1
|
Meyer S, Hüttig N, Zenk M, Jäckel U, Pöther D. Bioaerosols in swine confinement buildings: A metaproteomic view. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:684-697. [PMID: 37919246 PMCID: PMC10667663 DOI: 10.1111/1758-2229.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Swine confinement buildings represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, it is necessary to study the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters and analysed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The study reveals the presence of peptides from pigs, their feed and microorganisms. The proportion of fungal peptides detected is considered to be underrepresented compared to bacterial peptides. In addition, the metaproteomic workflow enabled functional predictions about the discovered peptides. Housekeeping proteins were found in particular, but also evidence for the presence of bacterial virulence factors (e.g., serralysin-like metalloprotease) as well as plant (e.g., chitinase) and fungal allergens (e.g., alt a10). Metaproteomic analyses can thus be used to identify factors that may be relevant to the health of pig farmers. Accordingly, such studies could be used in the future to assess the adverse health potential of an occupationally relevant bioaerosol and help consider defined protective strategies for workers.
Collapse
Affiliation(s)
- Susann Meyer
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Nicole Hüttig
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Marianne Zenk
- Research Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Udo Jäckel
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | | |
Collapse
|
2
|
Yang P, Yu M, Ma X, Deng D. Carbon Footprint of the Pork Product Chain and Recent Advancements in Mitigation Strategies. Foods 2023; 12:4203. [PMID: 38231615 DOI: 10.3390/foods12234203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024] Open
Abstract
The carbon footprint of pork production is a pressing concern due to the industry's significant greenhouse gas emissions. It is crucial to achieve low-carbon development and carbon neutrality in pork production. Thus, this paper reviewed the recent studies about various sources of carbon emissions throughout the current pork production chain; feed production, processing, and manure management are the major sources of carbon emissions. The carbon footprint of the pork production chain varies from 0.6 to 6.75 kg CO2e·kg-1 pig live weight, and the carbon footprint of 1 kg of pork cuts is equivalent to 2.25 to 4.52 kg CO2e. A large reduction in carbon emissions could be achieved simultaneously if combining strategies of reducing transportation distances, optimizing farmland management, minimizing chemical fertilizer usage, promoting organic farming, increasing renewable energy adoption, and improving production efficiency. In summary, these mitigation strategies could effectively decrease carbon emissions by 6.5% to 50% in each sector. Therefore, a proper combination of mitigation strategies is essential to alleviate greenhouse gas emissions without sacrificing pork supply.
Collapse
Affiliation(s)
- Pan Yang
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Miao Yu
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xianyong Ma
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dun Deng
- Key Laboratory of Animal Nutrition and Feed of South China, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Nguyen TQ, Martínez-Álvaro M, Lima J, Auffret MD, Rutherford KMD, Simm G, Dewhurst RJ, Baima ET, Roehe R. Identification of intestinal and fecal microbial biomarkers using a porcine social stress model. Front Microbiol 2023; 14:1197371. [PMID: 38029169 PMCID: PMC10670831 DOI: 10.3389/fmicb.2023.1197371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the relationships between social stress and the gastrointestinal microbiota, and how they influence host health and performance is expected to have many scientific and commercial implementations in different species, including identification and improvement of challenges to animal welfare and health. In particular, the study of the stress impact on the gastrointestinal microbiota of pigs may be of interest as a model for human health. A porcine stress model based on repeated regrouping and reduced space allowance during the last 4 weeks of the finishing period was developed to identify stress-induced changes in the gut microbiome composition. The application of the porcine stress model resulted in a significant increase in salivary cortisol concentration over the course of the trial and decreased growth performance and appetite. The applied social stress resulted in 32 bacteria being either enriched (13) or depleted (19) in the intestine and feces. Fecal samples showed a greater number of microbial genera influenced by stress than caecum or colon samples. Our trial revealed that the opportunistic pathogens Treponema and Clostridium were enriched in colonic and fecal samples from stressed pigs. Additionally, genera such as Streptococcus, Parabacteroides, Desulfovibrio, Terrisporobacter, Marvinbryantia, and Romboutsia were found to be enriched in response to social stress. In contrast, the genera Prevotella, Faecalibacterium, Butyricicoccus, Dialister, Alloprevotella, Megasphaera, and Mitsuokella were depleted. These depleted bacteria are of great interest because they synthesize metabolites [e.g., short-chain fatty acids (SCFA), in particular, butyrate] showing beneficial health benefits due to inhibitory effects on pathogenic bacteria in different animal species. Of particular interest are Dialister and Faecalibacterium, as their depletion was identified in a human study to be associated with inferior quality of life and depression. We also revealed that some pigs were more susceptible to pathogens as indicated by large enrichments of opportunistic pathogens of Clostridium, Treponema, Streptococcus and Campylobacter. Generally, our results provide further evidence for the microbiota-gut-brain axis as indicated by an increase in cortisol concentration due to social stress regulated by the hypothalamic-pituitary-adrenal axis, and a change in microbiota composition, particularly of bacteria known to be associated with pathogenicity and mental health diseases.
Collapse
Affiliation(s)
- Tuan Q. Nguyen
- Scotland’s Rural College, Edinburgh, United Kingdom
- Department of Animal Breeding, Faculty of Animal Science and Veterinary Medicine, Nong Lam University – Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Joana Lima
- Scotland’s Rural College, Edinburgh, United Kingdom
| | | | | | - Geoff Simm
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eric T. Baima
- Zoetis Inc., Parsippany-Troy Hills, NJ, United States
| | - Rainer Roehe
- Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Meene A, Gierse L, Schwaiger T, Karte C, Schröder C, Höper D, Wang H, Groß V, Wünsche C, Mücke P, Kreikemeyer B, Beer M, Becher D, Mettenleiter TC, Riedel K, Urich T. Archaeome structure and function of the intestinal tract in healthy and H1N1 infected swine. Front Microbiol 2023; 14:1250140. [PMID: 37779690 PMCID: PMC10534045 DOI: 10.3389/fmicb.2023.1250140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Methanogenic archaea represent a less investigated and likely underestimated part of the intestinal tract microbiome in swine. Aims/Methods This study aims to elucidate the archaeome structure and function in the porcine intestinal tract of healthy and H1N1 infected swine. We performed multi-omics analysis consisting of 16S rRNA gene profiling, metatranscriptomics and metaproteomics. Results and discussion We observed a significant increase from 0.48 to 4.50% of archaea in the intestinal tract microbiome along the ileum and colon, dominated by genera Methanobrevibacter and Methanosphaera. Furthermore, in feces of naïve and H1N1 infected swine, we observed significant but minor differences in the occurrence of archaeal phylotypes over the course of an infection experiment. Metatranscriptomic analysis of archaeal mRNAs revealed the major methanogenesis pathways of Methanobrevibacter and Methanosphaera to be hydrogenotrophic and methyl-reducing, respectively. Metaproteomics of archaeal peptides indicated some effects of the H1N1 infection on central metabolism of the gut archaea. Conclusions/Take home message Finally, this study provides the first multi-omics analysis and high-resolution insights into the structure and function of the porcine intestinal tract archaeome during a non-lethal Influenza A virus infection of the respiratory tract, demonstrating significant alterations in archaeal community composition and central metabolic functions.
Collapse
Affiliation(s)
- Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Laurin Gierse
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | | | - Dirk Höper
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Verena Groß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Pierre Mücke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
6
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Lee STM. Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea. Anim Microbiome 2023; 5:35. [PMID: 37461084 DOI: 10.1186/s42523-023-00256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Kpogo AL, Jose J, Panisson JC, Agyekum AK, Predicala BZ, Alvarado AC, Agnew JM, Sprenger CJ, Beaulieu AD. Greenhouse gases and performance of growing pigs fed wheat-based diets containing wheat millrun and a multi-carbohydrase enzyme. J Anim Sci 2021; 99:6377888. [PMID: 34586401 DOI: 10.1093/jas/skab213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
The objective of this project was to determine the impact of feeding growing pigs with high wheat millrun diets supplemented with a multi-carbohydrase enzyme (amylase, cellulase, glucanase, xylanase, and invertase activities) on nutrient digestibility, growth performance, and greenhouse gas (GHG) output (carbon dioxide, CO2; nitrous oxide, N2O; methane, CH4). Three experiments were conducted utilizing six treatments arranged as a 3 × 2 factorial (0%, 15%, or 30% wheat millrun; with or without enzyme) for the digestibility experiment or as a 2 × 2 factorial (0% or 30% wheat millrun; with or without enzyme) for the performance and GHG experiments. The digestibility, performance, and GHG experiments utilized 48 individually housed pigs, 180 pigs housed 5 per pen, or 96 pigs housed 6 per chamber, respectively. Increasing wheat millrun up to 30% in the diet of growing pigs resulted in decreased energy, nitrogen (N) and phosphorus (P) apparent total tract digestibility and net energy content (P < 0.01). Overall, average daily gain (ADG) and gain to feed ratio were reduced in pigs fed wheat millrun (P < 0.05). Enzyme supplementation had minimal effects on the digestibility or performance parameters measured. Feeding diets with 30% millrun did not affect GHG output (CH4: 4.7 and 4.9; N2O: 0.45 and 0.42; CO2: 1,610 and 1,711 mg/s without or with millrun inclusion, respectively; P > 0.78). Enzyme supplementation had no effect on GHG emissions (CH4: 4.5 and 5.1; N2O: 0.46 and 0.42; CO2: 1,808 and 1,513 mg/s without or with enzymes, respectively; P > 0.51). Overall, the carbohydrase enzyme had minimal effects on parameters measured, regardless of wheat millrun inclusion (P > 0.10). Although energy, N and P digestibility, and ADG were reduced, the inclusion of up to 30% wheat millrun in the diet has no effect on GHG emissions from growing pigs (P > 0.10).
Collapse
Affiliation(s)
- Agbee L Kpogo
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jismol Jose
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | | - Atta K Agyekum
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | | | | | | | - Charley J Sprenger
- Prairie Agricultural Machinery Institute, Portage la Prairie, MB R1N 3V6, Canada
| | - A Denise Beaulieu
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
8
|
The Diversity, Composition, and Metabolic Pathways of Archaea in Pigs. Animals (Basel) 2021; 11:ani11072139. [PMID: 34359268 PMCID: PMC8300674 DOI: 10.3390/ani11072139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Archaea is identified as the key link in the interaction between gut microbiota and host metabo-lism. Studies on human and mice have reported archaea, especially methanogenic archaea, makes an important impact on the energy harvesting capacity of the host by improving fermentation. But, in pigs, the metabolic potential of archaea at different production stages are still largely unknown. Herein, we re-analyzed 276 metagenomic samples to explore the diversity, composi-tion, and potential functions of archaea in pigs. The results showed significant regional variations in archaeal composition. Furthermore, the Metacyc pathway related to hydrogen consumption (METHANOGENESIS-PWY) was only observed in archaeal reads, and archaea may be involved in carbohydrate metabolism and de novo synthesis of some kinds of essential amino acid. Overall, metagenomic re-analysis revealed that the composition and functional potential of archaea in the swine gut and suggested that archaea may make an important function in pigs. Abstract Archaea are an essential class of gut microorganisms in humans and animals. Despite the substantial progress in gut microbiome research in the last decade, most studies have focused on bacteria, and little is known about archaea in mammals. In this study, we investigated the composition, diversity, and functional potential of gut archaeal communities in pigs by re-analyzing a published metagenomic dataset including a total of 276 fecal samples from three countries: China (n = 76), Denmark (n = 100), and France (n = 100). For alpha diversity (Shannon Index) of the archaeal communities, Chinese pigs were less diverse than Danish and French pigs (p < 0.001). Consistently, Chinese pigs also possessed different archaeal community structures from the other two groups based on the Bray–Curtis distance matrix. Methanobrevibacter was the most dominant archaeal genus in Chinese pigs (44.94%) and French pigs (15.41%), while Candidatus methanomethylophilus was the most predominant in Danish pigs (15.71%). At the species level, the relative abundance of Candidatus methanomethylophilus alvus, Natrialbaceae archaeon XQ INN 246, and Methanobrevibacter gottschalkii were greatest in Danish, French, and Chinese pigs with a relative abundance of 14.32, 11.67, and 16.28%, respectively. In terms of metabolic potential, the top three pathways in the archaeal communities included the MetaCyc pathway related to the biosynthesis of L-valine, L-isoleucine, and isobutanol. Interestingly, the pathway related to hydrogen consumption (METHANOGENESIS-PWY) was only observed in archaeal reads, while the pathways participating in hydrogen production (FERMENTATION-PWY and PWY4LZ-257) were only detected in bacterial reads. Archaeal communities also possessed CAZyme gene families, with the top five being AA3, GH43, GT2, AA6, and CE9. In terms of antibiotic resistance genes (ARGs), the class of multidrug resistance was the most abundant ARG, accounting for 87.41% of archaeal ARG hits. Our study reveals the diverse composition and metabolic functions of archaea in pigs, suggesting that archaea might play important roles in swine nutrition and metabolism.
Collapse
|
9
|
Misiukiewicz A, Gao M, Filipiak W, Cieslak A, Patra AK, Szumacher-Strabel M. Review: Methanogens and methane production in the digestive systems of nonruminant farm animals. Animal 2020; 15:100060. [PMID: 33516013 DOI: 10.1016/j.animal.2020.100060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
The greenhouse gases (GHGs) derived from agriculture include carbon dioxide, nitrous oxide, and methane (CH4). Of these GHGs, CH4, in particular, constitutes a major component of the GHG emitted by the agricultural sector. Along with environmental concerns, CH4 emission also leads to losses in gross energy intake with economic implications. While ruminants are considered the main source of CH4 from agriculture, nonruminant animals also contribute substantially, and the CH4 emission intensity of nonruminants remains comparable to that of ruminants. Means of mitigating CH4 emissions from enteric fermentation have therefore been sought. Methane is produced by methanogens-archaeal microorganisms that inhabit the digestive tracts of animals and participate in fermentation processes. As the diversity of methanogen communities is thought to be responsible for the differences in CH4 production among nonruminant animals, it is necessary to investigate the archaeal composition of specific animal species. Methanogens play an important role in energy metabolism and adipose tissue deposition in animals. Higher abundances of methanogens, along with their higher diversity, have been reported to contribute to lean phenotype in pigs. In particular, a greater abundance of Methanosphaera spp. and early dominance of Methanobrevibacter smithii have been reported to correlate with lower body fat formation in pigs. Besides the contribution of methanogens to the metabolic phenotype of their hosts, CH4 release reduces the productivity that could be achieved through other hydrogen (H2) disposal pathways. Enhanced participation of acetogenesis in H2 disposal, leading to acetate formation, could be a more favorable direction for animal production and the environment. Better knowledge and understanding of the archaeal communities of the gastrointestinal tract (GIT), including their metabolism and interactions with other microorganisms, would thus allow the development of new strategies for inhibiting methanogens and shifting toward acetogenesis. There are a variety of approaches to inhibiting methanogens and mitigating methanogenesis in ruminants, which can find an application for nonruminants, such as nutritional changes through supplementation with biologically active compounds and management changes. We summarize the available reports and provide a comprehensive review of methanogens living in the GIT of various nonruminants, such as swine, horses, donkeys, rabbits, and poultry. This review will help in a better understanding of the populations and diversity of methanogens and the implications of their presence in nonruminant animals.
Collapse
Affiliation(s)
- A Misiukiewicz
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - M Gao
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - W Filipiak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - A Cieslak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - A K Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - M Szumacher-Strabel
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland.
| |
Collapse
|
10
|
de Vries H, Geervliet M, Jansen CA, Rutten VPMG, van Hees H, Groothuis N, Wells JM, Savelkoul HFJ, Tijhaar E, Smidt H. Impact of Yeast-Derived β-Glucans on the Porcine Gut Microbiota and Immune System in Early Life. Microorganisms 2020; 8:microorganisms8101573. [PMID: 33066115 PMCID: PMC7601942 DOI: 10.3390/microorganisms8101573] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023] Open
Abstract
Piglets are susceptible to infections in early life and around weaning due to rapid environmental and dietary changes. A compelling target to improve pig health in early life is diet, as it constitutes a pivotal determinant of gut microbial colonization and maturation of the host’s immune system. In the present study, we investigated how supplementation of yeast-derived β-glucans affects the gut microbiota and immune function pre- and post-weaning, and how these complex systems develop over time. From day two after birth until two weeks after weaning, piglets received yeast-derived β-glucans or a control treatment orally and were subsequently vaccinated against Salmonella Typhimurium. Faeces, digesta, blood, and tissue samples were collected to study gut microbiota composition and immune function. Overall, yeast-derived β-glucans did not affect the vaccination response, and only modest effects on faecal microbiota composition and immune parameters were observed, primarily before weaning. This study demonstrates that the pre-weaning period offers a ‘window of opportunity’ to alter the gut microbiota and immune system through diet. However, the observed changes were modest, and any long-lasting effects of yeast-derived β-glucans remain to be elucidated.
Collapse
Affiliation(s)
- Hugo de Vries
- Laboratory of Microbiology, Wageningen University, 6700 EH Wageningen, The Netherlands;
- Host-Microbe Interactomics Group, Wageningen University, 6700 AH Wageningen, The Netherlands;
| | - Mirelle Geervliet
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Christine A. Jansen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (C.A.J.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (C.A.J.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Hubèrt van Hees
- Research and Development, Trouw Nutrition, 3800 AG Amersfoort, The Netherlands;
| | - Natalie Groothuis
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Wageningen University, 6700 AH Wageningen, The Netherlands;
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University, 6700 AH Wageningen, The Netherlands; (M.G.); (N.G.); (H.F.J.S.); (E.T.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, 6700 EH Wageningen, The Netherlands;
- Correspondence:
| |
Collapse
|
11
|
Gong G, Zhou S, Luo R, Gesang Z, Suolang S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiol 2020; 20:302. [PMID: 33036549 PMCID: PMC7547465 DOI: 10.1186/s12866-020-01993-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem. RESULTS Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were Bacteroidaceae, Ruminococcaceae, Rikenellaceae, Clostridiaceae, and Prevotellaceae. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability. CONCLUSIONS Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.
Collapse
Affiliation(s)
- Ga Gong
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Saisai Zhou
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Runbo Luo
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Zhuoma Gesang
- Animal Epidemic Prevention and Control Center of Tibet Autonomous Region, Lasa, Tibet, China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China.
| |
Collapse
|