
11
|
He X, Xie H, Gao D, Khashi U Rahman M, Zhou X, Wu F. Biochar and Intercropping With Potato-Onion Enhanced the Growth and Yield Advantages of Tomato by Regulating the Soil Properties, Nutrient Uptake, and Soil Microbial Community. Front Microbiol 2021; 12:695447. [PMID: 34512573 PMCID: PMC8429823 DOI: 10.3389/fmicb.2021.695447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The application of biochar stimulates the activities of microorganisms that affect soil quality and plant growth. However, studies on the impacts of biochar mainly focus on a monoculture, its effects on interspecific interactions are rarely reported. Here, we investigated the impacts of biochar on tomato/potato-onion intercropped (TO) in a pot experiment. Tomato monoculture (T) and TO were treated with no, 0.3, 0.6, and 1.2% biochar concentrations in a pot experiment. Microbial communities from tomato rhizosphere soil were analyzed by quantitative PCR and Illumina MiSeq. The results showed that compared with the tomato monoculture, 0.6%TO and 1.2%TO significantly increased tomato yield in 2018. TO and 1.2%TO significantly increased plant height and dry weight in 2018 and 2019. Biochar treatments increased soil pH, decreased NO 3 - -N and bulk density, and increased the absorption of N, P, and K by tomato. Bacterial and fungal abundances increased with an increase in biochar concentration, while Bacillus spp. and Pseudomonas spp. abundances showed an "increase-decrease-increase" trend. Biochar had a little effect on bacterial diversities but significantly lowered fungal diversities. TO, 0.6%TO, and 1.2%TO increased the potentially beneficial organisms (e.g., Pseudeurotium and Solirubrobacter) and lowered the potentially pathogenic organisms (e.g., Kribbella and Ilyonectria). Different concentrations of biochar affected the bacterial and fungal community structures. Redundancy analysis indicated that the bacterial community was strongly correlated with soil pH, NO 3 - -N, and EC, while the fungal community was closely related to soil NO 3 - -N and moisture. The network analysis showed that biochar and intercropping affected the symbiosis pattern of the microorganisms and increased the proportion of positive interactions and nitrifying microorganisms (Nitrospirae) in the microbial community. Overall, our results indicated that monoculture and intercropping with biochar improved soil physicochemical states and plant nutrient absorption, and regulated soil microbial communities, these were the main factors to promote tomato growth and increase tomato productivity.
Collapse
Affiliation(s)
- Xingjia He
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Hua Xie
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - M Khashi U Rahman
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Reiter T, Montpetit R, Byer S, Frias I, Leon E, Viano R, Mcloughlin M, Halligan T, Hernandez D, Figueroa-Balderas R, Cantu D, Steenwerth K, Runnebaum R, Montpetit B. Transcriptomics Provides a Genetic Signature of Vineyard Site and Offers Insight into Vintage-Independent Inoculated Fermentation Outcomes. mSystems 2021; 6:e00033-21. [PMID: 33850038 PMCID: PMC8546962 DOI: 10.1128/msystems.00033-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics.IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.
Collapse
Affiliation(s)
- Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Population Health and Reproduction, University of California, Davis, California, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Shelby Byer
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Isadora Frias
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Esmeralda Leon
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Robert Viano
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Michael Mcloughlin
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Thomas Halligan
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Desmon Hernandez
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Kerri Steenwerth
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, USA
| | - Ron Runnebaum
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Ben Montpetit
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| |
Collapse
|
13
|
Griggs RG, Steenwerth KL, Mills DA, Cantu D, Bokulich NA. Sources and Assembly of Microbial Communities in Vineyards as a Functional Component of Winegrowing. Front Microbiol 2021; 12:673810. [PMID: 33927711 PMCID: PMC8076609 DOI: 10.3389/fmicb.2021.673810] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Microbiomes are integral to viticulture and winemaking – collectively termed winegrowing – where diverse fungi and bacteria can exert positive and negative effects on grape health and wine quality. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. Site-specific variations in microbiota within and between vineyards may contribute to regional wine characteristics. This includes distinctions in microbiomes and microbiota at the strain level, which can contribute to wine flavor and aroma, supporting the role of microbes in the accepted notion of terroir as a biological phenomenon. Little is known about the factors driving microbial biodiversity within and between vineyards, or those that influence annual assembly of the fruit microbiome. Fruit is a seasonally ephemeral, yet annually recurrent product of vineyards, and as such, understanding the sources of microbiota in vineyards is critical to the assessment of whether or not microbial terroir persists with inter-annual stability, and is a key factor in regional wine character, as stable as the geographic distances between vineyards. This review examines the potential sources and vectors of microbiota within vineyards, general rules governing plant microbiome assembly, and how these factors combine to influence plant-microbe interactions relevant to winemaking.
Collapse
Affiliation(s)
- Reid G Griggs
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Kerri L Steenwerth
- USDA-ARS, Crops Pathology and Genetics Research Unit, Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, United States
| | - David A Mills
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Choudhary P, Singh BN, Chakdar H, Saxena AK. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J Microbiol Biotechnol 2021; 37:54. [PMID: 33604719 DOI: 10.1007/s11274-021-03019-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
DNA barcoding has proven to be a versatile tool for plant disease diagnostics in the genomics era. As the mass parallel and next generation sequencing techniques gained importance, the role of specific barcodes came under immense scrutiny. Identification and accurate classification of phytopathogens need a universal approach which has been the main application area of the concept of barcode. The present review entails a detailed description of the present status of barcode application in plant disease diagnostics. A case study on the application of Internal Transcribed Spacer (ITS) as barcode for Aspergillus and Fusarium spp. sheds light on the requirement of other potential candidates as barcodes for accurate identification. The challenges faced while barcoding novel pathogens have also been discussed with a comprehensive outline of integrating more recent technologies like meta-barcoding and genome skimming for detecting plant pathogens.
Collapse
Affiliation(s)
- Prassan Choudhary
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Bansh Narayan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| |
Collapse
|
15
|
Cover Crop Diversity as a Tool to Mitigate Vine Decline and Reduce Pathogens in Vineyard Soils. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wine grape production is an important economic asset in many nations; however, a significant proportion of vines succumb to grapevine trunk pathogens, reducing yields and causing economic losses. Cover crops, plants that are grown in addition to main crops in order to maintain and enhance soil composition, may also serve as a line of defense against these fungal pathogens by producing volatile root exudates and/or harboring suppressive microbes. We tested whether cover crop diversity reduced disease symptoms and pathogen abundance. In two greenhouse experiments, we inoculated soil with a 106 conidia suspension of Ilyonectria liriodendri, a pathogenic fungus, then conditioned soil with cover crops for several months to investigate changes in pathogen abundance and fungal communities. After removal of cover crops, Chardonnay cuttings were grown in the same soil to assess disease symptoms. When grown alone, white mustard was the only cover crop associated with reductions in necrotic root damage and abundance of Ilyonectria. The suppressive effects of white mustard largely disappeared when paired with other cover crops. In this study, plant identity was more important than diversity when controlling for fungal pathogens in vineyards. This research aligns with other literature describing the suppressive potential of white mustard in vineyards.
Collapse
|