1
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Arvaniti M, Balomenos A, Papadopoulou V, Tsakanikas P, Skandamis P. Modelling the colony growth dynamics of Listeria monocytogenes single cells after exposure to peracetic acid and acidic conditions. Food Res Int 2024; 191:114684. [PMID: 39059941 DOI: 10.1016/j.foodres.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Studies of classical microbiology rely on the average behaviour of large cell populations without considering that clonal bacterial populations may bifurcate into phenotypic distinct sub-populations by random switching mechanisms.Listeria monocytogenes exposure to sublethal stresses may induce different physiological states that co-exist (i.e., sublethal injury or dormancy) and present variable resuscitation capacity. Exposures to peracetic acid (PAA; 10-30 ppm; for 3 h), acetic acid and hydrochloric acid (AA and HCl; pH 3.0-2.5; for 5 h) at 20 °C were used to induce different physiological states in L. monocytogenes, Scott A strain. After stress exposure, colony growth of single cells was monitored, on Tryptic Soy Agar supplemented with 0.6 % Yeast Extract, using time-lapse microscopy, at 37 °C. Images were acquired every 5 min and were analyzed using BaSCA framework. Most of the obtained growth curves of the colonies were fitted to the model of Baranyi and Roberts for the estimation of lag time (λ) and maximum specific growth rate (μmax), except the ones obtained after exposure to AA pH 2.7 and 2.5 that were fitted to the Trilinear model. The data of λ and μmax that followed a multivariate normal distribution were used to predict growth variability using Monte Carlo simulations. Outgrowth kinetics after treatment with AA (pH 2.7 and 2.5; for 5 h at 20 °C), PAA (30 ppm; for 3 h at 20 °C) revealed that these stress conditions increase the skewness of the variability distributions to the right, meaning that the variability in lag times increases in favour of longer outgrowth. Exposures to AA pH 2.5 and 30 ppm PAA resulted in two distinct subpopulations per generation with different growth dynamics. This switching mechanism may have evolved as a survival strategy for L. monocytogenes cells, maximizing the chances of survival. Simulation of microbial growth showed that heterogeneity in growth dynamics is increased when cells are recovering from exposure to sublethal stresses (i.e. PAA and acidic conditions) that may induce injury or dormancy.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Athanasios Balomenos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Vasiliki Papadopoulou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis Tsakanikas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Avitabile E, Menotti L, Croatti V, Giordani B, Parolin C, Vitali B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int J Mol Sci 2024; 25:9168. [PMID: 39273118 PMCID: PMC11395631 DOI: 10.3390/ijms25179168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The healthy cervicovaginal microbiota is dominated by various Lactobacillus species, which support a condition of eubiosis. Among their many functions, vaginal lactobacilli contribute to the maintenance of an acidic pH, produce antimicrobial compounds, and modulate the host immune response to protect against vaginal bacterial and fungal infections. Increasing evidence suggests that these beneficial bacteria may also confer protection against sexually transmitted infections (STIs) caused by viruses such as human papillomavirus (HPV), human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Viral STIs pose a substantial public health burden globally, causing a range of infectious diseases with potentially severe consequences. Understanding the molecular mechanisms by which lactobacilli exert their protective effects against viral STIs is paramount for the development of novel preventive and therapeutic strategies. This review aims to provide more recent insights into the intricate interactions between lactobacilli and viral STIs, exploring their impact on the vaginal microenvironment, host immune response, viral infectivity and pathogenesis, and highlighting their potential implications for public health interventions and clinical management strategies.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
4
|
Luo H, Zhou C, Zhou L, He Y, Xie RH. The effectiveness of vaginal microbiota transplantation for vaginal dysbiosis and bacterial vaginosis: a scoping review. Arch Gynecol Obstet 2024; 310:643-653. [PMID: 38914708 DOI: 10.1007/s00404-024-07611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVE To comprehensively summarize the existing evidence on the effectiveness of vaginal microbiota transplantation (VMT) in treating vaginal dysbiosis (VD) and bacterial vaginosis (BV). METHODS Following the PRISMA-ScR guidelines, a scoping review was conducted through October 10, 2023, using the databases PubMed, Embase, Scopus, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, SinoMed, Weipu (VIP), ClinicalTrials.gov and the Chinese clinical trial registry. RESULTS A total of 12 studies were included, of which 7 were published (comprising 3 human and 4 animal studies), and 5 were ongoing registered trials (human). Of the published human studies involving 36 women, one focused on VD, and two investigated BV. These studies reported that VMT restored the Lactobacillus-dominated vaginal microbiota, alleviating symptoms. In animal studies with 145 female rats or mice, VMT was explored for one case of VD and three cases of BV, demonstrating a reduction in the expression of IL-1β and TNF-α. Additionally, two of the animal studies also indicated an increase in the number of Lactobacilli following VMT. The ongoing registered trials involved 556 women, with two focusing on VD and three targeting BV. CONCLUSIONS VMT shows promise in restoring the Lactobacillus-dominated vaginal microbiota among women with VD or BV. Moreover, animal studies have indicated an increase in the number of Lactobacilli and a decrease in the expression of IL-1β and TNF-α following VMT. Ongoing registered trials are expected to provide comprehensive evidence regarding the efficacy of VMT.
Collapse
Affiliation(s)
- Haiqin Luo
- School of Nursing, Jinan University, Guangzhou, China
| | - Chuhui Zhou
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Lepeng Zhou
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ri-Hua Xie
- School of Nursing, Jinan University, Guangzhou, China.
- School of Nursing, Southern Medical University, Guangzhou, China.
- Women and Children Medical Research Center, Foshan Women and Children Hospital, 20 Huayang South Road, Shunde Distirct, Foshan, 528000, Guangdong, China.
| |
Collapse
|
5
|
Eichler S, Panz M, Harder A, Masur C, Häuser M, Wiesche ESZ. An effective non-hormonal option with high tolerability for mild to moderate symptoms of vaginal dryness associated with menopause. Maturitas 2024; 185:107978. [PMID: 38583316 DOI: 10.1016/j.maturitas.2024.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVES The efficacy and tolerability of a non-hormonal pessary (that forms an oil-in-water emollient with the vaginal fluid) were assessed for the treatment of symptoms of vaginal dryness associated with menopause. STUDY DESIGN Seventy-nine postmenopausal women (mean age 60.8 ± 6.5 years) with mild to moderate symptoms of vaginal dryness (including dyspareunia) were enrolled in this open-label, prospective, post-market clinical follow-up trial, conducted in 2022 by one research center in Germany. The investigational pessary was applied for the first 7 days once daily and the subsequent 31 days twice a week, at bedtime. A treatment-free period of 6 days completed the trial. MAIN OUTCOME MEASURES During the trial, participants filled out questionnaires that enabled the calculation of a total severity score for subjective symptoms of atrophy-related vaginal dryness and impairment of daily as well as sexual life. Furthermore, vaginal health index and safety were studied. RESULTS A rapid and significant reduction in the severity scores for symptoms was observed over the 38-day course of treatment and beyond. Quality of life assessed by DIVA (day-to-day impact of vaginal aging) questionnaire, dyspareunia and vaginal health index also clearly improved. The tolerability was mainly rated as "good to very good" by the investigator and 94.9 % of participants. The vast majority were very satisfied with the simple and pleasant handling. No serious adverse events occurred. CONCLUSION Overall, the presented data suggest that the investigated non-hormonal pessary is an effective and well tolerated treatment option for vaginal symptoms associated with dryness, thus improving quality of life for women, even those who are sexually active. CLINICALTRIALS gov identifier NCT05211505.
Collapse
Affiliation(s)
- Susann Eichler
- Dr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany.
| | - Mareike Panz
- Dr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany
| | - Anastasia Harder
- Dr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany
| | - Clarissa Masur
- Dr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany
| | - Manuel Häuser
- Dr. August Wolff GmbH & Co. KG Arzneimittel, 33611 Bielefeld, Germany
| | | |
Collapse
|
6
|
Tsang HF, Cheung YS, Yu CSA, Chan CSS, Wong CBT, Yim KYA, Pei X, Wong SCC. Menstrual Blood as a Diagnostic Specimen for Human Papillomavirus Genotyping and Genital Tract Infection Using Next-Generation Sequencing as a Novel Diagnostic Tool. Diagnostics (Basel) 2024; 14:686. [PMID: 38611599 PMCID: PMC11012019 DOI: 10.3390/diagnostics14070686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Menstrual blood (MB) is a convenient specimen type that can be self-collected easily and non-invasively by women. This study assessed the potential application of MB as a diagnostic specimen to detect genital tract infections (GTIs) and human papillomavirus (HPV) infections in women. METHOD Genomic DNA was extracted from MB samples. Pacific Bioscience (Pacbio) 16S ribosomal DNA (rDNA) high-fidelity (HiFi) long-read sequencing and HPV PCR were performed. RESULTS MB samples were collected from women with a pathological diagnosis of CIN1, CIN2, CIN3 or HPV infection. The sensitivity and positive predictive value (PPV) of high-risk HPV detection using MB were found to be 66.7%. A shift in vaginal flora and a significant depletion in Lactobacillus spp. in the vaginal microbiota communities were observed in the MB samples using 16S rDNA sequencing. CONCLUSIONS In this study, we demonstrated that MB is a proper diagnostic specimen of consideration for non-invasive detection of HPV DNA and genotyping using PCR and the diagnosis of GTIs using metagenomic next-generation sequencing (mNGS). MB testing is suitable for all women who menstruate and this study has opened up the possibility of the use of MB as a diagnostic specimen to maintain women's health.
Collapse
Affiliation(s)
- Hin-Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong SAR, China
| | - Yui-Shing Cheung
- Department of Obstetrics and Gynaecology, Queen Elizabeth Hospital, Hong Kong SAR, China; (Y.-S.C.); (C.-S.S.C.)
| | - Chi-Shing Allen Yu
- Codex Genetics Limited, Hong Kong SAR, China; (C.-S.A.Y.); (C.-B.T.W.); (K.-Y.A.Y.)
| | - Chung-Sum Sammy Chan
- Department of Obstetrics and Gynaecology, Queen Elizabeth Hospital, Hong Kong SAR, China; (Y.-S.C.); (C.-S.S.C.)
| | - Chi-Bun Thomas Wong
- Codex Genetics Limited, Hong Kong SAR, China; (C.-S.A.Y.); (C.-B.T.W.); (K.-Y.A.Y.)
| | - Kay-Yuen Aldrin Yim
- Codex Genetics Limited, Hong Kong SAR, China; (C.-S.A.Y.); (C.-B.T.W.); (K.-Y.A.Y.)
| | - Xiaomeng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| |
Collapse
|
7
|
Baud D, Zuber A, Peric A, Pluchino N, Vulliemoz N, Stojanov M. Impact of semen microbiota on the composition of seminal plasma. Microbiol Spectr 2024; 12:e0291123. [PMID: 38349179 PMCID: PMC10913749 DOI: 10.1128/spectrum.02911-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/20/2024] [Indexed: 03/06/2024] Open
Abstract
Several studies have found associations between specific bacterial genera and semen parameters. Bacteria are known to influence the composition of their niche and, consequently, could affect the composition of the seminal plasma. This study integrated microbiota profiling and metabolomics to explore the influence of seminal bacteria on semen metabolite composition in infertile couples, revealing associations between specific bacterial genera and metabolite profiles. Amino acids and acylcarnitines were the predominant metabolite groups identified in seminal plasma. Different microbiota profiles did not result in globally diverse metabolite compositions in seminal plasma. Nevertheless, levels of specific metabolites increased in the presence of a dysbiotic microbiota. Urocanate was significantly increased in abnormal semen samples (adjusted P-value < 0.001) and enriched in samples dominated by Prevotella spp. (P-value < 0.05), which was previously linked to a negative impact on semen. Therefore, varying microbiota profiles can influence the abundance of certain metabolites, potentially having an immunomodulatory effect, as seen with urocanate.IMPORTANCEMale infertility is often considered idiopathic since the specific cause of infertility often remains unidentified. Recently, variations in the seminal microbiota composition have been associated with normal and abnormal semen parameters and may, therefore, influence male infertility. Bacteria are known to alter the metabolite composition of their ecological niches, and thus, seminal bacteria might affect the composition of the seminal fluid, crucial in the fertilization process. Our research indicates that distinct seminal microbiota profiles are not associated with widespread changes in the metabolite composition of the seminal fluid. Instead, the presence of particular metabolites with immunomodulatory functions, such as urocanate, could shed light on the interplay between seminal microbiota and variations in semen parameters.
Collapse
Affiliation(s)
- D. Baud
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - A. Zuber
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
| | - A. Peric
- 360° Fertility Center Zurich, Zollikon, Switzerland
| | - N. Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | | | - M. Stojanov
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Micks E, Reed SD, Mitchell C. The Postmenopausal Vaginal Microbiome and Genitourinary Syndrome of Menopause. Clin Obstet Gynecol 2024; 67:79-88. [PMID: 38032828 PMCID: PMC10873068 DOI: 10.1097/grf.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
This review summarizes our current understanding of associations of the postmenopausal vaginal microbiome with genitourinary syndrome of menopause. We review the normal postmenopausal microbiota, examine the association of the microbiome with vulvovaginal symptoms, describe microbial communities associated with physical and laboratory findings, and report the impact of different treatments for genitourinary syndrome of menopause on microbiota and symptom improvement. Postmenopausal vaginal symptoms have an underlying pathophysiology that has not been fully elucidated. Estrogen treatment may not be sufficient to relieve symptoms of vaginal discomfort in all postmenopausal individuals. In addition, other interventions targeted at changing the microbiota or pH do not consistently improve symptom severity.
Collapse
Affiliation(s)
- Elizabeth Micks
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington
| | - Susan D Reed
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington
| | - Caroline Mitchell
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Kola-Mustapha AT, Aliu MH, Bello RH, Adedeji OJ, Ghazali YO. The Formulation and Evaluation of Melaleuca alternifolia Cheel and Cymbopogon flexuosus Linn Essential Oils Emulgel for the Treatment of Vulvovaginal Candidiasis. Gels 2023; 9:949. [PMID: 38131935 PMCID: PMC10743309 DOI: 10.3390/gels9120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The global concern regarding the occurrence of antifungal resistance to synthetic conventional azoles used for treating vulvovaginal candidiasis, along with the associated side effects, is significant. Consequently, the pursuit for substitutes such as natural therapies has ensued. Essential oils, derived from plants, have been extensively researched and found to possess antibacterial and antifungal properties. This study aimed to assess the antifungal efficacy of two essential oils, both alone and in combination, against Candida albicans. Essential oils were formulated into an emulgel separately and as combinations. The essential oils of Melaleuca alternifolia and Cymbopogon flexuosus were used in this study. The resulting emulgel formulations were characterized for their antifungal activity against Candida albicans. Physiochemical properties such as pH, viscosity, and appearance were also determined. The prepared emulgels were thereafter observed for stability over a period of 1 month. The MIC of Melaleuca alternifolia was seen to be 50 µL/mL while Cymbopogon flexuous was seen to be more potent at 25 µL/mL against C. albicans exhibiting strong synergistic effect at 0.4. The emulgel formed was white in color, smooth on skin, and had the odor of the essential oils, which is sweet to the nose. The pH of the formulations with the essential oils were acidic in the range of 3.70-3.83, making them suitable for vagina application. The emulgels had viscosities ranging from 4417.6 to 8968.7 mPas, owing to the thickness of the essential oils contained. The emulgel formulation with the combination of essential oils was more potent that the two with individual essential oils; furthermore, the one with Cymbopogon flexuous was more potent than the one with Melaleuca alternifolia. Based on the properties of the formulated emulgels and their activity against the test organism, the preparations have significant potential in the management of vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Adeola Tawakalitu Kola-Mustapha
- College of Pharmacy, Alfaisal University, Riyadh 11461, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B 1515, Ilorin 240101, Nigeria
| | - Miracle Halima Aliu
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B 1515, Ilorin 240101, Nigeria
| | - Ronke Hadiyat Bello
- Department of Pharmaceutical Microbiology and Biotechnology, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria
| | - Oluwakorede Joshua Adedeji
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B 1515, Ilorin 240101, Nigeria
| | - Yusuf Oluwagbenga Ghazali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B 1515, Ilorin 240101, Nigeria
| |
Collapse
|
10
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. Integrating compositional and functional content to describe vaginal microbiomes in health and disease. MICROBIOME 2023; 11:259. [PMID: 38031142 PMCID: PMC10688475 DOI: 10.1186/s40168-023-01692-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND A Lactobacillus-dominated vaginal microbiome provides the first line of defense against adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this gap, we developed metagenomic community state types (mgCSTs) which use metagenomic sequences to describe and define vaginal microbiomes based on both composition and functional potential. RESULTS MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella vaginalis mgSs, as well as mgSs of L. iners, were associated with a greater likelihood of bacterial vaginosis diagnosed by Amsel clinical criteria. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier for which source code is provided and may be adapted for use by the microbiome research community. CONCLUSIONS MgCSTs are a novel and easily implemented approach to reduce the dimension of complex metagenomic datasets while maintaining their functional uniqueness. MgCSTs enable the investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates the protection of the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health. Video Abstract.
Collapse
Affiliation(s)
- Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Chung Y, Kang SB, Son D, Lee JY, Chung MJ, Lim S. Characterization of the probiotic properties of Lacticaseibacillus rhamnosus LR6 isolated from the vaginas of healthy Korean women against vaginal pathogens. Front Microbiol 2023; 14:1308293. [PMID: 38098667 PMCID: PMC10720895 DOI: 10.3389/fmicb.2023.1308293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
The human microbiome exhibits intricate populations across the body, with the vaginal tract serving as an ecosystem characterized by the prevalence of the genus Lactobacillus. Disruptions in the vaginal microbiota, which are frequently linked to variables such as sexual activity, hormonal fluctuations, and excessive use of antibiotics, can result in vaginal dysbiosis and the development of diseases such as bacterial vaginosis (BV) and candidiasis. Lactobacillus species, owing to their capacity to create an acidic environment through the production of lactic acid, have a key function within this complex microbial community: they inhibit the growth of harmful microorganisms. This study aimed to investigate the genomic characteristics of L. rhamnosus LR6, a newly discovered strain isolated from the vaginal microbiota of 20 healthy women to assess its potential as a vaginal probiotic. We performed a comparative investigation of the genetic traits of L. rhamnosus using 45 publicly available genomes from various sources. We evaluated the genetic characteristics related to carbohydrate utilization, adhesion to host cells, and the presence of bacteriocin clusters. A comprehensive study was conducted by integrating in silico evaluations with experimental techniques to authenticate the physiological characteristics of strain LR6. We further used a rat model to assess the impact of L. rhamnosus LR6 administration on the changes in the gastrointestinal tract and the vaginal microbiome. The assessments revealed a significantly high inhibitory activity against pathogens, enhanced adherence to host cells, and high lactic acid production. Rat experiments revealed changes in both the fecal and vaginal microbiota; in treated rats, Firmicutes increased in both; Lactobacillaceae increased in the fecal samples; and Enterobacteriaceae decreased but Enterococcaceae, Streptococcaceae, and Morganellaceae increased in the vaginal samples. The study results provide evidence of the genetic characteristics and probiotic properties of LR6, and suggest that oral administration of L. rhamnosus LR6 can alter both gut and vaginal microbiome. Collectively, these findings establish L. rhamnosus LR6 as a highly promising candidate for improving vaginal health.
Collapse
Affiliation(s)
- Yusook Chung
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Republic of Korea
| | - Seung Beom Kang
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Republic of Korea
| | - Dooheon Son
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Republic of Korea
| | - Ji Young Lee
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Republic of Korea
| |
Collapse
|
12
|
Navarro S, Abla H, Colmer-Hamood JA, Ventolini G, Hamood AN. Under conditions closely mimicking vaginal fluid, Lactobacillus jensenii strain 62B produces a bacteriocin-like inhibitory substance that targets and eliminates Gardnerella species. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37909284 DOI: 10.1099/mic.0.001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Within the vaginal ecosystem, lactobacilli and Gardnerella spp. likely interact and influence each other's growth, yet the details of this interaction are not clearly defined. Using medium simulating vaginal fluid and a two-chamber co-culturing system to prevent cell-to-cell contact between the bacteria, we examined the possibility that Lactobacillus jensenii 62B (Lj 62B) and/or G. piotii (Gp) JCP8151B produce extracellular factors through which they influence each other's viability. By 24 h post-inoculation (hpi) in the co-culture system and under conditions similar to the vaginal environment - pH 5.0, 37 °C, and 5% CO2, Lj 62B viability was not affected but Gp JCP8151B had been eliminated. Cell-free supernatant harvested from Lj 62B cultures (Lj-CFS) at 20 hpi, but not 16 hpi, also eliminated Gp JCP8151B growth. Neither lactic acid nor H2O2 production by Lj 62B was responsible for this effect. The Lj-CFS did not affect viability of three species of lactobacilli or eight species of Gram-positive and Gram-negative uropathogens but eliminated viability of eight different strains of Gardnerella spp. Activity of the inhibitory factor within Lj-CFS was abolished by protease treatment and reduced by heat treatment suggesting it is most likely a bacteriocin-like protein; fractionation revealed that the factor has a molecular weight within the 10-30 kDa range. These results suggest that, in medium mimicking vaginal fluid and growth conditions similar to the vaginal environment, Lj 62B produces a potential bacteriocin-like inhibitory substance (Lj-BLIS) that clearly targets Gardnerella spp. strains. Once fully characterized, Lj-BLIS may be a potential treatment for Gardnerella-related BV that does not alter the vaginal microflora.
Collapse
Affiliation(s)
- Stephany Navarro
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Habib Abla
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jane A Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gary Ventolini
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center Permian Basin, Odessa, TX, USA
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
13
|
Jaber TM, Bangash S, Alvarenga AB, Sicari J, DuMont T, Malik K, Bhanot N. Infectious Diseases Specific to Women. Crit Care Nurs Q 2023; 46:417-425. [PMID: 37684737 DOI: 10.1097/cnq.0000000000000477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Female patients are at a greater risk for infections such as urinary tract infections and mastitis, as well as complications from abortions/miscarriages, and sexually transmitted infections. This review highlights risk factors, pathogenesis, complications, diagnostic, and treatment modalities associated with the following infections: mastitis, sexually transmitted diseases, postpartum/abortion-related infections, and urinary tract infections.
Collapse
Affiliation(s)
- Tariq M Jaber
- Division of Infectious Disease and Critical Care (Drs Jaber, Bangash, and Alvarenga), Division of Pulmonary and Critical Care Medicine (Drs Sicari, DuMont, and Malik), and Division of Infectious Disease (Dr Bhanot), Allegheny Health Network Medicine Institute, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
14
|
Friberg M, Woeller K, Iberi V, Mancheno PP, Riedeman J, Bohman L, Davis CC. Development of in vitro methods to model the impact of vaginal lactobacilli on Staphylococcus aureus biofilm formation on menstrual cups as well as validation of recommended cleaning directions. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1162746. [PMID: 37671283 PMCID: PMC10475951 DOI: 10.3389/frph.2023.1162746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Menstrual cups (MC) are a reusable feminine hygiene product. A recent publication suggested that Staphylococcus aureus (S. aureus) biofilms can form on MCs which may lead to increased risk of menstrual Toxic Shock Syndrome (mTSS). Additionally, there is concern that buildup of residual menses may contribute to microbial growth and biofilm formation further increasing mTSS risk. Quantitative and qualitative analysis of in vitro tests were utilized to determine if S. aureus biofilm could form on MC in the presence of the keystone species Lactobacillus after 12 h of incubation. The methodology was based on a modification of an anaerobic in vitro method that harnesses the keystone species hypothesis by including a representative of vaginal lactic acid bacteria. Methods MCs were incubated anaerobically for 12 h in Vaginal Defined Media (VDM) with the two morphologically distinct bacteria, Lactobacillus gasseri (L. gasseri) and S. aureus. Colony Forming Units (CFU) for each organism from the VDM broth and sonicated MC were estimated. In addition, a separate experiment was conducted where S. aureus was grown for 12 h in the absence of L. gasseri. Qualitative analysis for biofilm formation utilized micro-CT (µ-CT) and cryogenic scanning electron microscopy (Cryo-SEM). Results Samples collected from the media control had expected growth of both organisms after 12 h of incubation. Samples collected from VDM broth were similar to media control at the end of the 12-h study. Total S. aureus cell density on MC following sonication/rinsing was minimal. Results when using a monoculture of S. aureus demonstrated that there was a significant growth of the organism in the media control and broth as well as the sonicated cups indicating that the presence of L. gasseri was important for controlling growth and adherence of S. aureus. Few rod-shaped bacteria (L. gasseri) and cocci (S. aureus) could be identified on the MCs when grown in a dual species culture inoculum and no biofilm was noted via µ-CT and cryo-SEM. Additionally, efforts to model and understand the validity of the current labeled recommendations for MC cleaning in-between uses are supported. Discussion The data support continued safe use of the Tampax® cup when used and maintained as recommended.
Collapse
Affiliation(s)
- Maria Friberg
- Baby, Feminine and Family Care Microbiology, The Procter & Gamble Company, Mason, OH, United States
| | - Kara Woeller
- Baby, Feminine and Family Care, Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Vighter Iberi
- Corporate Functions Analytical, The Procter & Gamble Company, Mason, OH, United States
| | | | - James Riedeman
- Baby, Family and Feminine Care Analytical Chemistry, The Procter & Gamble Company, Cincinnati, OH, United States
| | - Lisa Bohman
- Data Modeling and Sciences, The Procter & Gamble Company, Mason, OH, United States
| | - Catherine C. Davis
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
15
|
Xu W, Lv Z, Guo Q, Deng Z, Yang C, Cao Z, Li Y, Huang C, Wu Z, Chen S, He Y, Sun J, Liu Y, Gan L. Selective Antagonism of Lactiplantibacillus plantarum and Pediococcus acidilactici against Vibrio and Aeromonas in the Bacterial Community of Artemia nauplii. Microbiol Spectr 2023; 11:e0053323. [PMID: 37428079 PMCID: PMC10434253 DOI: 10.1128/spectrum.00533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Empiric probiotics are commonly consumed by healthy individuals as a means of disease prevention, pathogen control, etc. However, controversy has existed for a long time regarding the safety and benefits of probiotics. Here, two candidate probiotics, Lactiplantibacillus plantarum and Pediococcus acidilactici, which are antagonistic to Vibrio and Aeromonas species in vitro, were tested on Artemia under in vivo conditions. In the bacterial community of Artemia nauplii, L. plantarum reduced the abundance of the genera Vibrio and Aeromonas and P. acidilactici significantly increased the abundance of Vibrio species in a positive dosage-dependent manner, while higher and lower dosages of P. acidilactici increased and decreased the abundance of the genus Aeromonas, respectively. Based on the liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses of the metabolite of L. plantarum and P. acidilactici, pyruvic acid was used in an in vitro test to explain such selective antagonism; the results showed that pyruvic acid was conducive or suppressive to V. parahaemolyticus and beneficial to A. hydrophila. Collectively, the results of this study demonstrate the selective antagonism of probiotics on the bacterial community composition of aquatic organisms and the associated pathogens. IMPORTANCE Over the last decade, the common preventive method for controlling potential pathogens in aquaculture has been the use of probiotics. However, the mechanisms of probiotics are complicated and mostly undefined. At present, less attention has been paid to the potential risks of probiotic use in aquaculture. Here, we investigated the effects of two candidate probiotics, L. plantarum and P. acidilactici, on the bacterial community of Artemia nauplii and the in vitro interactions between these two candidate probiotics and two pathogens, Vibrio and Aeromonas species. The results demonstrated the selective antagonism of probiotics on the bacterial community composition of an aquatic organism and its associated pathogens. This research contributes to providing a basis and reference for the long-term rational use of probiotics and to reducing the inappropriate use of probiotics in aquaculture.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaolin Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Qingqi Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaojie Deng
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Canmin Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Cuifen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zizhan Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Jijia Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yiying Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Lian Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
16
|
Garg A, Ellis LB, Love RL, Grewal K, Bowden S, Bennett PR, Kyrgiou M. Vaginal microbiome in obesity and its impact on reproduction. Best Pract Res Clin Obstet Gynaecol 2023; 90:102365. [PMID: 37399714 DOI: 10.1016/j.bpobgyn.2023.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
A number of reproductive outcomes have been increasingly found to be affected by the vaginal microbiota. Obesity has become a global epidemic, affecting increasing numbers of reproductive-age women, and has been shown to be a risk factor for a number of adverse female health outcomes. A healthy vaginal microbiome is characterized by Lactobacillus-dominance, in particular Lactobacillus crispatus; obesity has been found to be associated with higher diversity and a lower likelihood of Lactobacillus-dominance. In this review, we summarize the evidence on the vaginal microbiome in obese women and the impact on reproductive outcomes such as conception rates, early pregnancy, and preterm birth. We further explore the mechanisms by which obesity may result in an altered microbial composition and highlight future avenues for therapeutic targeting of the vaginal microbiota.
Collapse
Affiliation(s)
- Akanksha Garg
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Laura Burney Ellis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Ryan Laurence Love
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Karen Grewal
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Sarah Bowden
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK
| | - Phillip R Bennett
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK
| | - Maria Kyrgiou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK; Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
17
|
Doroftei B, Ilie OD, Armeanu T, Stoian IL, Anton N, Babici RG, Ilea C. A Narrative Review Discussing the Obstetric Repercussions Due to Alterations of Personalized Bacterial Sites Developed within the Vagina, Cervix, and Endometrium. J Clin Med 2023; 12:5069. [PMID: 37568471 PMCID: PMC10419759 DOI: 10.3390/jcm12155069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The reproductive tract microbiota that evolved as an integrative component has been studied intensively in the last decade. As a result, novel research, clinical opportunities, and perspectives have been derived following the close investigation of this microecological environment. This has paved the way for an update to and improvement of the management strategies and therapeutic approaches. However, obscurities, contradictions, and controversies arise regarding the ascension route from the vagina to the endometrium via the cervix, with finality in adverse obstetric outcomes. METHODS Starting from these considerations, we aimed to gather all existing data and information from four major academic databases (PubMed, ISI Web of Knowledge, Scopus, and ScienceDirect) published in the last 13 years (2010-2023) using a controlled vocabulary and dedicated terminology to enhance the coverage, identification, and sorting of potentially eligible studies. RESULTS Despite the high number of returned entries (n = 804), only a slight percentage (2.73%) of all manuscripts were deemed eligible following two rounds of evaluation. Cumulatively, a low level of Lactobacillus spp. and of other core microbiota members is mandatory, with a possible eubiosis-to-dysbiosis transition leading to an impairment of metabolic and endocrine network homeostasis. This transposes into a change in the pro-inflammatory landscape and activation of signaling pathways due to activity exerted by the bacterial lipopolysaccharides (LPSs)/endotoxins that further reflect a high risk of miscarriage in various stages. While the presence of some pathogenic entities may be suggestive of an adverse obstetric predisposition, there are still pros and cons of the role of specific strains, as only the vagina and cervix have been targeted as opposed to the endometrium, which recently started to be viewed as the key player in the vagina-cervix-endometrium route. Consequently, based on an individual's profile, diet, and regime, antibiotics and probiotics might be practical or not. CONCLUSIONS Resident bacteria have a dual facet and are beneficial for women's health, but, at the same time, relaying on the abundance, richness, and evenness that are definitory indexes standing as intermediaries of a miscarriage.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street No. 3C, 700032 Iasi, Romania
| | | | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street No. 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Nicoleta Anton
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ramona-Geanina Babici
- Department of Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street No. 34, 700038 Iasi, Romania
| |
Collapse
|
18
|
Wei W, Zhou Y, Zuo H, Li M, Pan Z, Liu B, Wang L, Tan Y, Yang R, Shang W, Bi Y, Wang W. Characterization of the follicular fluid microbiota based on culturomics and sequencing analysis. J Med Microbiol 2023; 72. [PMID: 37578331 DOI: 10.1099/jmm.0.001741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. The human oocyte microenvironment is follicular fluid, which is important for follicle growth, ovulation and maturation of the oocyte. The micro-organisms present in follicular fluid could be a predictor of in vitro fertilization outcomes.Hypothesis/Gap Statement. Women with follicular fluid colonized with micro-organisms can be asymptomatic, but the presence of some genera in the follicular fluid correlates with in vitro fertilization.Aim. To confirm the existence of micro-organisms in follicular fluid, and to profile the micro-organisms present in follicular fluid sampled from women undergoing in vitro fertilization with different outcomes.Methodology. Women undergoing in vitro fertilization (n=163) were divided into different subgroups according to their in vitro fertilization outcomes. Their follicular fluid samples were collected, and among them, 157 samples were analysed by 16S rDNA sequencing, and 19 samples were analysed using culturomics.Results. The culturomics results suggested that the 19 follicular fluid samples were not sterile. The isolation rates for Streptococcus, Finegoldia and Peptoniphilus were >50 % in the 19 samples. Linear discriminant analysis effect size analysis showed differential bacteria abundance according to the pregnancy rate, the rate of normal fertilization, the rate of high-quality embryos and the rate of available oocytes. The sequencing results showed that micro-organisms could be detected in all 157 samples. Pseudomonas, Lactobacillus, Comamonas, Streptococcus and Acinetobacter were detected in all of the samples, but with a wide range of relative abundance. Pseudomonas, Lactobacillus, Ralstonia and Vibrio constituted a notable fraction of the microbiota.Conclusions. Follicular fluid is not sterile. Micro-organisms in follicular fluid could be a predictor of in vitro fertilization outcomes.
Collapse
Affiliation(s)
- Wenting Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, PR China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Haiyang Zuo
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Min Li
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Bin Liu
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lu Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
19
|
Kumar L, Dwivedi M, Jain N, Shete P, Solanki S, Gupta R, Jain A. The Female Reproductive Tract Microbiota: Friends and Foe. Life (Basel) 2023; 13:1313. [PMID: 37374096 DOI: 10.3390/life13061313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
We do not seem to be the only owner of our body; it houses a large population of microorganisms. Through countless years of coevolution, microbes and hosts have developed complex relationships. In the past few years, the impact of microbial communities on their host has received significant attention. Advanced molecular sequencing techniques have revealed a remarkable diversity of the organ-specific microbiota populations, including in the reproductive tract. Currently, the goal of researchers has shifted to generate and perceive the molecular data of those hidden travelers of our body and harness them for the betterment of human health. Recently, microbial communities of the lower and upper reproductive tract and their correlation with the implication in reproductive health and disease have been extensively studied. Many intrinsic and extrinsic factors influences the female reproductive tract microbiota (FRTM) that directly affects the reproductive health. It is now believed that FRTM dominated by Lactobacilli may play an essential role in obstetric health beyond the woman's intimate comfort and well-being. Women with altered microbiota may face numerous health-related issues. Altered microbiota can be manipulated and restored to their original shape to re-establish normal reproductive health. The aim of the present review is to summarize the FRTM functional aspects that influence reproductive health.
Collapse
Affiliation(s)
- Lokesh Kumar
- Genus Breeding India Pvt Ltd., Pune 411005, Maharashtra, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, Jharkhand, India
| | - Natasha Jain
- Department of Biotechnology, Chaudhary Charan Singh University, Meerut 250001, Uttar Pradesh, India
| | - Pranali Shete
- Department of Microbiology, Smt. CHM College, University of Mumbai, Ulhasnagar 421003, Maharashtra, India
| | - Subhash Solanki
- Genus Breeding India Pvt Ltd., Pune 411005, Maharashtra, India
| | - Rahul Gupta
- Genus Breeding India Pvt Ltd., Pune 411005, Maharashtra, India
| | - Ashish Jain
- Department of Microbiology, Smt. CHM College, University of Mumbai, Ulhasnagar 421003, Maharashtra, India
| |
Collapse
|
20
|
Mahmoud MY, Wesley M, Kyser A, Lewis WG, Lewis AL, Steinbach-Rankins JM, Frieboes HB. Lactobacillus crispatus-loaded electrospun fibers yield viable and metabolically active bacteria that kill Gardnerella in vitro. Eur J Pharm Biopharm 2023; 187:68-75. [PMID: 37086869 PMCID: PMC10192109 DOI: 10.1016/j.ejpb.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Bacterial vaginosis (BV) is a common condition that affects one-third of women worldwide. BV is characterized by low levels of healthy lactobacilli and an overgrowth of common anaerobes such as Gardnerella. Antibiotics for BV are administered orally or vaginally; however, approximately half of those treated will experience recurrence within 6 months. Lactobacillus crispatus present at high levels has been associated with positive health outcomes. To address the high recurrence rates following BV treatment, beneficial bacteria have been considered as an alternative or adjunct modality. This study aimed to establish proof-of-concept for a new long-acting delivery vehicle for L. crispatus. Here, it is shown that polyethylene oxide (PEO) fibers loaded with L. crispatus can be electrospun with poly(lactic-co-glycolic acid) (PLGA) fibers (ratio 1:1), and that this construct later releases L. crispatus as metabolically viable bacteria capable of lactic acid production and anti-Gardnerella activity. Probiotic-containing fibers were serially cultured in MRS (deMan, Rogosa, Sharpe) broth with daily media replacement and found to yield viable L. crispatus for at least 7 days. Lactic acid levels and corresponding pH values generally corresponded with levels of L. crispatus cultured from the fibers and strongly support the conclusion that fibers yield viable L. crispatus that is metabolically active. Cultures of L. crispatus-loaded fibers limited the growth of Gardnerella in a dilution-dependent manner during in vitro assays in the presence of cultured vaginal epithelial cells, demonstrating bactericidal potential. Exposure of VK2/E6E7 cells to L. crispatus-loaded fibers resulted in minimal loss of viability relative to untreated cells. Altogether, these data provide proof-of-concept for electrospun fibers as a candidate delivery vehicle for application of vaginal probiotics in a long-acting form.
Collapse
Affiliation(s)
- Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Madeline Wesley
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
| | - Anthony Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Jill M Steinbach-Rankins
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hermann B Frieboes
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
21
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
22
|
Zuber A, Peric A, Pluchino N, Baud D, Stojanov M. Human Male Genital Tract Microbiota. Int J Mol Sci 2023; 24:ijms24086939. [PMID: 37108103 PMCID: PMC10139050 DOI: 10.3390/ijms24086939] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The human body is vastly colonised by microorganisms, whose impact on health is increasingly recognised. The human genital tract hosts a diverse microbiota, and an increasing number of studies on the male genital tract microbiota suggest that bacteria have a role in male infertility and pathological conditions, such as prostate cancer. Nevertheless, this research field remains understudied. The study of bacterial colonisation of the male genital tract is highly impacted by the invasive nature of sampling and the low abundance of the microbiota. Therefore, most studies relied on the analysis of semen microbiota to describe the colonisation of the male genital tract (MGT), which was thought to be sterile. The aim of this narrative review is to present the results of studies that used next-generation sequencing (NGS) to profile the bacterial colonisation patterns of different male genital tract anatomical compartments and critically highlight their findings and their weaknesses. Moreover, we identified potential research axes that may be crucial for our understanding of the male genital tract microbiota and its impact on male infertility and pathophysiology.
Collapse
Affiliation(s)
- Arnaud Zuber
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Adriana Peric
- 360° Fertility Center Zurich, 8702 Zollikon, Switzerland
| | - Nicola Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Milos Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
23
|
Pedro NA, Fontebasso G, Pinto SN, Alves M, Mira NP. Acetate modulates the inhibitory effect of Lactobacillus gasseri against the pathogenic yeasts Candida albicans and Candida glabrata. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:88-102. [PMID: 37009625 PMCID: PMC10054710 DOI: 10.15698/mic2023.04.795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
The exploration of the interference prompted by commensal bacteria over fungal pathogens is an interesting alternative to develop new therapies. In this work we scrutinized how the presence of the poorly studied vaginal species Lactobacillus gasseri affects relevant pathophysiological traits of Candida albicans and Candida glabrata. L. gasseri was found to form mixed biofilms with C. albicans and C. glabrata resulting in pronounced death of the yeast cells, while bacterial viability was not affected. Reduced viability of the two yeasts was also observed upon co-cultivation with L. gasseri under planktonic conditions. Either in planktonic cultures or in biofilms, the anti-Candida effect of L. gasseri was augmented by acetate in a concentration-dependent manner. During planktonic co-cultivation the two Candida species counteracted the acidification prompted by L. gasseri thus impacting the balance between dissociated and undissociated organic acids. This feature couldn't be phenocopied in single-cultures of L. gasseri resulting in a broth enriched in acetic acid, while in the co-culture the non-toxic acetate prevailed. Altogether the results herein described advance the design of new anti-Candida therapies based on probiotics, in particular, those based on vaginal lactobacilli species, helping to reduce the significant burden that infections caused by Candida have today in human health.
Collapse
Affiliation(s)
- Nuno A. Pedro
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gabriela Fontebasso
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta Alves
- CQE-Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno P. Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- * Corresponding Author: Nuno P Mira, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, Portugal; E-mail:
| |
Collapse
|
24
|
Holm JB, Carter KA, Ravel J, Brotman RM. Lactobacillus iners and genital health: molecular clues to an enigmatic vaginal species. Curr Infect Dis Rep 2023; 25:67-75. [PMID: 37234911 PMCID: PMC10209668 DOI: 10.1007/s11908-023-00798-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
Purpose of review Vaginal lactobacilli are recognized as important drivers of genital health including protection against bacterial vaginosis and sexually transmitted infections. Lactobacillus iners is distinct from L. crispatus, L. gasseri, and L. jensenii by its high global prevalence in vaginal microbiomes, relatively small genome, production of only L-lactic acid, and inconsistent associations with genital health outcomes. In this review, we summarize our current understanding of the role of L. iners in the vaginal microbiome, highlight the importance of strain-level consideration for this species, and explain that while marker gene-based characterization of the composition of the vaginal microbiota does not capture strain-level resolution, whole metagenome sequencing can aid in expanding our understanding of this species in genital health. Recent findings L. iners exists in the vaginal microbiome as a unique combination of strains. The functional repertoires of these strain combinations are likely wide and contribute to the survival of this species in a variety of vaginal microenvironments. In published studies to date, strain-specific effects are aggregated and may yield imprecise estimates of risk associated with this species. Summary The worldwide high prevalence of Lactobacillus iners warrants more research into its functional roles in the vaginal microbiome and how it may directly impact susceptibility to infections. By incorporating strain-level resolution into future research endeavors, we may begin to appreciate L. iners more thoroughly and identify novel therapeutic targets for a variety of genital health challenges.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Kayla A. Carter
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of
Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Holm JB, France MT, Gajer P, Ma B, Brotman RM, Shardell M, Forney L, Ravel J. High-resolution functional description of vaginal microbiomes in health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533147. [PMID: 36993583 PMCID: PMC10055360 DOI: 10.1101/2023.03.24.533147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background A Lactobacillus-dominated vaginal microbiome provides the first line of defense against numerous adverse genital tract health outcomes. However, there is limited understanding of the mechanisms by which the vaginal microbiome modulates protection, as prior work mostly described its composition through morphologic assessment and marker gene sequencing methods that do not capture functional information. To address this limitation, we developed metagenomic community state types (mgCSTs) which uses metagenomic sequences to describe and define vaginal microbiomes based on both composition and function. Results MgCSTs are categories of microbiomes classified using taxonomy and the functional potential encoded in their metagenomes. MgCSTs reflect unique combinations of metagenomic subspecies (mgSs), which are assemblages of bacterial strains of the same species, within a microbiome. We demonstrate that mgCSTs are associated with demographics such as age and race, as well as vaginal pH and Gram stain assessment of vaginal smears. Importantly, these associations varied between mgCSTs predominated by the same bacterial species. A subset of mgCSTs, including three of the six predominated by Gardnerella mgSs, as well as a mgSs of L. iners, were associated with a greater likelihood of Amsel bacterial vaginosis diagnosis. This L. iners mgSs, among other functional features, encoded enhanced genetic capabilities for epithelial cell attachment that could facilitate cytotoxin-mediated cell lysis. Finally, we report a mgSs and mgCST classifier as an easily applied, standardized method for use by the microbiome research community. Conclusions MgCSTs are a novel and easily implemented approach to reducing the dimension of complex metagenomic datasets, while maintaining their functional uniqueness. MgCSTs enable investigation of multiple strains of the same species and the functional diversity in that species. Future investigations of functional diversity may be key to unraveling the pathways by which the vaginal microbiome modulates protection to the genital tract. Importantly, our findings support the hypothesis that functional differences between vaginal microbiomes, including those that may look compositionally similar, are critical considerations in vaginal health. Ultimately, mgCSTs may lead to novel hypotheses concerning the role of the vaginal microbiome in promoting health and disease, and identify targets for novel prognostic, diagnostic, and therapeutic strategies to improve women's genital health.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Pendharkar S, Skafte-Holm A, Simsek G, Haahr T. Lactobacilli and Their Probiotic Effects in the Vagina of Reproductive Age Women. Microorganisms 2023; 11:microorganisms11030636. [PMID: 36985210 PMCID: PMC10056154 DOI: 10.3390/microorganisms11030636] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
In the present narrative review, the probiotic effects of vaginal Lactobacillus spp. are described in detail, covering the importance of the differential production of lactic acid, the lactic acid D/L isoforms, the questionable in vivo effect of hydrogen peroxide, as well as bacteriocins and other core proteins produced by vaginal Lactobacillus spp. Moreover, the microbe–host interaction is explained with emphasis on the vaginal mucosa. To understand the crucial role of Lactobacillus spp. dominance in the vaginal microbiota, different dysbiotic states of the vagina are explained including bacterial vaginosis and aerobic vaginitis. Finally, this review takes on the therapeutic aspect of live lactobacilli in the context of bacterial vaginosis. Until recently, there was very low-quality evidence to suggest that any probiotic might aid in reducing vaginal infections or dysbiosis. Therefore, clinical usage or over the counter usage of probiotics was not recommended. However, recent progress has been made, moving from probiotics that are typically regulated as food supplements to so-called live biotherapeutic products that are regulated as medical drugs. Thus, recently, a phase 2b trial using a Lactobacillus crispatus strain as a therapeutic add-on to standard metronidazole showed significant reduction in the recurrence of bacterial vaginosis by 12 weeks compared to placebo. This may constitute evidence for a brighter future where the therapeutic use of lactobacilli can be harnessed to improve women’s health.
Collapse
Affiliation(s)
| | - Axel Skafte-Holm
- Research Unit for Reproductive Microbiology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Gizem Simsek
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thor Haahr
- Department of Gynecology and Obstetrics, Aarhus University Hospital, 8200 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
27
|
Immunomodulation of the Vaginal Ecosystem by Ligilactobacillus salivarius CECT 30632 Improves Pregnancy Rates among Women with Infertility of Unknown Origin or Habitual Abortions. Nutrients 2023; 15:nu15020362. [PMID: 36678233 PMCID: PMC9860997 DOI: 10.3390/nu15020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In this study, the probiotic potential of Ligilactobacillus salivarius CECT 30632 was assessed, including properties specifically related with gynecological targets. This strain displayed co-aggregative and antimicrobial activity against a wide spectrum of vaginal pathogens while being respectful with the growth of vaginal lactobacilli. The strain produced a high concentration of lactic acid and displayed α-amylase activity when assayed in vitro. It showed a noticeable survival rate after exposition to conditions similar to those present in the human digestive tract and was adhesive to both vaginal and intestinal cells. Subsequently, their capacity to increase pregnancy rates among women with habitual abortion or infertility of unknown origin was studied. Administration of L. salivarius CECT 30632 (~9 log10 CFU) daily for a maximum of six months to these women was safe and led to a successful pregnancy rate of 67.5% (80% and 55% for women with repetitive abortion and infertile women, respectively). Significant differences in Nugent score, vaginal pH, and vaginal concentrations of lactobacilli, TGF-β, and VEFG were observed when the samples collected before the intervention were compared with those collected after the treatment among those women who got pregnant. Therefore, this strain can modulate the vaginal ecosystem and lead to better fertility outcomes.
Collapse
|
28
|
Deciphering the induction of Listeria monocytogenes into sublethal injury using fluorescence microscopy and RT-qPCR. Int J Food Microbiol 2023; 385:109983. [DOI: 10.1016/j.ijfoodmicro.2022.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
|
29
|
Serine Deamination Is a New Acid Tolerance Mechanism Observed in Uropathogenic Escherichia coli. mBio 2022; 13:e0296322. [PMID: 36468870 PMCID: PMC9765748 DOI: 10.1128/mbio.02963-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Escherichia coli associates with humans early in life and can occupy several body niches either as a commensal in the gut and vagina, or as a pathogen in the urinary tract. As such, E. coli has an arsenal of acid response mechanisms that allow it to withstand the different levels of acid stress encountered within and outside the host. Here, we report the discovery of an additional acid response mechanism that involves the deamination of l-serine to pyruvate by the conserved l-serine deaminases SdaA and SdaB. l-serine is the first amino acid to be imported in E. coli during growth in laboratory media. However, there remains a lack in knowledge as to how l-serine is utilized. Using a uropathogenic strain of E. coli, UTI89, we show that in acidified media, l-serine is brought into the cell via the SdaC transporter. We further demonstrate that deletion of the l-serine deaminases SdaA and SdaB renders E. coli susceptible to acid stress, similar to other acid stress deletion mutants. The pyruvate produced by l-serine deamination activates the pyruvate sensor BtsS, which in concert with the noncognate response regulator YpdB upregulates the putative transporter YhjX. Based on these observations, we propose that l-serine deamination constitutes another acid response mechanism in E. coli. IMPORTANCE The observation that l-serine uptake occurs as E. coli cultures grow is well established, yet the benefit E. coli garners from this uptake remains unclear. Here, we report a novel acid tolerance mechanism where l-serine is deaminated to pyruvate and ammonia, promoting survival of E. coli under acidic conditions. This study is important as it provides evidence of the use of l-serine as an acid response strategy, not previously reported for E. coli.
Collapse
|
30
|
Pergialiotis V, Papadatou K, Panagiotopoulos M, Bellos I, Papapanagiotou A, Rodolakis A, Daskalakis G. The impact of vaginal pH on induction of labour outcomes: a meta-analysis of observational studies. J OBSTET GYNAECOL 2022; 42:2558-2565. [PMID: 35775477 DOI: 10.1080/01443615.2022.2091433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present meta-analysis evaluates the impact of an acidic vaginal pH on the progress of labour induction with dinoprostone and misoprostol. We searched Medline, Scopus, EMBASE, Cochrane Central Register of Controlled Trials CENTRAL, Clinicaltrials.gov and Google Scholar databases for relevant studies. Meta-analysis was performed with Rstudio using the meta function and trial sequential analysis was used to evaluate the adequacy of sample size. Nine studies were retrieved that involved 809 patients. An acidic vaginal pH did not influence the efficacy of misoprostol or dinoprostone in terms of accomplishing a successful vaginal delivery (OR 0.62, 95% CI 0.29, 1.30). The interval to delivery was unaffected by the acidity of vaginal pH (Mean Difference 4.18 h, 95% CI -2.09, 10.45). In conclusion, vaginal pH does not seem to affect the potency of vaginally administered prostaglandins; therefore, moistening of vaginal tables with acetic acid does not seem reasonable until further evidence becomes available.
Collapse
Affiliation(s)
- Vasilios Pergialiotis
- 1st department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Experimental Surgery and Surgical Research N.S Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Papadatou
- 1st department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Panagiotopoulos
- 1st department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Bellos
- Laboratory of Experimental Surgery and Surgical Research N.S Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Rodolakis
- 1st department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Daskalakis
- 1st department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Molina MA, Andralojc KM, Huynen MA, Leenders WPJ, Melchers WJG. In-depth insights into cervicovaginal microbial communities and hrHPV infections using high-resolution microbiome profiling. NPJ Biofilms Microbiomes 2022; 8:75. [PMID: 36171433 PMCID: PMC9519886 DOI: 10.1038/s41522-022-00336-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
The cervicovaginal microbiome (CVM) correlates with women's cervical health, and variations in its composition are associated with high-risk human papillomavirus (hrHPV) infection outcomes. Cervicovaginal microbes have been grouped into five community state types (CSTs) based on microbial community composition and abundance. However, studying the impact of CSTs in health and disease is challenging because the current sequencing technologies have limited confident discrimination between closely related and yet functionally different bacterial species. Circular probe-based RNA sequencing (ciRNAseq) achieves high-resolution microbiome profiling and therefore provides in-depth and unambiguous knowledge about the composition of the CVM. Based on ciRNAseq profiling of a large cohort of cervical smears (n = 541), we here define subgroups of CSTs I, III, and IV based on intra-CST differences with respect to abundances of Lactobacillus acidophilus (CSTs I-A vs. I-B and CSTs III-A vs. III-B), Lactobacillus iners (CSTs I-A vs. I-B and CSTs III-A vs. III-B), and Megasphaera genomosp type 1 (CSTs IV-A vs. IV-B). Our results further support the existence of subgroups of CST IV-C that are dominant for non-Lactobacillus species and have intermediate microbial diversity. We also show that CST V is associated with uninfected conditions, and CST IV-A associates with hrHPV-induced cervical disease. In conclusion, we characterized new subdivisions of cervicovaginal CSTs, which may further advance our understanding of women's cervical health and hrHPV-related progression to disease.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
- Predica Diagnostics, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Vargas M, Yañez F, Elias A, Bernabeu A, Goya M, Xie Z, Farrás A, Sánchez O, Soler Z, Blasquez C, Valle L, Olivella A, Muñoz B, Brik M, Carreras E, Manichanh C. Cervical pessary and cerclage placement for preterm birth prevention and cervicovaginal microbiome changes. Acta Obstet Gynecol Scand 2022; 101:1403-1413. [PMID: 36168933 PMCID: PMC9812209 DOI: 10.1111/aogs.14460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Our objective was to compare the vaginal microbiome in low-risk and high-risk pregnant women and to explore a potential association between vaginal microbiome and preterm birth. MATERIAL AND METHODS A pilot, consecutive, longitudinal, multicenter study was conducted in pregnant women at 18-22 weeks of gestation. Participants were assigned to one of three groups: control (normal cervix), pessary (cervical length ≤25 mm) and cerclage (cervical length ≤25 mm or history of preterm birth). Analysis and comparison of vaginal microbiota as a primary outcome was performed at inclusion and at 30 weeks of gestation, along with a follow-up of pregnancy and perinatal outcomes. We assessed the vaginal microbiome of pregnant women presenting a short cervix with that of pregnant women having a normal cervix, and compared the vaginal microbiome of women with a short cervix before and after placement of a cervical pessary or a cervical cerclage. RESULTS The microbiome of our control cohort was dominated by Lactobacillus crispatus and inners. Five community state types were identified and microbiome diversity did not change significantly over 10 weeks in controls. On the other hand, a short cervix was associated with a lower microbial load and higher microbial richness, and was not correlated with Lactobacillus relative abundance. After intervention, the cerclage group (n = 19) had a significant increase in microbial richness and a shift towards community state types driven by various bacterial species, including Lactobacillus mulieris, unidentified Bifidobacterium or Enterococcus. These changes were not significantly observed in the pessary (n = 26) and control (n = 35) groups. The cerclage group had more threatened preterm labor episodes and poorer outcomes than the control and pessary groups. CONCLUSIONS These findings indicate that a short cervix is associated with an altered vaginal microbiome community structure. The use of a cerclage for preterm birth prevention, as compared with a pessary, was associated with a microbial community harboring a relatively low abundance of Lactobacillus, with more threatened preterm labor episodes, and with poorer clinical outcomes.
Collapse
Affiliation(s)
- Mireia Vargas
- Department of Obstetrics, Maternal‐Fetal Medicine UnitHospital Universitario Vall d'Hebron, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Francisca Yañez
- Maternal and Child Health and Development Network (SAMID)Instituto de Salud Carlos IIIMadridSpain
| | - Andrea Elias
- Maternal and Child Health and Development Network (SAMID)Instituto de Salud Carlos IIIMadridSpain
| | - Andrea Bernabeu
- Department of Obstetrics, Maternal‐Fetal Medicine UnitHospital Universitario Vall d'Hebron, Universitat Autònoma de BarcelonaBarcelonaSpain,Department of Reproductive MedicineInstituto BernabeuAlicanteSpain
| | - Maria Goya
- Department of Obstetrics, Maternal‐Fetal Medicine UnitHospital Universitario Vall d'Hebron, Universitat Autònoma de BarcelonaBarcelonaSpain,Microbiome LabHospital Universitario Vall d'Hebron; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Department of Medicine, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Zixuan Xie
- Maternal and Child Health and Development Network (SAMID)Instituto de Salud Carlos IIIMadridSpain
| | - Alba Farrás
- Department of Obstetrics, Maternal‐Fetal Medicine UnitHospital Universitario Vall d'Hebron, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Olga Sánchez
- Microbiome LabHospital Universitario Vall d'Hebron; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Department of Medicine, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain,Women and Perinatal Health Research GroupInstitut d'Investigació Biomèdica de Sant Pau (IIB‐Sant Pau). Hospital Universitari de Sant PauBarcelonaSpain
| | - Zaida Soler
- Maternal and Child Health and Development Network (SAMID)Instituto de Salud Carlos IIIMadridSpain
| | - Carlos Blasquez
- Maternal and Child Health and Development Network (SAMID)Instituto de Salud Carlos IIIMadridSpain
| | - Leonor Valle
- Maternal‐Fetal Medicine Unit, Department of ObstetricsHospital Universitario Materno‐Infantil de CanariasLas Palmas de Gran CanariaSpain
| | - Anna Olivella
- Department of ObstetricsHospital de Sant PauBarcelonaSpain
| | - Begoña Muñoz
- Department of Obstetrics and GynecologyHospital Universitari Sant Joan de ReusReusSpain
| | - Maia Brik
- Department of ObstetricsHospital Universitario de Torrejón, Universidad Francisco de VitoriaMadridSpain
| | - Elena Carreras
- Department of Obstetrics, Maternal‐Fetal Medicine UnitHospital Universitario Vall d'Hebron, Universitat Autònoma de BarcelonaBarcelonaSpain,Microbiome LabHospital Universitario Vall d'Hebron; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Department of Medicine, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Chaysavanh Manichanh
- Maternal and Child Health and Development Network (SAMID)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
33
|
Vaginal Microbiome in Reproductive Medicine. Diagnostics (Basel) 2022; 12:diagnostics12081948. [PMID: 36010298 PMCID: PMC9406911 DOI: 10.3390/diagnostics12081948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The human microbiome has been given increasing importance in recent years. The establishment of sequencing-based technology has made it possible to identify a large number of bacterial species that were previously beyond the scope of culture-based technologies. Just as microbiome diagnostics has emerged as a major point of focus in science, reproductive medicine has developed into a subject of avid interest, particularly with regard to causal research and treatment options for implantation failure. Thus, the vaginal microbiome is discussed as a factor influencing infertility and a promising target for treatment options. The present review provides an overview of current research concerning the impact of the vaginal microbiome on the outcome of reproductive measures. A non-Lactobacillus-dominated microbiome was shown to be associated with dysbiosis, possibly even bacterial vaginosis. This imbalance has a negative impact on implantation rates in assisted reproductive technologies and may also be responsible for habitual abortions. Screening of the microbiome in conjunction with antibiotic and/or probiotic treatment appears to be one way of improving pregnancy outcomes.
Collapse
|
34
|
Zaychenko G, Stryga O, Sinitsyna O, Doroshenko A, Sulaieva O, Falalyeyeva T, Kobyliak N. Resveratrol Effects on the Reproductive System in Ovariectomized Rats: Deciphering Possible Mechanisms. Molecules 2022; 27:molecules27154916. [PMID: 35956866 PMCID: PMC9370311 DOI: 10.3390/molecules27154916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Phytoestrogen resveratrol (R) has been demonstrated to benefit human reproductive health. However, R bioavailability and pharmacokinetics are still problematic under oral supplementation. We used an experimental vaginal gel with R and hyaluronic acid (HA) to improve bioavailability and pharmacokinetic properties. The study aimed to assess the impact of vaginal R-HA gel on the reproductive system in ovariectomized rats. Methods: The study was carried out on Wistar female rats. It investigated the body weight, tail temperature, vaginal pH, estrogen and progesterone blood levels, and immunohistochemical biomarkers (COX2, Casp-3, Bcl-2, and VEGF). Animals were divided into control animals; ovariectomized rats (OVX); and OVX group treated with vaginal 0.5% R-HA gel (0.5%, 0.1 mL, daily 28 days). Results: The R-HA gel’s therapeutic effect was manifested by slowing weight gain by 17% (p < 0.001), less pronounced symptom of fever at the root of the tail by 9% (p < 0.001) and lowering the vaginal pH to 4.4−4.5 compared with OVX rats. The anti-inflammatory effect and the reduction of COX-2 expression in vagina were accompanied by antiapoptotic impact of RA-H on endometrium, associated with the decreased Casp-3 expression (p < 0.001) and elevated Bcl-2 score in endometrial glands (p = 0.01). Together with enhanced VEGF expression in endometrial glands (p < 0.001) and stromal cells (p = 0.007), these changes prevented endometrial atrophy (p < 0.001) after ovariectomy. Thus, this study substantiates the feasibility of developing an innovative topical drug with R and HA for treating hypoestrogenic disorders.
Collapse
Affiliation(s)
- Ganna Zaychenko
- Pharmacology Department, Bogomolets National Medical University, 01601 Kyiv, Ukraine; (O.S.); (A.D.)
- Correspondence: (G.Z.); (N.K.); Tel./Fax: +380-44-454-49-24 (G.Z.); +380-44-235-60-05 (N.K.)
| | - Olena Stryga
- Pharmacology Department, Bogomolets National Medical University, 01601 Kyiv, Ukraine; (O.S.); (A.D.)
| | - Oksana Sinitsyna
- Department of Clinical Pharmacology, Institute of Improvement Qualification of Pharmacy Specialists, National University of Pharmacy, 61002 Kharkiv, Ukraine;
| | - Anna Doroshenko
- Pharmacology Department, Bogomolets National Medical University, 01601 Kyiv, Ukraine; (O.S.); (A.D.)
| | | | - Tetyana Falalyeyeva
- Medical Laboratory CSD, 03122 Kyiv, Ukraine; (O.S.); (T.F.)
- Department of Biomedicine, Taras Shevchenko National University of Kyiv, 01033 Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, 03122 Kyiv, Ukraine; (O.S.); (T.F.)
- Endocrinology Department, Bogomolets National Medical University, 01601 Kyiv, Ukraine
- Correspondence: (G.Z.); (N.K.); Tel./Fax: +380-44-454-49-24 (G.Z.); +380-44-235-60-05 (N.K.)
| |
Collapse
|
35
|
Venneri MA, Franceschini E, Sciarra F, Rosato E, D'Ettorre G, Lenzi A. Human genital tracts microbiota: dysbiosis crucial for infertility. J Endocrinol Invest 2022; 45:1151-1160. [PMID: 35113404 PMCID: PMC9098539 DOI: 10.1007/s40618-022-01752-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 01/12/2023]
Abstract
Human body is colonized by trillions of microbes, influenced by several factors, both endogenous, as hormones and circadian regulation, and exogenous as, life-style habits and nutrition. The alteration of such factors can lead to microbial dysbiosis, a phenomenon which, in turn, represents a risk factor in many different pathologies including cancer, diabetes, autoimmune and cardiovascular disease, and infertility. Female microbiota dysbiosis (vaginal, endometrial, placental) and male microbiota dysbiosis (seminal fluid) can influence the fertility, determining a detrimental impact on various conditions, as pre-term birth, neonatal illnesses, and macroscopic sperm parameters impairments. Furthermore, unprotected sexual intercourse creates a bacterial exchange between partners, and, in addition, each partner can influence the microbiota composition of partner's reproductive tracts. This comprehensive overview of the effects of bacterial dysbiosis in both sexes and how partners might influence each other will allow for better personalization of infertility management.
Collapse
Affiliation(s)
- M A Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - E Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - F Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - G D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
36
|
Balakrishnan SN, Yamang H, Lorenz MC, Chew SY, Than LTL. Role of Vaginal Mucosa, Host Immunity and Microbiota in Vulvovaginal Candidiasis. Pathogens 2022; 11:pathogens11060618. [PMID: 35745472 PMCID: PMC9230866 DOI: 10.3390/pathogens11060618] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a prevalent gynaecological disease characterised by vaginal wall inflammation that is caused by Candida species. VVC impacts almost three-quarters of all women throughout their reproductive years. As the vaginal mucosa is the first point of contact with microbes, vaginal epithelial cells are the first line of defence against opportunistic Candida infection by providing a physical barrier and mounting immunological responses. The mechanisms of defence against this infection are displayed through the rapid shedding of epithelial cells, the presence of pattern recognition receptors, and the release of inflammatory cytokines. The bacterial microbiota within the mucosal layer presents another form of defence mechanism within the vagina through acidic pH regulation, the release of antifungal peptides and physiological control against dysbiosis. The significant role of the microbiota in maintaining vaginal health promotes its application as one of the potential treatment modalities against VVC with the hope of alleviating the burden of VVC, especially the recurrent disease. This review discusses and summarises current progress in understanding the role of vaginal mucosa and host immunity upon infection, together with the function of vaginal microbiota in VVC.
Collapse
Affiliation(s)
- Subatrra Nair Balakrishnan
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
| | - Haizat Yamang
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA;
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
- Correspondence: (S.Y.C.); (L.T.L.T.)
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43300, Selangor, Malaysia; (S.N.B.); (H.Y.)
- Correspondence: (S.Y.C.); (L.T.L.T.)
| |
Collapse
|
37
|
Nuclear Magnetic Resonance Metabolomics of Symbioses between Bacterial Vaginosis-Associated Bacteria. mSphere 2022; 7:e0016622. [PMID: 35491843 PMCID: PMC9241533 DOI: 10.1128/msphere.00166-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection for women of childbearing age. Although 50% of women with BV do not have any symptoms, it approximately doubles the risk of catching a sexually transmitted infection and also increases the risk of preterm delivery in pregnant women.
Collapse
|
38
|
Lledo B, Fuentes A, Lozano FM, Cascales A, Morales R, Hortal M, Sellers F, Palacios-Marques A, Bermejo R, Quereda F, Martínez-Escoriza JC, Bernabeu R, Bernabeu A. Identification of vaginal microbiome associated with IVF pregnancy. Sci Rep 2022; 12:6807. [PMID: 35474343 PMCID: PMC9042930 DOI: 10.1038/s41598-022-10933-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
The factors that cause a preterm birth (PTB) are not completely understood up to date. Moreover, PTB is more common in pregnancies achieved by in-vitro fertilization (IVF) than in spontaneous pregnancies. Our aim was to compare the composition of vaginal microbiome at 12 weeks of gestation between women who conceived naturally or through IVF in order to study whether IVF PTB-risk could be related to vaginal microbiome composition. We performed an observational, prospective and multicentre study among two public hospitals and a fertility private clinic in Spain. Vaginal swabs from 64 pregnant women at 12 weeks of gestation were collected to analyse the microbiome composition by sequencing the V3-V4 region of the 16S rRNA. Our results showed that the vaginal microbiome signature at 12 weeks of pregnancy was different from women who conceived naturally or through IVF. The beta diversity and the genus composition were different between both cohorts. Gardnerella, Neisseria, Prevotella, and Staphylococcus genus were enriched genus in the vaginal microbiome from the IVF group, allowing us to create a balance model to predict both cohorts. Moreover, at species level the L. iners abundance was higher and L. gasseri was lower in the IVF group. As a conclusion, our findings were consistent with a proposed framework in which IVF pregnancy are related to risk for preterm birth (PTB) suggesting vaginal microbiome could be the reason to the relation between IVF pregnancy and risk for PTB.
Collapse
Affiliation(s)
- B Lledo
- Molecular Biology, Instituto Bernabeu of Fertility and Gynecology, Avda. Albufereta, 31, 03016, Alicante, Spain.
| | - A Fuentes
- Reproductive Medicine, Instituto Bernabeu of Fertility and Gynecology, 03016, Alicante, Spain
| | - F M Lozano
- Molecular Biology, Instituto Bernabeu of Fertility and Gynecology, Avda. Albufereta, 31, 03016, Alicante, Spain
| | - A Cascales
- Molecular Biology, Instituto Bernabeu of Fertility and Gynecology, Avda. Albufereta, 31, 03016, Alicante, Spain
| | - R Morales
- Molecular Biology, Instituto Bernabeu of Fertility and Gynecology, Avda. Albufereta, 31, 03016, Alicante, Spain
| | - M Hortal
- Molecular Biology, Instituto Bernabeu of Fertility and Gynecology, Avda. Albufereta, 31, 03016, Alicante, Spain
| | - F Sellers
- Reproductive Medicine, Instituto Bernabeu of Fertility and Gynecology, 03016, Alicante, Spain.,Obstetrics, Instituto Bernabeu of Fertility and Gynecology, 03016, Alicante, Spain
| | - A Palacios-Marques
- Obstetrics, Instituto Bernabeu of Fertility and Gynecology, 03016, Alicante, Spain.,Obstetrics and Gynecology, Hospital General Universitario de Alicante, 03010, Alicante, Spain.,ISABIAL (Instituto de Investigación Sanitaria y Biomédica de Alicante), Alicante, Spain
| | - R Bermejo
- Division of Gynecology, Hospital Universitario San Juan de Alicante, 03550, Alicante, Spain.,Division of Gynecology, School of Medicine, Miguel Hernández University, Alicante, Spain
| | - F Quereda
- Division of Gynecology, Hospital Universitario San Juan de Alicante, 03550, Alicante, Spain.,Division of Gynecology, School of Medicine, Miguel Hernández University, Alicante, Spain
| | - J C Martínez-Escoriza
- Obstetrics and Gynecology, Hospital General Universitario de Alicante, 03010, Alicante, Spain.,ISABIAL (Instituto de Investigación Sanitaria y Biomédica de Alicante), Alicante, Spain
| | - R Bernabeu
- Reproductive Medicine, Instituto Bernabeu of Fertility and Gynecology, 03016, Alicante, Spain
| | - A Bernabeu
- Reproductive Medicine, Instituto Bernabeu of Fertility and Gynecology, 03016, Alicante, Spain
| |
Collapse
|
39
|
Biernat-Sudolska M, Talaga-Ćwiertnia K, Gajda P. Vaginal Secretion Epithelium Count as a Prognostic Indicator of High Abundance of Ureaplasmas in Women with a Normal Nugent Score. Pol J Microbiol 2022; 71:19-26. [PMID: 35635162 PMCID: PMC9152915 DOI: 10.33073/pjm-2022-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Genital tract ureaplasma infections are associated with numerous complications, ranging from inflammation, through infertility, to problematic pregnancy. In the course of ureaplasma infection, the risk of human papillomavirus infection increases. Diagnostic tests for urea-plasma infections are not always carried out, especially in women with the normal Nugent test results. The study attempts to check whether it is possible to find a prognostic indicator that could suggest a high abundance of ureaplasmas (≥ 104 CFU/ml) at the stage of the initial examination of vaginal discharge. Such a prognostic factor could qualify women for further tests to detect infections with these atypical bacteria. Six hundred twenty-seven white women with a score of 0–3 on the Nugent scale were tested, including 322 patients with a high abundance of ureaplasmas (≥ 104 CFU/ml) and 305 who tested negative for these bacteria. Ureaplasma infections were detected statistically significant in women who had few or no epithelial cells in the genital swab specimens compared to the results obtained for women with numerous or very numerous epithelial cells (p < 0.001). The risk of the high density of ureaplasmas was 38.7% higher with fewer or no epithelial cells than with high numbers. In patients aged 18–40 years with few or no epithelial cells, a high density of ureaplasmas (≥ 104 CFU/ml) was observed significantly more frequently (p = 0.003). Determining the number of epithelial cells in Gram-stained slides may be the prognostic indicator of ureaplasma infection. Testing for genital ureaplasma infection should be considered, especially in women of childbearing age (18–40 years), even if the Nugent test value is normal and pH ≤ 4.6.
Collapse
Affiliation(s)
- Małgorzata Biernat-Sudolska
- Jagiellonian University Medical College , Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology , Cracow , Poland
| | - Katarzyna Talaga-Ćwiertnia
- Jagiellonian University Medical College , Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology , Cracow , Poland
| | - Paulina Gajda
- Jagiellonian University Medical College , Faculty of Medicine, Chair of Epidemiology and Preventive Medicine, Department of Epidemiology , Cracow , Poland
| |
Collapse
|
40
|
María Fosch SE, Trossero ML, Grosso OA, Reyes AP, Cocucci SE, Payalef SN, Perazzi BE. Vaginal States: Detection of Conversion Processes in Women Using Contraception and Characterization of Vaginal Lactobacillus Species. Infect Disord Drug Targets 2022; 22:e260122200531. [PMID: 35081896 DOI: 10.2174/1871526522666220126154731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The vaginal microenvironment, regulated by an immune system, can be protected or altered by many factors, including contraceptive methods. OBJECTIVE The objective of this study is to evaluate the impact of contraceptive methods on the basic vaginal states (BVSs) and to identify culturable vaginal Lactobacillus species. METHODS This is a prospective, consecutive, longitudinal, and descriptive study. The vaginal contents of 208 women were sampled prior to initiating contraception and six months later. The BVSs were established using the balance of vaginal content (BAVACO) methodology that evaluates microbiota and vaginal inflammatory reaction (VIR). Lactobacillus species were characterized by biochemical tests and mass spectrometry. The following contraceptive methods were evaluated: combined oral contraceptive pill (COCP), condom (CON) and rhythm method (RHYT). McNemar's test was used. RESULTS Of the 208 women, 171 attended both examinations. In the COCP group (n=127), 83 vaginal contents maintained a normal microbiota, 1 sample became dysbiotic, and 37/43 dysbiotic microbiota samples reverted to normal (p<0.0001). A conversion to BVS with VIR was detected in the CON group (n=31) (p=0.001). The RHYT group (n=13) maintained its initial BVSs. The predominant Lactobacillus species found were L. crispatus and L. gasseri, with a trend toward a positive association between L. crispatus and COCP (OR=2.82; p=0.058). CONCLUSION Hormone administration corrected the dysbiosis and preserved a normal BVS. The CON increased the VIR. The protection of the microbiota observed in the rhythm method probably responds to a systemic hormonal influence. The trend toward a positive association between COCP and L. crispatus, with its protective properties, evidenced an effective hormonal relationship.
Collapse
Affiliation(s)
- Sonia Elena María Fosch
- Agencia PROSAR Santa Fe Norte, Fundación Bioquímica Argentina, Viamonte 1167, Buenos Aires, Argentina
- Servicio de Atención Médica de la Comunidad, Ministerio de Salud, 9 de Julio 254, Sa Pereira, Provincia de Santa Fe, Argentina
| | - Marta Lucia Trossero
- Servicio de Atención Médica de la Comunidad, Ministerio de Salud, 9 de Julio 254, Sa Pereira, Provincia de Santa Fe, Argentina
| | - Omar Agustin Grosso
- Servicio de Atención Médica de la Comunidad, Ministerio de Salud, 9 de Julio 254, Sa Pereira, Provincia de Santa Fe, Argentina
| | - Ana Paula Reyes
- Laboratorio de Bacteriología Clínica. Departamento de Bioquímica Clínica, Hospital de Clínicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Córdoba 2351, Buenos Aires, Argentina
| | - Silvina Ema Cocucci
- Laboratorio de Bacteriología Clínica. Departamento de Bioquímica Clínica, Hospital de Clínicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Córdoba 2351, Buenos Aires, Argentina
| | - Sandra Noemí Payalef
- Laboratorio de Bacteriología Clínica. Departamento de Bioquímica Clínica, Hospital de Clínicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Córdoba 2351, Buenos Aires, Argentina
| | - Beatriz Elizabeth Perazzi
- Laboratorio de Bacteriología Clínica. Departamento de Bioquímica Clínica, Hospital de Clínicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Córdoba 2351, Buenos Aires, Argentina
| |
Collapse
|
41
|
Helena Macedo M, Baião A, Pinto S, Barros AS, Almeida H, Almeida A, das Neves J, Sarmento B. Mucus-producing 3D cell culture models. Adv Drug Deliv Rev 2021; 178:113993. [PMID: 34619286 DOI: 10.1016/j.addr.2021.113993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
In vitro cell-based models have been used for a long time since they are normally easily obtained and have an advantageous cost-benefit. Besides, they can serve a variety of ends, from studying drug absorption and metabolism to disease modeling. However, some in vitro models are too simplistic, not accurately representing the living tissues. It has been shown, mainly in the last years, that fully mimicking a tissue composition and architecture can be paramount for cellular behavior and, consequently, for the outcomes of the studies using such models. Because of this, 3D in vitro cell models have been gaining much attention, since they are able to better replicate the in vivo environment. In this review we focus on 3D models that contain mucus-producing cells, as mucus can play a pivotal role in drug absorption. Being frequently overlooked, this viscous fluid can have an impact on drug delivery. Thus, the aim of this review is to understand to which extent can mucus affect mucosal drug delivery and to provide a state-of-the-art report on the existing 3D cell-based mucus models.
Collapse
|
42
|
Comparative measurement of D- and L-lactic acid isomers in vaginal secretions: association with high-grade cervical squamous intraepithelial lesions. Arch Gynecol Obstet 2021; 305:373-377. [PMID: 34554315 DOI: 10.1007/s00404-021-06258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Identification of low-cost protocols to identify women at elevated susceptibility to develop cervical intra-epithelial abnormalities would aid in more individualized monitoring. We evaluated whether quantitation of the D- and L-lactic acid isomers in vaginal secretions could differentiate women with normal cervical epithelia from those with a low (LSIL) or high (HSIL) grade squamous intraepithelial lesion or with cervical cancer. METHODS Vaginal samples, collected from 78 women undetgoing cervical colposcopy and biopsy, were tested for pH, bacterial composition by Gram stain (Nugent score) and concentrations of D- and L-lactic acid by a colorimetric assay. RESULTS Subsequent diagnosis was 23 women with normal cervical epithelium, 10 with LSIL, 43 with HSIL and 2 with cervical cancer. Vaginal pH and Nugent score were comparable in all subject groups. The concentration of L-lactic acid, but not D-lactic acid, as well as the L/D-lactic acid ratio, were significantly elevated (p < 0.01) in women with HSIL and cervical cancer. CONCLUSION Comparative measurement of vaginal D- and L-lactic acid isomers may provide a low-cost alternative to identification of women with an elevated susceptibility to cervical abnormalities.
Collapse
|
43
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
44
|
Turner E, Sobel JD, Akins RA. Prognosis of recurrent bacterial vaginosis based on longitudinal changes in abundance of Lactobacillus and specific species of Gardnerella. PLoS One 2021; 16:e0256445. [PMID: 34424942 PMCID: PMC8382169 DOI: 10.1371/journal.pone.0256445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/07/2021] [Indexed: 02/03/2023] Open
Abstract
Refractory responses to standard-of-care oral metronidazole among recurrent bacterial vaginosis (BV) patients is not rare, and recurrence within a year is common. A better understanding of the bacterial determinants of these outcomes is essential. In this study we ask whether changes in specific species of Gardnerella are associated with poor short or long term clinical outcomes, and if and how resurgence of Lactobacillus species affects these outcomes. We quantify Lactobacillus isolates as a proportion of total vaginal bacteria using the LbRC5 qPCR assay, and 5 prevalent species of Gardnerella using primers that target species-specific polymorphisms within the cpn60 gene. The study includes 43 BV patients: 18 refractory, 16 recurrent, and 11 remission patients, sampled daily for up to two weeks post-treatment; clinical outcomes were tracked for up to 9 months. Persistently high titers of Gardnerella Gsp07 were associated with refractory responses, and persistently low abundance of Gardnerella Gsp07 and G. swidsinskii / G. leopoldii were associated with remission. Lactobacillus species abundance rose in 4-14 days after initiation of treatment in most but not all recurrent and remission patients, although increases were more sustained among remission patients. The findings suggest that Gardnerella Gsp07 and G. swidsinskii / G. leopoldii are markers of poor clinical outcome or may directly or indirectly suppress recovery of Lactobacillus species, thereby interfering with clinical recovery. Therapies that target these strains may improve patient outcome.
Collapse
Affiliation(s)
- Essence Turner
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jack D. Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Robert A. Akins
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
45
|
Graham ME, Herbert WG, Song SD, Raman HN, Zhu JE, Gonzalez PE, Walther-António MRS, Tetel MJ. Gut and vaginal microbiomes on steroids: implications for women's health. Trends Endocrinol Metab 2021; 32:554-565. [PMID: 34049772 PMCID: PMC8282721 DOI: 10.1016/j.tem.2021.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
This review discusses the interactions of steroids with the gut and vaginal microbiomes within each life phase of adult women and the implications for women's health. Each phase of a woman's life is characterized by distinct hormonal states which drive overall physiology of both host and commensal microbes. These host-microbiome interactions underlie disease pathology in disorders that affect women across their lifetime, including bacterial vaginosis, gestational diabetes, polycystic ovary syndrome (PCOS), anxiety, depression, and obesity. Although many associations between host health and microbiome composition are well defined, the mechanistic role of the microbiome in women's health outcomes is largely unknown. This review addresses potential mechanisms by which the microbiota influences women's health and highlights gaps in current knowledge.
Collapse
Affiliation(s)
- Madeline E Graham
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - William G Herbert
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Stephanie D Song
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Harshini N Raman
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - Jade E Zhu
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | | | - Marina R S Walther-António
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Marc J Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA.
| |
Collapse
|
46
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
47
|
Abbasi A, Aghebati-Maleki L, Homayouni-Rad A. The promising biological role of postbiotics derived from probiotic Lactobacillus species in reproductive health. Crit Rev Food Sci Nutr 2021; 62:8829-8841. [PMID: 34152234 DOI: 10.1080/10408398.2021.1935701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent investigations have meaningfully developed our knowledge of the features of the reproductive microbiome/metabolome profile and their relations with host responses to offer an optimal milieu for the development of the embryo during the peri-implantation period and throughout pregnancy. In this context, the establishment of homeostatic circumstances in the Female Reproductive Tract (FRT), in various physiological periods, is a significant challenge, which appears the application of postbiotics can facilitate the achievement of this goal. So, currently, scientific literature confirms that postbiotics due to their antimicrobial, antiviral, and immunomodulatory properties can be considered as a novel biotherapeutic approach. Future investigation in this field will shed more translational mechanistic understanding of the interaction of the postbiotics derived from vaginal Lactobacilli with females' health and reproduction.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Lagenaur LA, Hemmerling A, Chiu C, Miller S, Lee PP, Cohen CR, Parks TP. Connecting the Dots: Translating the Vaginal Microbiome Into a Drug. J Infect Dis 2021; 223:S296-S306. [PMID: 33330916 PMCID: PMC8502429 DOI: 10.1093/infdis/jiaa676] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A Lactobacillus-dominated vaginal microbiota (VMB) has been associated with health and considered an important host defense mechanism against urogenital infections. Conversely, depletion of lactobacilli and increased microbial diversity, amplifies the risk of adverse gynecologic and obstetric outcomes. A common clinical condition that exemplifies dysbiosis is bacterial vaginosis (BV). BV is currently treated with antibiotics, but frequently recurs, due in part to persistent dysbiosis and failure of lactobacilli to repopulate the vagina. New treatment options are needed to address BV. The VMB is relatively simple and optimally dominated by one or several species of Lactobacillus. Lactobacillus crispatus is strongly associated with vaginal health and depleted in dysbiosis. Replenishing the dysbiotic VMB with protective L. crispatus CTV-05 is a promising approach to prevent recurrent infections and improve women's health. Here we discuss confirmation of this approach with the microbiome-based biologic drug, LACTIN-V (L. crispatus CTV-05), focusing on prevention of BV recurrence.
Collapse
Affiliation(s)
| | - Anke Hemmerling
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Charles Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Steve Miller
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Craig R Cohen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
49
|
Tung CK, Suarez SS. Co-Adaptation of Physical Attributes of the Mammalian Female Reproductive Tract and Sperm to Facilitate Fertilization. Cells 2021; 10:cells10061297. [PMID: 34073739 PMCID: PMC8225031 DOI: 10.3390/cells10061297] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
The functions of the female reproductive tract not only encompass sperm migration, storage, and fertilization, but also support the transport and development of the fertilized egg through to the birth of offspring. Further, because the tract is open to the external environment, it must also provide protection against invasive pathogens. In biophysics, sperm are considered “pusher microswimmers”, because they are propelled by pushing fluid behind them. This type of swimming by motile microorganisms promotes the tendency to swim along walls and upstream in gentle fluid flows. Thus, the architecture of the walls of the female tract, and the gentle flows created by cilia, can guide sperm migration. The viscoelasticity of the fluids in the tract, such as mucus secretions, also promotes the cooperative swimming of sperm that can improve fertilization success; at the same time, the mucus can also impede the invasion of pathogens. This review is focused on how the mammalian female reproductive tract and sperm interact physically to facilitate the movement of sperm to the site of fertilization. Knowledge of female/sperm interactions can not only explain how the female tract can physically guide sperm to the fertilization site, but can also be applied for the improvement of in vitro fertilization devices.
Collapse
Affiliation(s)
- Chih-Kuan Tung
- Department of Physics, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence:
| | - Susan S. Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
50
|
Dabee S, Passmore JAS, Heffron R, Jaspan HB. The Complex Link between the Female Genital Microbiota, Genital Infections, and Inflammation. Infect Immun 2021; 89:e00487-20. [PMID: 33558324 PMCID: PMC8091093 DOI: 10.1128/iai.00487-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The female genital tract microbiota is part of a complex ecosystem influenced by several physiological, genetic, and behavioral factors. It is uniquely linked to a woman's mucosal immunity and plays a critical role in the regulation of genital inflammation. A vaginal microbiota characterized by a high abundance of lactobacilli and low overall bacterial diversity is associated with lower inflammation. On the other hand, a more diverse microbiota is linked to high mucosal inflammation levels, a compromised genital epithelial barrier, and an increased risk of sexually transmitted infections and other conditions. Several bacterial taxa such as Gardnerella spp., Prevotella spp., Sneathia spp., and Atopobium spp. are well known to have adverse effects; however, the definitive cause of this microbial dysbiosis is yet to be fully elucidated. The aim of this review is to discuss the multiple ways in which the microbiota influences the overall genital inflammatory milieu and to explore the causes and consequences of this inflammatory response. While there is abundant evidence linking a diverse genital microbiota to elevated inflammation, understanding the risk factors and mechanisms through which it affects genital health is essential. A robust appreciation of these factors is important for identifying effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Smritee Dabee
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- CAPRISA Centre of Excellence in HIV Prevention, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | | | - Heather B Jaspan
- Seattle Children's Research Institute, Seattle, Washington, USA
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- University of Washington, Seattle, Washington, USA
| |
Collapse
|