1
|
Aristotelous AC. Biofilm neutrophils interactions under hypoxia: A mathematical modeling study. Math Biosci 2022; 352:108893. [PMID: 36029807 DOI: 10.1016/j.mbs.2022.108893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Neutrophils are important to the defense of the host against bacterial infection. Pathogens and the immune system cells create via respiration, a hypoxic environment in infected regions. Hypoxic conditions affect both the neutrophil's ability to eradicate the infection and also change the behavior of the bacterial-pathogens by eliciting the production of various virulence factors, the creation of bacterial biofilm and the initialization of anaerobic metabolism. In this work interactions of bacterial biofilm and neutrophils are studied in a domain where oxygen is diffusing into the environment and is being consumed by biofilm. Within a hypoxic environment, bacteria grow anaerobically and secrete higher levels of toxin that diffuses and lyses neutrophils. A mathematical model explicitly representing the biofilm volume fraction, oxygen, and diffusive virulence factors (toxin) as well as killing of bacteria by neutrophils is developed and studied first in 1D and then in 2D. Stability analysis and numerical simulations showing the effects of oxygen and toxin concentration on neutrophil-bacteria interactions are presented to identify different possible scenarios that can lead to elimination of the infection or its persistence as a chronic infection. Specifically, when bacteria are allowed to utilize anaerobic breathing and or to produce toxin, their fitness is enhanced against neutrophils attacks. A possible insight on how virulent bacterial colonies can synergistically resist neutrophils and survive is presented.
Collapse
Affiliation(s)
- Andreas C Aristotelous
- Department of Mathematics, Buchtel College of Arts and Sciences, The University of Akron, Akron, OH, 44325-4002, USA.
| |
Collapse
|
2
|
Ndhlovu GON, Dube FS, Moonsamy RT, Mankahla A, Hlela C, Levin ME, Lunjani N, Shittu AO, Abdulgader SM. Skin and nasal colonization of coagulase-negative staphylococci are associated with atopic dermatitis among South African toddlers. PLoS One 2022; 17:e0265326. [PMID: 35298533 PMCID: PMC8929619 DOI: 10.1371/journal.pone.0265326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Skin colonization with coagulase-negative staphylococci (CoNS) is generally beneficial, but recent investigations suggest its association with flares and atopic dermatitis (AD) severity. However, this relationship remains unclear.
Objective
To assess patterns of staphylococcal colonization and biofilm formation in toddlers with and without AD from rural and urban South African settings.
Methods
We conducted a cross-sectional study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. CoNS isolates were recovered from lesional, nonlesional skin samples and the anterior nares of participants. Identification of the staphylococci was achieved by MALDI-TOF mass spectrometry. The microtiter plate assay assessed in-vitro biofilm formation.
Results
CoNS and S. aureus commonly co-colonized nonlesional skin among cases (urban: 24% vs. 3%, p = 0.037 and rural 21% vs. 6%, p<0.001), and anterior nares in urban cases (24% vs. 0%, p = 0.002) than the control group. S. capitis colonization on nonlesional skin and anterior nares was positively associated with more severe disease in rural (48.3±10.8 vs. 39.7±11.5, P = 0.045) and urban cases (74.9±10.3 vs. 38.4±13, P = 0.004), respectively. Biofilm formation was similar between cases and controls, independent of rural-urban living.
Conclusion
CoNS colonization is associated with AD and disease severity and may be implicated in AD exacerbations. Studies are needed to understand their underlying pathological contribution in AD pathogenesis.
Collapse
Affiliation(s)
- Gillian O. N. Ndhlovu
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Felix S. Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rasalika T. Moonsamy
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Avumile Mankahla
- Department of Medicine and Pharmacology, Division of Dermatology, Walter Sisulu University, Umtata, South Africa
| | - Carol Hlela
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Michael E. Levin
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla Lunjani
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Shima M. Abdulgader
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
3
|
Abdul Hamid AI, Cara A, Diot A, Laurent F, Josse J, Gueirard P. Differential Early in vivo Dynamics and Functionality of Recruited Polymorphonuclear Neutrophils After Infection by Planktonic or Biofilm Staphylococcus aureus. Front Microbiol 2021; 12:728429. [PMID: 34526981 PMCID: PMC8435793 DOI: 10.3389/fmicb.2021.728429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a human pathogen known for its capacity to shift between the planktonic and biofilm lifestyles. In vivo, the antimicrobial immune response is characterized by the recruitment of inflammatory phagocytes, namely polymorphonuclear neutrophils (PMNs) and monocytes/macrophages. Immune responses to planktonic bacteria have been extensively studied, but many questions remain about how biofilms can modulate inflammatory responses and cause recurrent infections in live vertebrates. Thus, the use of biologically sound experimental models is essential to study the specific immune signatures elicited by biofilms. Here, a mouse ear pinna model of infection was used to compare early innate immune responses toward S. aureus planktonic or biofilm bacteria. Flow cytometry and cytokine assays were carried out to study the inflammatory responses in infected tissues. These data were complemented with intravital confocal imaging analyses, allowing the real-time observation of the dynamic interactions between EGFP + phagocytes and bacteria in the ear pinna tissue of LysM-EGFP transgenic mice. Both bacterial forms induced an early and considerable recruitment of phagocytes in the ear tissue, associated with a predominantly pro-inflammatory cytokine profile. The inflammatory response was mostly composed of PMNs in the skin and the auricular lymph node. However, the kinetics of PMN recruitment were different between the 2 forms in the first 2 days post-infection (pi). Two hours pi, biofilm inocula recruited more PMNs than planktonic bacteria, but with decreased motility parameters and capacity to emit pseudopods. Inversely, biofilm inocula recruited less PMNs 2 days pi, but with an “over-activated” status, illustrated by an increased phagocytic activity, CD11b level of expression and ROS production. Thus, the mouse ear pinna model allowed us to reveal specific differences in the dynamics of recruitment and functional properties of phagocytes against biofilms. These differences would influence the specific adaptive immune responses to biofilms elicited in the lymphoid tissues.
Collapse
Affiliation(s)
- Aizat Iman Abdul Hamid
- Laboratoire Microorganismes: Génome et Environnement, CNRS UMR 6023, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Andréa Cara
- Centre International de Recherche et Infectiologie, Inserm U1111, CNRS UMR 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alan Diot
- Centre International de Recherche et Infectiologie, Inserm U1111, CNRS UMR 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Laurent
- Centre International de Recherche et Infectiologie, Inserm U1111, CNRS UMR 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Josse
- Centre International de Recherche et Infectiologie, Inserm U1111, CNRS UMR 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Pascale Gueirard
- Laboratoire Microorganismes: Génome et Environnement, CNRS UMR 6023, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Vesperini D, Montalvo G, Qu B, Lautenschläger F. Characterization of immune cell migration using microfabrication. Biophys Rev 2021; 13:185-202. [PMID: 34290841 PMCID: PMC8285443 DOI: 10.1007/s12551-021-00787-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed "immune surveillance." Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.
Collapse
Affiliation(s)
- Doriane Vesperini
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Galia Montalvo
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Klopfenstein N, Cassat JE, Monteith A, Miller A, Drury S, Skaar E, Serezani CH. Murine Models for Staphylococcal Infection. Curr Protoc 2021; 1:e52. [PMID: 33656290 PMCID: PMC7935403 DOI: 10.1002/cpz1.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that colonizes almost every organ in humans and mice and is a leading cause of diseases worldwide. S. aureus infections can be challenging to treat due to widespread antibiotic resistance and their ability to cause tissue damage. The primary modes of transmission of S. aureus are via direct contact with a colonized or infected individual or invasive spread from a colonization niche in the same individual. S. aureus can cause a myriad of diseases, including skin and soft tissue infections (SSTIs), osteomyelitis, pneumonia, endocarditis, and sepsis. S. aureus infection is characterized by the formation of purulent lesions known as abscesses, which are rich in live and dead neutrophils, macrophages, and surrounded by a capsule containing fibrin and collagen. Different strains of S. aureus produce varying amounts of toxins that evade and/or elicit immune responses. Therefore, animal models of S. aureus infection provide a unique opportunity to understand the dynamics of organ-specific immune responses and modifications in the pathogen that could favor the establishment of the pathogen. With advances in in vivo imaging of fluorescent transgenic mice, combined with fluorescent/bioluminescent bacteria, we can use mouse models to better understand the immune response to these types of infections. By understanding the host and bacterial dynamics within various organ systems, we can develop therapeutics to eliminate these pathogens. This module describes in vivo mouse models of both local and systemic S. aureus infection. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Murine model of Staphylococcus aureus subcutaneous infection Alternate Protocol: Murine tape stripping skin infection model Basic Protocol 2: Sample collection to determine skin structure, production of inflammatory mediators, and bacterial load Basic Protocol 3: Murine model of post-traumatic Staphylococcus aureus osteomyelitis Basic Protocol 4: Intravenous infection of the retro-orbital sinus Support Protocol: Preparation of the bacterial inoculum.
Collapse
Affiliation(s)
- Nathan Klopfenstein
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Andrew Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anderson Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney Drury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Henrique Serezani
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Beloin C, McDougald D. Speciality Grand Challenge for "Biofilms". Front Cell Infect Microbiol 2021; 11:632429. [PMID: 33692967 PMCID: PMC7937965 DOI: 10.3389/fcimb.2021.632429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, Paris, France
| | - Diane McDougald
- iîhree lnstitute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Sauvat L, Abdul Hamid AI, Blavignac C, Josse J, Lesens O, Gueirard P. Biofilm-coated microbeads and the mouse ear skin: An innovative model for analysing anti-biofilm immune response in vivo. PLoS One 2020; 15:e0243500. [PMID: 33275636 PMCID: PMC7717515 DOI: 10.1371/journal.pone.0243500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to its ability to form biofilms, Staphylococcus aureus is responsible for an increasing number of infections on implantable medical devices. The aim of this study was to develop a mouse model using microbeads coated with S. aureus biofilm to simulate such infections and to analyse the dynamics of anti-biofilm inflammatory responses by intravital imaging. Scanning electron microscopy and flow cytometry were used in vitro to study the ability of an mCherry fluorescent strain of S. aureus to coat silica microbeads. Biofilm-coated microbeads were then inoculated intradermally into the ear tissue of LysM-EGFP transgenic mice (EGFP fluorescent immune cells). General and specific real-time inflammatory responses were studied in ear tissue by confocal microscopy at early (4-6h) and late time points (after 24h) after injection. The displacement properties of immune cells were analysed. The responses were compared with those obtained in control mice injected with only microbeads. In vitro, our protocol was capable of generating reproducible inocula of biofilm-coated microbeads verified by labelling matrix components, observing biofilm ultrastructure and confirmed in vivo and in situ with a matrix specific fluorescent probe. In vivo, a major inflammatory response was observed in the mouse ear pinna at both time points. Real-time observations of cell recruitment at injection sites showed that immune cells had difficulty in accessing biofilm bacteria and highlighted areas of direct interaction. The average speed of cells was lower in infected mice compared to control mice and in tissue areas where direct contact between immune cells and bacteria was observed, the average cell velocity and linearity were decreased in comparison to cells in areas where no bacteria were visible. This model provides an innovative way to analyse specific immune responses against biofilm infections on medical devices. It paves the way for live evaluation of the effectiveness of immunomodulatory therapies combined with antibiotics.
Collapse
Affiliation(s)
- Léo Sauvat
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France.,Infectious and Tropical Diseases Department, CRIOA, CRMVT, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Aizat Iman Abdul Hamid
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Lesens
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France.,Infectious and Tropical Diseases Department, CRIOA, CRMVT, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pascale Gueirard
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France
| |
Collapse
|
8
|
Gries CM, Rivas Z, Chen J, Lo DD. Intravital Multiphoton Examination of Implant-Associated Staphylococcus aureus Biofilm Infection. Front Cell Infect Microbiol 2020; 10:574092. [PMID: 33178628 PMCID: PMC7593243 DOI: 10.3389/fcimb.2020.574092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infections associated with implanted medical devices represents a healthcare crisis due to their persistence, antibiotic tolerance, and immune avoidance. Indwelling devices are rapidly coated with host plasma and extracellular matrix proteins which can then be exploited by bacterial pathogens for adherence and subsequent biofilm development. Our understanding of the host-pathogen interface that determines the fate of biofilm-mediated infections is limited to the experimental models employed by laboratories studying these organisms. Current in vivo models of biofilm-mediated infection, while certainly useful, are typically limited to end-point analyses of bacterial burden enumeration, immune cell profiling, and cytokine/chemokine analysis. Thus, with these models, the complex, real-time assessment of biofilm development and innate immune cell activity remains imperceptible. Here, we describe a novel murine biofilm infection model employing time-lapse intravital multiphoton microscopy which permits concurrent and real-time visualization of Staphylococcus aureus biofilm formation and immune cell activity. Using cell tracking, we found that S. aureus biofilms impede neutrophil chemotaxis, redirecting their migration patterns to prevent biofilm invasion. This approach is the first to directly examine device-associated biofilm development and host-pathogen interactions and will serve to both further our understanding of infection development and help reveal the effects of future antibiofilm treatment strategies.
Collapse
Affiliation(s)
- Casey M Gries
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Zuivanna Rivas
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Justin Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|