1
|
Hnaineh Z, Sokhn ES. Prevalence of bacteremia and antimicrobial resistance pattern among patients in South Lebanon. Am J Infect Control 2025; 53:139-143. [PMID: 39374635 DOI: 10.1016/j.ajic.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Bacteremia is a leading cause of morbidity and mortality worldwide. Rising prevalence and antimicrobial resistance (AMR) are critical public health issues. This study aims to determine the prevalence of bacteremia and the AMR pattern among patients in South Lebanon. METHODS A cross-sectional study analyzed 76 positive blood cultures from Hammoud and Labib Hospitals in South Lebanon between September 2023 and March 2024. The phenotype and antimicrobial susceptibility of gram-positive and gram-negative were determined by using disk diffusion. Genotypically, polymerase chain reaction was used to detect the carbapenemase-resistant Enterobacterales (CRE), extended-spectrum β-lactamases (ESBL), and methicillin-resistant Staphylococcus aureus genes. RESULTS Out of 76 isolates, 38 (50%) were gram-positive and 38 (50%) were gram-negative. Escherichia coli was the most common among gram-negative (18. 42%), with 10.52% ESBL and 3.94% CRE. Staphylococcus coagulase negative was the most common among gram-positive (40.78%), followed by Staphylococcus aureus (6.57%), with 3.94% methicillin-resistant S. aureus. The prevalent ESBL gene was CTX-M (100%), and for the CRE, NDM (66.66%) was the most common gene. Regarding S. aureus, 66.66% were mecA. DISCUSSION The diverse bacteremia isolates and resistance genes in South Lebanon reflect global variability in incidence and resistance profiles. CONCLUSIONS High rates of bacteremia and AMR in South Lebanon underscore the need for effective antibiotic stewardship programs.
Collapse
Affiliation(s)
- Zahra Hnaineh
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Elie Salem Sokhn
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| |
Collapse
|
2
|
Wen H, Qian L, Gao X, Singer A, Xie S, Tang YW, Zhao J. Technical advances in laboratory diagnosis of bloodstream infection. Expert Rev Mol Diagn 2025; 25:67-85. [PMID: 39869103 DOI: 10.1080/14737159.2025.2458467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Rapid and accurate laboratory diagnosis is essential for the effective treatment of bloodstream infection (BSI). AREAS COVERED This review aims to address novel and traditional approaches that exhibit different performance characteristics in the diagnosis of BSI. In particular, the authors will discuss the pros and cons of the blood culture-based phenotypic methods, nucleic acid-targeted molecular methods, and host response-targeted biomarker detection in the diagnosis of BSI. EXPERT OPINION This manuscript summarizes etiologic and host-based techniques in the diagnosis of BSI. Both methods are not mutually exclusive but should be selected based on clinical needs and laboratory conditions to help diagnose BSI more quickly and accurately.
Collapse
Affiliation(s)
- Hainan Wen
- Department of Clinical Laboratory, Hebei Key Laboratory of Panvascular Diseases, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People's Republic of China
| | - Liu Qian
- Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), Shanghai, People's Republic of China
| | - Xinghui Gao
- Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), Shanghai, People's Republic of China
| | | | - Shuojun Xie
- Department of Clinical Laboratory, Hebei Key Laboratory of Panvascular Diseases, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People's Republic of China
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), Shanghai, People's Republic of China
- College of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
3
|
Edmondson R, Saeed K, Green S, O’Dwyer M. Improving Turnaround Times for Routine Antimicrobial Sensitivity Testing Following European Committee on Antimicrobial Susceptibility Testing Methodology in Patients with Bacteraemia. Antibiotics (Basel) 2024; 13:1094. [PMID: 39596787 PMCID: PMC11591232 DOI: 10.3390/antibiotics13111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Bacteraemia can be fatal without antibiotic intervention. Antibiotic Susceptibility Testing (AST) provides the necessary information for targeted antibiotic therapy; however, the traditional method using disc diffusion can take over two days from a positive blood culture. Inappropriate empiric therapy is associated with increased mortality and increased antibiotic resistance, highlighting the need for more rapid turnaround times for AST. By making changes to an established method, turnaround times can be reduced. Methods: Eighty-two patient positive blood culture samples were collected from January to April 2022, representing the range of common bacteria causing sepsis. This followed the normal methodology in the laboratory of inoculating agar from positive blood cultures in preparation for European Committee on Antimicrobial Susceptibility Testing (EUCAST) disc diffusion AST method. EUCAST methodology outlines that disc diffusion should be performed on isolates from an overnight culture of 16-24 h. This study looked at comparing disc diffusion results from cultures with 6 h of incubation to those with incubation times of 24 h, after organism identification by MALDI-ToF. Results from 6-h and 24-h cultures were compared by disc zone sizes and by interpreted susceptibility reading following EUCAST guidelines of sensitive, resistant, susceptible with increased exposure, or an area of technical uncertainty. Results: A total of 99.65% interpreted susceptibility readings matched across all organisms to all relevant antibiotics, with an average zone size difference of 1.08 mm between results from 6 h versus 24 h cultures. Conclusions: This method offers a non-automated way of using the traditional disc diffusion method, reducing turnaround times while still producing reliable and accurate results. This would mean validated ASTs can be set up in the same day as a blood culture flags positive rather than waiting for a longer culture. As this method is widely used within the laboratory already, it would mean that additional training is not required, as the process is the same, and only incubation time varies. This would positively impact patient outlook due to the shorter use of empiric therapy, and benefit antimicrobial stewardship (AMS).
Collapse
Affiliation(s)
- Raewyn Edmondson
- Department of Infection, Microbiology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.S.); (S.G.); matthew.o' (M.O.)
| | - Kordo Saeed
- Department of Infection, Microbiology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.S.); (S.G.); matthew.o' (M.O.)
- Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Steve Green
- Department of Infection, Microbiology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.S.); (S.G.); matthew.o' (M.O.)
| | - Matthew O’Dwyer
- Department of Infection, Microbiology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.S.); (S.G.); matthew.o' (M.O.)
| |
Collapse
|
4
|
White L, Hammond R, Shorten RJ, Derrick JP. An investigation of scattered light integrating collector technology for rapid blood culture sensitivity testing. J Med Microbiol 2024; 73:001896. [PMID: 39360708 PMCID: PMC11448337 DOI: 10.1099/jmm.0.001896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction. Sepsis rates are increasing, with Gram-negative organisms representing a large proportion of bloodstream infections. Rapid antibiotic administration, alongside diagnostic investigations, is required for the effective management of these patients.Gap statement. Current diagnostics take ~48 h for a final report; therefore, rapid diagnostics are required.Aim. This study investigated a novel antibiotic sensitivity method, the scattered light integrating collector (SLIC), combined with a rapid identification method using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) technology to determine if an accurate identification and susceptibility result can be provided within 4 h of a positive blood culture report.Methodology. A total of 47 blood cultures containing Gram-negative bacteria from 46 patients were processed using the MALDI-TOF Biotyper Sepsityper for identification directly from the blood and the SLIC instrument for susceptibility testing. All organisms were also tested using the current standard workflow used in the host laboratory. Categorical agreement (CA), major errors (MaEs) and very major errors (VMEs) were determined.Results. SLIC produced susceptibility results with a 71.9% CA, 30.6% MaE and 17.5% VME. The median difference in time to the final result was 44.14 (43 : 05-45 : 15) h earlier compared to the current method.Conclusion. We conclude that SLIC was unable to consistently provide sufficiently accurate antibiotic susceptibility results compared to the current standard method.
Collapse
Affiliation(s)
- L. White
- Department of Microbiology, Lancashire Teaching Hospitals NHS Foundation Trust, England, UK
| | - R. Hammond
- Infection and Global Health Division, School of Medicine, University of St Andrews, St Andrews, UK
| | - R. J. Shorten
- Department of Microbiology, Lancashire Teaching Hospitals NHS Foundation Trust, England, UK
- Honorary Senior Lecturer, University of Manchester, Manchester, UK
| | - J. P. Derrick
- School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
MacVane SH, Dwivedi HP. Evaluating the impact of rapid antimicrobial susceptibility testing for bloodstream infections: a review of actionability, antibiotic use and patient outcome metrics. J Antimicrob Chemother 2024; 79:i13-i25. [PMID: 39298359 PMCID: PMC11412245 DOI: 10.1093/jac/dkae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Antimicrobial susceptibility testing (AST) is a core function of the clinical microbiology laboratory and is critical to the management of patients with bloodstream infections (BSIs) to facilitate optimal antibiotic therapy selection. Recent technological advances have resulted in several rapid methods for determining susceptibility direct from positive blood culture that can provide turnaround times in under 8 h, which is considerably shorter than conventional culture-based methods. As diagnostic results do not directly produce a medical intervention, actionability is a primary determinant of the effect these technologies have on antibiotic use and ultimately patient outcomes. Randomized controlled trials and observational studies consistently show that rapid AST significantly reduces time to results and improves antimicrobial therapy for patients with BSI across various methods, patient populations and organisms. To date, the clinical impact of rapid AST has been demonstrated in some observational studies, but randomized controlled trials have not been sufficiently powered to validate many of these findings. This article reviews various metrics that have been described in the literature to measure the impact of rapid AST on actionability, antibiotic exposure and patient outcomes, as well as highlighting how implementation and workflow processes can affect these metrics.
Collapse
Affiliation(s)
- Shawn H MacVane
- Global Medical Affairs-Microbiology, bioMérieux, Inc., Hazelwood, MO, USA
| | - Hari P Dwivedi
- Global Medical Affairs-Microbiology, bioMérieux, Inc., Hazelwood, MO, USA
| |
Collapse
|
6
|
Liborio MP, Harris PNA, Ravi C, Irwin AD. Getting Up to Speed: Rapid Pathogen and Antimicrobial Resistance Diagnostics in Sepsis. Microorganisms 2024; 12:1824. [PMID: 39338498 PMCID: PMC11434042 DOI: 10.3390/microorganisms12091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Time to receive effective therapy is a primary determinant of mortality in patients with sepsis. Blood culture is the reference standard for the microbiological diagnosis of bloodstream infections, despite its low sensitivity and prolonged time to receive a pathogen detection. In recent years, rapid tests for pathogen identification, antimicrobial susceptibility, and sepsis identification have emerged, both culture-based and culture-independent methods. This rapid narrative review presents currently commercially available approved diagnostic molecular technologies in bloodstream infections, including their clinical performance and impact on patient outcome, when available. Peer-reviewed publications relevant to the topic were searched through PubMed, and manufacturer websites of commercially available assays identified were also consulted as further sources of information. We have reviewed data about the following technologies for pathogen identification: fluorescence in situ hybridization with peptide nucleic acid probes (Accelerate PhenoTM), microarray-based assay (Verigene®), multiplex polymerase chain reaction (cobas® eplex, BioFire® FilmArray®, Molecular Mouse, Unyvero BCU SystemTM), matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (Rapid MBT Sepsityper®), T2 magnetic resonance (T2Bacteria Panel), and metagenomics-based assays (Karius©, DISQVER®, Day Zero Diagnostics). Technologies for antimicrobial susceptibility testing included the following: Alfed 60 ASTTM, VITEK® REVEALTM, dRASTTM, ASTar®, Fastinov®, QuickMIC®, ResistellTM, and LifeScale. Characteristics, microbiological performance, and issues of each method are described, as well as their clinical performance, when available.
Collapse
Affiliation(s)
- Mariana P. Liborio
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Patrick N. A. Harris
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD 4029, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia
| | - Chitra Ravi
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Adam D. Irwin
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| |
Collapse
|
7
|
Hattab S, Ma AH, Tariq Z, Vega Prado I, Drobish I, Lee R, Yee R. Rapid Phenotypic and Genotypic Antimicrobial Susceptibility Testing Approaches for Use in the Clinical Laboratory. Antibiotics (Basel) 2024; 13:786. [PMID: 39200086 PMCID: PMC11351821 DOI: 10.3390/antibiotics13080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The rapid rise in increasingly resistant bacteria has become a major threat to public health. Antimicrobial susceptibility testing (AST) is crucial in guiding appropriate therapeutic decisions and infection prevention practices for patient care. However, conventional culture-based AST methods are time-consuming and labor-intensive. Therefore, rapid AST approaches exist to address the delayed gap in time to actionable results. There are two main types of rapid AST technologies- phenotypic and genotypic approaches. In this review, we provide a summary of all commercially available rapid AST platforms for use in clinical microbiology laboratories. We describe the technologies utilized, performance characteristics, acceptable specimen types, types of resistance detected, turnaround times, limitations, and clinical outcomes driven by these rapid tests. We also discuss crucial factors to consider for the implementation of rapid AST technologies in a clinical laboratory and what the future of rapid AST holds.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Adrienne H. Ma
- Department of Pharmacy, Valley View Hospital, Glenwood Springs, CO 81647, USA;
| | - Zoon Tariq
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ilianne Vega Prado
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ian Drobish
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rachel Lee
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA;
| | - Rebecca Yee
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| |
Collapse
|
8
|
Morales P, Tang P, Mariano E, Gopalan A, Aji N, Pérez-López A, Suleiman M. Evaluation of Direct Antimicrobial Susceptibility Testing of Gram-Negative Bacilli and Staphylococcus aureus from Positive Pediatric Blood Culture Bottles Using BD Phoenix M50. Microorganisms 2024; 12:1704. [PMID: 39203546 PMCID: PMC11357252 DOI: 10.3390/microorganisms12081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bloodstream infections (BSIs) are life-threatening infections for which a timely initiation of appropriate antimicrobial therapy is critical. Antibiotic susceptibility testing (AST) directly performed on positive blood culture broths can help initiate targeted antibiotic therapy sooner than the standard AST performed on colonies isolated on solid media after overnight incubation. Faster antimicrobial susceptibility testing (AST) results can improve clinical outcomes, and reduce broad-spectrum antimicrobial consumption and healthcare-associated costs in sepsis. In this study, we evaluated the accuracy of a direct AST inoculation method on the BD Phoenix M50 system using serum separator tubes to harvest bacteria from positive pediatric blood culture bottles. Direct AST was performed on 132 monomicrobial pediatric blood culture bottles that were positive for Enterobacterales (65; 49.2%), Staphylococcus aureus (46; 34.8%), and non-fermenting Gram-negative bacilli (21; 16%). Overall, the categorical and essential agreements between the direct method and standard method were 99.6% and 99.8%, respectively. Very major, major, and minor error rates were 0.1%, 0.09%, and 0.20% respectively. Direct AST performed on pediatric blood culture bottles using BD Phoenix M50 can quickly provide accurate susceptibility information to guide antimicrobial therapy in patients with BSI.
Collapse
Affiliation(s)
- Princess Morales
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar; (P.M.); (P.T.); (E.M.); (A.G.); (N.A.); (A.P.-L.)
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar; (P.M.); (P.T.); (E.M.); (A.G.); (N.A.); (A.P.-L.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine in Qatar, Doha, P.O Box 24144, Qatar
| | - Elaine Mariano
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar; (P.M.); (P.T.); (E.M.); (A.G.); (N.A.); (A.P.-L.)
| | - Arun Gopalan
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar; (P.M.); (P.T.); (E.M.); (A.G.); (N.A.); (A.P.-L.)
| | - Nisha Aji
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar; (P.M.); (P.T.); (E.M.); (A.G.); (N.A.); (A.P.-L.)
| | - Andrés Pérez-López
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar; (P.M.); (P.T.); (E.M.); (A.G.); (N.A.); (A.P.-L.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine in Qatar, Doha, P.O Box 24144, Qatar
| | - Mohammed Suleiman
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar; (P.M.); (P.T.); (E.M.); (A.G.); (N.A.); (A.P.-L.)
| |
Collapse
|
9
|
Sturm A, Jóźwiak G, Verge MP, Munch L, Cathomen G, Vocat A, Luraschi-Eggemann A, Orlando C, Fromm K, Delarze E, Świątkowski M, Wielgoszewski G, Totu RM, García-Castillo M, Delfino A, Tagini F, Kasas S, Lass-Flörl C, Gstir R, Cantón R, Greub G, Cichocka D. Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform. Nat Commun 2024; 15:2037. [PMID: 38499536 PMCID: PMC10948838 DOI: 10.1038/s41467-024-46213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.
Collapse
Affiliation(s)
- Alexander Sturm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
| | | | - Marta Pla Verge
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Laura Munch
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Gino Cathomen
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Anthony Vocat
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | - Clara Orlando
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Katja Fromm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Eric Delarze
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | | | - Roxana M Totu
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - María García-Castillo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
| | - Alexandre Delfino
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Florian Tagini
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale (UFAM) & Université de Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Ronald Gstir
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Rafael Cantón
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Sinesio Delgado 4, 28029, Madrid, Spain
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Danuta Cichocka
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| |
Collapse
|
10
|
Falconer K, Hammond R, Parcell BJ, Gillespie SH. Rapid determination of antimicrobial susceptibility of Gram-negative bacteria from clinical blood cultures using a scattered light-integrated collection device. J Med Microbiol 2024; 73. [PMID: 38415707 DOI: 10.1099/jmm.0.001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Background. A bloodstream infection (BSI) presents a complex and serious health problem, a problem that is being exacerbated by increasing antimicrobial resistance (AMR).Gap Statement. The current turnaround times (TATs) for most antimicrobial susceptibility testing (AST) methods offer results retrospective of treatment decisions, and this limits the impact AST can have on antibiotic prescribing and patient care. Progress must be made towards rapid BSI diagnosis and AST to improve antimicrobial stewardship and reduce preventable deaths from BSIs. To support the successful implementation of rapid AST (rAST) in hospital settings, a rAST method that is affordable, is sustainable and offers comprehensive AMR detection is needed.Aim. To evaluate a scattered light-integrated collection (SLIC) device against standard of care (SOC) to determine whether SLIC could accelerate the current TATs with actionable, accurate rAST results for Gram-negative BSIs.Methods. Positive blood cultures from a tertiary referral hospital were studied prospectively. Flagged positive Gram-negative blood cultures were confirmed by Gram staining and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Vitek 2, disc diffusion (ceftriaxone susceptibility only) and an SLIC device. Susceptibility to a panel of five antibiotics, as defined by European Committee on Antimicrobial Susceptibility Testing breakpoints, was examined using SLIC.Results. A total of 505 bacterial-antimicrobial combinations were analysed. A categorical agreement of 95.5 % (482/505) was achieved between SLIC and SOC. The 23 discrepancies that occurred were further investigated by the broth microdilution method, with 10 AST results in agreement with SLIC and 13 in agreement with SOC. The mean time for AST was 10.53±0.46 h and 1.94±0.02 h for Vitek 2 and SLIC, respectively. SLIC saved 23.96±1.47 h from positive blood culture to AST result.Conclusion. SLIC has the capacity to provide accurate AST 1 day earlier from flagged positive blood cultures than SOC. This significant time saving could accelerate time to optimal antimicrobial therapy, improving antimicrobial stewardship and management of BSIs.
Collapse
Affiliation(s)
- Kerry Falconer
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | - Robert Hammond
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | - Benjamin J Parcell
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
- Ninewells Hospital and Medical School, Dundee, UK
| | - Stephen H Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
11
|
Gillespie SH, Hammond RJH. Rapid Drug Susceptibility Testing to Preserve Antibiotics. Methods Mol Biol 2024; 2833:129-143. [PMID: 38949707 DOI: 10.1007/978-1-0716-3981-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance is a global challenge likely to cost trillions of dollars in excess costs in the health system and more importantly, millions of lives every year. A major driver of resistance is the absence of susceptibility testing at the time a healthcare worker needs to prescribe an antimicrobial. The effect is that many prescriptions are unintentionally wasted and expose mutable organisms to antibiotics increasing the risk of resistance emerging. Often simplistic solutions are applied to this growing issue, such as a naïve drive to increase the speed of drug susceptibility testing. This puts a spotlight on a technological solution and there is a multiplicity of such candidate DST tests in development. Yet, if we do not define the necessary information and the speed at which it needs to be available in the clinical decision-making progress as well as the necessary integration into clinical pathways, then little progress will be made. In this chapter, we place the technological challenge in a clinical and systems context. Further, we will review the landscape of some promising technologies that are emerging and attempt to place them in the clinic where they will have to succeed.
Collapse
Affiliation(s)
- Stephen H Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK.
| | - Robert J H Hammond
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
12
|
Turbett SE, Banach DB, Bard JD, Gandhi RG, Letourneau AR, Azar MM. Rapid antimicrobial resistance detection methods for bloodstream infection in solid organ transplantation: Proposed clinical guidance, unmet needs, and future directions. Transpl Infect Dis 2023; 25:e14113. [PMID: 37594214 DOI: 10.1111/tid.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Recent advances in antimicrobial resistance detection have spurred the development of multiple assays that can accurately detect the presence of bacterial resistance from positive blood cultures, resulting in faster institution of effective antimicrobial therapy. Despite these advances, there are limited data regarding the use of these assays in solid organ transplant (SOT) recipients and there is little guidance on how to select, implement, and interpret them in clinical practice. We describe a practical approach to the implementation and interpretation of these assays in SOT recipients using the best available data and expert opinion. These findings were part of a consensus conference sponsored by the American Society of Transplantation held on December 7, 2021 and represent the collaboration between experts in transplant infectious diseases, pharmacy, antimicrobial and diagnostic stewardship, and clinical microbiology. Areas of unmet need and recommendations for future investigation are also presented.
Collapse
Affiliation(s)
- Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - David B Banach
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ronak G Gandhi
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alyssa R Letourneau
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Marwan M Azar
- Department of Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Potvin M, Larranaga Lapique E, Hites M, Martiny D. Implementing Alfred60 AST in a clinical lab: Clinical impact on the management of septic patients and financial analysis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:466-474. [PMID: 36402206 DOI: 10.1016/j.pharma.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Sepsis is an important cause of morbidity and mortality. An accelerated microbiology diagnosis is crucial in order to reduce the time to initiate targeted antibiotic therapy. The Alfred60AST system is able to provide phenotypic Antimicrobial Susceptibility Testing (AST) results within hours. This study has two objectives: assess the clinical impact of this technology and determine its cost-effectiveness. METHODS During a ten-week period, all new enterobacterial or enterococcal bloodstream infection was analyzed with the Alfred60AST system, in parallel with routine methods. Its impact on the clinician's therapeutic strategy was studied. In order to assess the financial and practical aspects of the method, an analysis of the extracosts and a survey of the technical staff were conducted. RESULTS Fifty-three cases of bacteriemia were included. For the Enterobacteriaceae bacteriemias, a clinical impact was shown in 18.9% of the cases (e.g, treatment modification). The financial analysis highlighted an increase in costs (+38% for Enterobacteriaceae, +50% for Enterococci), compared to the theoretical costs reported by the firm, due to the workflow and the volumes of samples used. Finally, results of the technical staff survey were favorable in terms of ease of use of the system. CONCLUSION In addition to its ease of use, the Alfred60AST system is able to provide an AST in a record time. This study shows a real interest of the technique in the therapeutic management of patients with enterobacterial sepsis. However, its routine implementation requires an increase of the analyzed volumes as well as a 24/7 organization of the laboratory in order to be profitable.
Collapse
Affiliation(s)
- M Potvin
- Microbiology Department, LHUB-ULB, rue haute, 322, 1000 Brussels, Belgium.
| | - E Larranaga Lapique
- Department of Infectious Disease, Erasme Hospital, route de Lennik, 808, 1070 Brussels, Belgium
| | - M Hites
- Department of Infectious Disease, Erasme Hospital, route de Lennik, 808, 1070 Brussels, Belgium
| | - D Martiny
- Microbiology Department, LHUB-ULB, rue haute, 322, 1000 Brussels, Belgium
| |
Collapse
|
14
|
Paluch M, Lleres-Vadeboin M, Poupet H, Chanard E, Wilhelm N, Nadji S, Prots L, Bala Y, Zambardi G, Cattoen C. Multicenter evaluation of rapid antimicrobial susceptibility testing by VITEK®2 directly from positive blood culture. Diagn Microbiol Infect Dis 2023; 106:115950. [PMID: 37182374 DOI: 10.1016/j.diagmicrobio.2023.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023]
Abstract
STUDY OBJECTIVE To compare the antimicrobial susceptibility testing (AST) performance of positive blood cultures (PBC) VITEK®2 off-label use (D0) and traditional VITEK®2 workflow using isolated colonies after overnight (D1). METHODS Patient samples with monomicrobial Gram-negative rod or Gram-positive cocci in clusters bacteremia were tested on D0 and compared to D1 AST results in 7 laboratories in France. RESULTS Overall, categorical and essential agreement rates were 98.4% and 96.7%, respectively. Very major discrepancy and major discrepancy rates for Enterobacterales and Staphylococci satisfied the NF EN ISO 20776-2 (2007) criteria for sepsis-relevant drugs. Very major discrepancies were >3% for amoxicillin-clavulanate (4.9%, 6/122), piperacillin-tazobactam (7.5%, 4/53) and meropenem (33%,1/3) for Enterobacterales and gentamicin for Staphylococci (4.6%, 4/87). CONCLUSION Direct AST from PBC broths by VITEK®2 for Enterobacterales and Staphylococci is reliable and fast and may positively influence antimicrobial stewardship.
Collapse
Affiliation(s)
- Maxime Paluch
- Laboratoire de Bactériologie, Centre Hospitalier de Valenciennes, Valenciennes, France.
| | - Manon Lleres-Vadeboin
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Étienne, France
| | - Hélène Poupet
- Laboratoire de Bactériologie, Hôpital Cochin, AP-HP, Paris, France
| | | | - Nathalie Wilhelm
- Laboratoire de Bactériologie, Centre Hospitalier de Cahors, Cahors, France
| | - Safia Nadji
- Laboratoire de Bactériologie, Centre Hospitalier de Douai, Douai, France
| | - Laurence Prots
- Laboratoire Cerballiance, Laboratoire de Microbiologie, Saint Laurent du Var, France
| | - Yohann Bala
- bioMérieux Global Clinical Affairs Microbiology, bioMérieux, Marcy-l'étoile, France
| | - Gilles Zambardi
- bioMérieux Microbiology Expertise, bioMérieux, La-Balme-les-grottes, France
| | - Christian Cattoen
- Laboratoire de Bactériologie, Centre Hospitalier de Valenciennes, Valenciennes, France.
| |
Collapse
|
15
|
Ortiz de la Rosa JM, Rodríguez-Villodres Á, Gimeno Gascón MA, Martín-Gutiérrez G, Cisneros JM, Lepe JA. Rapid Detection of Piperacillin-Tazobactam Resistance in Klebsiella pneumoniae and Escherichia coli. Microbiol Spectr 2023; 11:e0436622. [PMID: 36786627 PMCID: PMC10100654 DOI: 10.1128/spectrum.04366-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Rapid determination of susceptibility to piperacillin-tazobactam (TZP) is very important since the development of antibiotic resistance and inadequate treatment could increase the risk of clinical failure in infected patients, especially if such resistance is unknown to the clinician. Therefore, based on color change from orange to yellow of phenol red due to glucose metabolism (bacterial growth) in the presence of an adequate concentration of TZP (10 mg/L piperacillin and 5 mg/L tazobactam), the RapidTZP test has been developed to detect TZP resistance in Escherichia coli and Klebsiella pneumoniae isolates in a maximum of 3 h. A total of 140 isolates, 43 of E. coli and 97 of K. pneumoniae, were used to evaluate the performance of the test, 60 being resistant to TZP. The sensitivity and specificity of the test were 98.24% and 100%, respectively. Additionally, the RapidTZP test was validated by a pellet obtained directly from blood culture bottles. A total of 37 positive blood cultures for E. coli and 43 for K. pneumoniae were used for validation, 8 of them resistant to TZP. The sensitivity and specificity shown in the evaluation were 100% for both parameters. This new test is easy, fast, and accurate, providing results in 3 h. IMPORTANCE TZP is an antibiotic widely used for the empirical treatment of severe infections such as bloodstream infections. However, resistance to TZP in K. pneumoniae and E. coli has been increasing in the last few years. Thus, rapid detection of TZP resistance is critical to optimize the empirical treatment of patients with severe infections. In this study, we developed and evaluated a rapid test (RapidTZP) for the detection of TZP resistance in K. pneumoniae and E. coli directly from positive hemocultures in just 3 h. This rapid test has been validated on 138 K. pneumoniae and E. coli clinical isolates directly from agar plates and 80 K. pneumoniae and E. coli isolates causing bloodstream infections. The results demonstrate that the RapidTZP test has great clinical potential to optimize the empirical treatment of patients with bloodstream infections.
Collapse
Affiliation(s)
- José Manuel Ortiz de la Rosa
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Ángel Rodríguez-Villodres
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Adelina Gimeno Gascón
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Guillermo Martín-Gutiérrez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - José Miguel Cisneros
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - José Antonio Lepe
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Microbiology, University of Seville, Seville, Spain
| |
Collapse
|
16
|
Curtoni A, Ghibaudo D, Veglio C, Imperatore L, Bianco G, Castiglione A, Ciccone G, Scaglione L, Scabini S, Corcione S, De Rosa FG, Costa C, Cavallo R. Light Scattering Technology and MALDI-TOF MS in the microbiological fast-track of bloodstream infections: potential impact on antimicrobial treatment choices in a real-life setting. J Med Microbiol 2023; 72. [PMID: 36748537 DOI: 10.1099/jmm.0.001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction. Rapid identification (ID) and antimicrobial susceptibility testing (AST) of bloodstream infections (BSI) pathogens are fundamental to switch from empirical to targeted antibiotic therapy improving patients outcome and reducing antimicrobial resistance spreading.Hypothesis. The adoption of a rapid microbiological protocol (RP) based on Matrix-Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF MS) and Light Scattering Technology (LST) for rapid diagnosis of BSI could positively impact on patients' antimicrobial management.Aim. The study aim was to evaluate a RP for BSI microbiological diagnosis in terms of accuracy, turnaround time (TAT) and potential therapeutic impact.Methodology. A prospective observational study was conducted: monomicrobial bacterial blood cultures of septic patients were analysed in parallel by RP and standard protocol (SP). In RP the combination of MALDI-TOF MS and LST was used for rapid ID and AST assessments, respectively. To determine the potential impact of RP on antimicrobial therapy management, clinicians were interviewed on therapeutic decisions based on RP and SP results. RP accuracy, TAT and impact were evaluated in comparison to SP results.Results. A total of 97 patients were enrolled. ID and AST concordance between RP and SP were 96.9 and 94.7 %, respectively. RP technical and real-life TAT were lower than SP (6.4 h vs. 18.4 h; 9.5 vs. 27.1 h). The agreement between RP- and SP-based therapeutic decisions was 90.7 (90 % CI 84.4-95.1). RP results could produce 24/97 correct antibiotic changes with 18/97 possible de-escalations and 25/97 prompt applications of infection control precautions.Conclusion. With the application of RP in BSI management, about one-fourth of patients may safely benefit from early targeted antibiotic therapy and infection control policies with one working day in advance in comparison to conventional methods. This protocol is feasible for clinical use in microbiology laboratories and potentially helpful for Antimicrobial Stewardship.
Collapse
Affiliation(s)
- Antonio Curtoni
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Davide Ghibaudo
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Caterina Veglio
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Luigi Imperatore
- Internal Medicine Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Anna Castiglione
- Unit of Clinical Epidemiology, University Hospital Città della Salute e della Scienza di Torino and CPO Piemonte, Turin, Italy
| | - Giovannino Ciccone
- Unit of Clinical Epidemiology, University Hospital Città della Salute e della Scienza di Torino and CPO Piemonte, Turin, Italy
| | - Luca Scaglione
- Internal Medicine Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Scabini
- Infectious Diseases Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Corcione
- Infectious Diseases Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesco Giuseppe De Rosa
- Infectious Diseases Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Villodres AR, Benítez LG, Arroyo MJ, Méndez G, Mancera L, Domínguez AV, Jímenez JAL, Smani Y. Ultrasensitive and rapid identification of ESRI developer- and piperacillin/tazobactam-resistant Escherichia coli by the MALDIpiptaz test. Emerg Microbes Infect 2022; 11:2034-2044. [PMID: 35972021 PMCID: PMC9423838 DOI: 10.1080/22221751.2022.2113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background The excessive use of piperacillin/tazobactam (P/T) has promoted the emergence of P/T-resistant Enterobacterales. We reported that in Escherichia coli, P/T contributes to the development of extended-spectrum resistance to β-lactam/β-lactamase inhibitor (BL/BLI) (ESRI) in isolates that are P/T susceptible but have low-level resistance to BL/BLI. Currently, the detection of P/T resistance relying on conventional methods is time-consuming. To overcome this issue, we developed a cost-effective test based on MALDI-MS technology, called MALDIpiptaz, which aims to detect P/T resistance and ESRI developers in E. coli. Methods We used automated Clover MS Data Analysis software to analyse the protein profile spectra obtained by MALDI-MS from a collection of 248 E. coli isolates (91 P/T-resistant, 81 ESRI developers and 76 P/T-susceptible). This software allowed to preprocess all the spectra to build different peak matrices that were analysed by machine learning algorithms. Results We demonstrated that MALDIpiptaz can efficiently and rapidly (15 min) discriminate between P/T-resistant, ESRI developer and P/T-susceptible isolates and allowed the correct classification between ESRI developers from their isogenic resistance to P/T. Conclusion The combination of excellent performance and cost-effectiveness are all desirable attributes, allowing the MALDIpiptaz test to be a useful tool for the rapid determination of P/T resistance in clinically relevant E. coli isolates.
Collapse
Affiliation(s)
- Angel Rodríguez Villodres
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Lydia Gálvez Benítez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Manuel J Arroyo
- Clover Bioanalytical Software, Av. del Conocimiento, 41, 18016 Granada, Spain
| | - Gema Méndez
- Clover Bioanalytical Software, Av. del Conocimiento, 41, 18016 Granada, Spain
| | - Luis Mancera
- Clover Bioanalytical Software, Av. del Conocimiento, 41, 18016 Granada, Spain
| | - Andrea Vila Domínguez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - José Antonio Lepe Jímenez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
18
|
López-Hernández I, López-Cerero L, Fernández-Cuenca F, Pascual Á. The role of the microbiology laboratory in the diagnosis of multidrug-resistant Gram-negative bacilli infections. The importance of the determination of resistance mechanisms. Med Intensiva 2022; 46:455-464. [PMID: 35643635 DOI: 10.1016/j.medine.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/15/2023]
Abstract
Early diagnosis and treatment has an important impact on the morbidity and mortality of infections caused by multidrug-resistant bacteria. Multidrug-resistant gram-negative bacilli (MR-GNB) constitute the main current threat in hospitals and especially in intensive care units (ICU). The role of the microbiology laboratory is essential in providing a rapid and effective response. This review updates the microbiology laboratory procedures for the rapid detection of BGN-MR and its resistance determinants. The role of the laboratory in the surveillance and control of outbreaks caused by these bacteria, including typing techniques, is also studied. The importance of providing standardized resistance maps that allow knowing the epidemiological situation of the different units is emphasized. Finally, the importance of effective communication systems for the transmission of results and decision making in the management of patients infected by BGN-MR is reviewed.
Collapse
Affiliation(s)
- I López-Hernández
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - L López-Cerero
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - F Fernández-Cuenca
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Á Pascual
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Cupaiolo R, Cherkaoui S, Serrano G, Dauby N, Georgala A, Blumental S, Maillart E, Hites M, Hallin M, Martiny D. Antimicrobial susceptibly testing determined by Alfred 60/AST (Alifax®) in a multi-sites' lab: performance's evaluation and optimisation of workflow. METHODS IN MICROBIOLOGY 2022; 194:106433. [PMID: 35150789 DOI: 10.1016/j.mimet.2022.106433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE New techniques are needed to speed-up the identification and antimicrobial susceptibility testing (AST) of bacteria associated with bloodstream infections. Alfred 60/AST (Alifax®, Polverara, Italy) performs AST by light scattering directly from positive blood cultures. METHODS We evaluated Alfred 60/AST performances for 4 months. Each new episode of bacteraemia was included and AST were compared to either our rapid automated AST (Vitek® 2) or disk diffusion method. The discrepancies were investigated using Etest®. The time-to-result (TTR) was evaluated by comparing the blood volume inserted into Alfred 60/AST, i.e. 2 versus 7 blood drops. Taking into account the TTR, the workflow of positive blood cultures and the availability of AST results was studied in order to optimize the implementation of Alfred 60/AST. RESULTS A total of 249 samples and 1108 antibiotics for AST were tested. After exclusion of unavailable results, 1008 antibiotics were analysed. 94.9% (n = 957/1008) of the antibiotics showed categorical agreement. There were 14 very major errors (VME), 24 major errors (ME) and 13 minor errors (mE). The VME were mostly related to clindamycin (64.3%) whereas meropenem and piperacillin-tazobactam constituted the major part (37.5% and 61.5%) of ME and mE respectively. Results were highly reliable for Enterobacterales and enterococci. The mean TTR ranged between 4.3 and 6.3 h and was statistically 20 min faster when applying the 7 blood drops protocol. We showed that Alfred 60/AST could give relievable results within working hours for positive blood culture which are flagged the same day between 12:00 am and 12:00 pm. CONCLUSION Our study confirmed that Alfred 60/AST gives reliable AST results in a short period of time, especially for Enterobacterales and enterococci. AST are thus obtained the same day of a positive blood culture. Clinical impact studies are mandatory to validate a 24/24 working.
Collapse
Affiliation(s)
- R Cupaiolo
- Microbiology Department, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium.
| | - S Cherkaoui
- Microbiology Department, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium
| | - G Serrano
- Microbiology Department, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium
| | - N Dauby
- Infectious Diseases Department, Centre Hospitalier Universitaire (CHU) Saint-Pierre - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Georgala
- Infectious Diseases Department, Institut Jules Bordet - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - S Blumental
- Paediatric Infectious Diseases Department, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - E Maillart
- Infectious Diseases Department, Centre Hospitalier Universitaire (CHU) Brugmann - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - M Hites
- Infectious Diseases Department, Hôpital Erasme - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - M Hallin
- Microbiology Department, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium
| | - D Martiny
- Microbiology Department, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium; Medicine and Pharmacy departments, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
20
|
El papel del laboratorio de microbiología en el diagnóstico de infecciones por bacilos gramnegativos multirresistentes. Importancia de la determinación de mecanismos de resistencias. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Anton-Vazquez V, Suarez C, Planche T. Impact of rapid susceptibility testing on antimicrobial therapy and clinical outcomes in Gram-negative bloodstream infections. J Antimicrob Chemother 2021; 77:771-781. [DOI: 10.1093/jac/dkab449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Rapid antimicrobial susceptibility testing (rAST) has the potential to improve care of bloodstream infections.
Objectives
The aim of this service evaluation was to assess the impact of rAST on antimicrobial therapy and clinical outcomes in patients with Gram-negative bloodstream infection.
Methods
A prospective service evaluation was conducted from March 2018 to December 2018. A rAST system (Alfred 60AST) was run Monday–Friday before midday and results were communicated to clinicians on the same day as positive blood culture, with subsequent conventional AST performed. Times to antibiotic therapy and clinical outcomes were compared between rAST and conventional AST.
Results
One hundred and ninety-one patients with Gram-negative bacteraemia were included (93 in the rapid group and 98 in the conventional group). Aminoglycoside combination therapy was stopped earlier in the rapid group [32 h (0–795) versus 54 h (4–216), P = 0.002]. The median time to optimal antibiotic based on AST results was significantly shorter than that in the conventional group [50 h (10–339) versus 69.5 h (20–872), P = 0.034]. In the subgroup of patients on ineffective empirical antibiotic, time to effective antibiotic was shorter in the rapid group [39.5 h (32–97) versus 57 h (49–83), P = 0.036]. No differences were found in 28 day mortality or length of stay.
Conclusions
Rapid susceptibility testing resulted in faster discontinuation of aminoglycosides and a shorter time to starting effective and optimal antibiotic when compared with conventional AST results. rAST has potential clinical benefits and points to the need for larger future studies in areas of high antibiotic resistance.
Collapse
Affiliation(s)
- Vanesa Anton-Vazquez
- Institute of Infection and Immunity, St George’s University of London, London, UK
| | - Cristina Suarez
- Institute of Infection and Immunity, St George’s University of London, London, UK
| | - Timothy Planche
- Institute of Infection and Immunity, St George’s University of London, London, UK
- Department of Medical Microbiology, Southwest London Pathology, St George’s Hospital, London, UK
- Infection Care Group, St George’s University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Gram-negative bloodstream infections (GNBSI) are common and carry considerable mortality. Treatment is complicated by increasing antimicrobial resistance, posing a challenge for timely appropriate antibiotics and limiting the choices of effective definitive therapy. The present review aims to summarize recent studies addressing the management of GNBSI. RECENT FINDINGS New rapid diagnostic tests (RDT) for pathogen identification and antibiotic susceptibility are associated with improved antimicrobial stewardship and reduced length of stay. No mortality benefit or patient-related outcomes are reported. Data regarding the use of new beta-lactam beta-lactamase inhibitors (BLBLIs) for treating multidrug resistance Gram-negative bacteria is supportive, though questions regarding combinations, optimal dosing, mode of administration, and resistance emergence remain to be clarified. Current data regarding cefiderocol necessitates further studies in order to support its use in GNBSI. Shortened (≤7 days) duration of therapy and early oral step down for GNBSI are supported by the literature. The role of repeated blood cultures should be further defined. SUMMARY RDTs should be implemented to improve antibiotic stewardship. Clinical implications on patient-related outcomes should be evaluated. New BLBLIs show promise in the treatment of GNBSI. Additional data are needed regarding the use of cefiderocol. Antibiotic therapy should be shortened and early oral step down should be considered.
Collapse
|
23
|
Anton-Vazquez V, Planche T. Gram-negative blood stream infections: prospects and challenges of rapid antimicrobial susceptibility testing. Expert Rev Anti Infect Ther 2021; 20:483-485. [PMID: 34706610 DOI: 10.1080/14787210.2022.1999805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vanesa Anton-Vazquez
- Institute of Infection and Immunity, St. George's University of London, London, UK.,Department of Medical Microbiology, Southwest London Pathology, St. George's Hospital, London, UK.,Infection Care Group, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Timothy Planche
- Institute of Infection and Immunity, St. George's University of London, London, UK.,Department of Medical Microbiology, Southwest London Pathology, St. George's Hospital, London, UK.,Infection Care Group, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Rodríguez-Villodres Á, Gutiérrez Linares A, Gálvez-Benitez L, Pachón J, Lepe JA, Smani Y. Semirapid Detection of Piperacillin/Tazobactam Resistance and Extended-Spectrum Resistance to β-Lactams/β-Lactamase Inhibitors in Clinical Isolates of Escherichia coli. Microbiol Spectr 2021; 9:e0080121. [PMID: 34668721 PMCID: PMC8528104 DOI: 10.1128/spectrum.00801-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Piperacillin/tazobactam (TZP) is a β-lactam/β-lactamase inhibitor (BL/BLI) recommended for the empirical treatment of severe infections. The excessive and indiscriminate use of TZP has promoted the emergence of TZP-resistant Escherichia coli isolates. Recently, we demonstrated that TZP may contribute to the development of extended-spectrum resistance to BL/BLI (ESRI) in E. coli isolates that are TZP susceptible but have low-level resistance to BL/BLI (resistance to amoxicillin/clavulanic acid [AMC] and/or ampicillin/sulbactam [SAM]). This raises the need for the development of rapid detection systems. Therefore, the objective of this study was to design and validate a method able to detect TZP resistance and ESRI in E. coli. A colorimetric assay based on β-lactam ring hydrolysis by β-lactamases was designed (ESRI test). A total of 114 E. coli isolates from bloodstream and intra-abdominal sources, characterized according to their susceptibility profiles to BL/BLI, were used. Detection of the three most frequent β-lactamases involved in BL/BLI resistance (blaTEM, blaOXA-1, and blaSHV) was performed by PCR. The ESRI test was able to detect all the TZP-intermediate/-resistant isolates, as well as all the TZP-susceptible isolates with a capacity for ESRI development. Their median times to results were 5 and 30 min, respectively. All the isolates without resistance to BL/BLI displayed a negative result in the ESRI test. blaTEM was the most frequent β-lactamase gene detected, follow by blaSHV and blaOXA-1. These results demonstrate the efficacy of the ESRI test, showing great clinical potential which could lead to reductions in health costs, ineffective treatments, and inappropriate use of BL/BLI. IMPORTANCE TZP is a BL/BLI recommended for the empirical treatment of severe infections. The excessive use of TZP has promoted the emergence of TZP-resistant Escherichia coli isolates. We recently reported that TZP may contribute to the development of ESRI in E. coli isolates that are TZP susceptible but have low-level resistance to BL/BLI. This raises the need for the development of rapid detection systems. Here, we demonstrated that the ESRI test was able to detect the TZP-intermediate or -resistant isolates and the TZP-susceptible isolates with the capacity for ESRI development. All the isolates without BL/BLI resistance were negative for the ESRI test and did not harbor β-lactamase genes. For ESRI developers and TZP-intermediate or -resistant isolates, blaTEM was the most frequent β-lactamase gene detected, follow by blaSHV and blaOXA-1. The sensitivity, specificity, and positive and negative predictive values were all 100%. These data demonstrate the efficacy of the ESRI test and show that it has great clinical potential.
Collapse
Affiliation(s)
- Ángel Rodríguez-Villodres
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Alicia Gutiérrez Linares
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Lydia Gálvez-Benitez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - José Antonio Lepe
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
25
|
Wei M, Wang P, Wang S, Yang C, Gu L. HB&L system for rapid phenotypic detection of clinical carbapenem-resistant Enterobacterales isolates. J Glob Antimicrob Resist 2021; 26:272-278. [PMID: 34284124 DOI: 10.1016/j.jgar.2021.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/04/2020] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The prevalence of carbapenem-resistant Enterobacterales (CRE) has increased rapidly worldwide in the last two decades. CRE infection poses a huge challenge for today's clinical therapy. Rapid and accurate detection of clinical CRE isolates can avoid inappropriate antimicrobial treatment and reduce mortality. However, existing detection methods are either time consuming, expensive or inaccurate, making them unable to fully meet clinical demands. In this study, the HB&L system was designed to distinguish CRE from carbapenem-susceptible Enterobacterales (CSE), as it can accelerate the growth of bacteria, detect both carbapenemase-producing CRE (CP-CRE) and non-CP-CRE isolates in real time, and provide time-kill curves. METHODS The broth microdilution method and PCR and sequencing were used as the reference methods to identify CRE and carbapenemase-producing Enterobacterales (CPE) isolates, respectively. Three methods for detecting CRE isolates, including the Carba NP test, modified carbapenem inactivation method (mCIM) and HB&L system, were evaluated. RESULTS The accuracy of the HB&L system was extremely high with 100% sensitivity and 96.0% specificity at only 6 h of culture time for detecting CRE. Time-kill curves may provide information on effective treatment options for clinicians. This system is superior to the mCIM (20-24 h detection time; 90.6% sensitivity and 96.6% specificity) and Carba NP test (2 h detection time; 85.2% sensitivity and 98.4% specificity), which are only designed to detect CP-CRE. CONCLUSION The HB&L system is promising for wide application for detection of clinical CRE in hospitals.
Collapse
Affiliation(s)
- Ming Wei
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Peng Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shuai Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chunxia Yang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Li Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
26
|
Banerjee R, Humphries R. Rapid Antimicrobial Susceptibility Testing Methods for Blood Cultures and Their Clinical Impact. Front Med (Lausanne) 2021; 8:635831. [PMID: 33777978 PMCID: PMC7987685 DOI: 10.3389/fmed.2021.635831] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial susceptibility testing (AST) of bacteria isolated in blood cultures is critical for optimal management of patients with sepsis. This review describes new and emerging phenotypic and genotypic AST methods and summarizes the evidence that implementation of these methods can impact clinical outcomes of patients with bloodstream infections.
Collapse
Affiliation(s)
- Ritu Banerjee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Romney Humphries
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
27
|
Kaprou GD, Bergšpica I, Alexa EA, Alvarez-Ordóñez A, Prieto M. Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics (Basel) 2021; 10:209. [PMID: 33672677 PMCID: PMC7924329 DOI: 10.3390/antibiotics10020209] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most challenging threats in public health; thus, there is a growing demand for methods and technologies that enable rapid antimicrobial susceptibility testing (AST). The conventional methods and technologies addressing AMR diagnostics and AST employed in clinical microbiology are tedious, with high turnaround times (TAT), and are usually expensive. As a result, empirical antimicrobial therapies are prescribed leading to AMR spread, which in turn causes higher mortality rates and increased healthcare costs. This review describes the developments in current cutting-edge methods and technologies, organized by key enabling research domains, towards fighting the looming AMR menace by employing recent advances in AMR diagnostic tools. First, we summarize the conventional methods addressing AMR detection, surveillance, and AST. Thereafter, we examine more recent non-conventional methods and the advancements in each field, including whole genome sequencing (WGS), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectrometry, Fourier transform infrared (FTIR) spectroscopy, and microfluidics technology. Following, we provide examples of commercially available diagnostic platforms for AST. Finally, perspectives on the implementation of emerging concepts towards developing paradigm-changing technologies and methodologies for AMR diagnostics are discussed.
Collapse
Affiliation(s)
- Georgia D. Kaprou
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Ieva Bergšpica
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia
| | - Elena A. Alexa
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| |
Collapse
|
28
|
Performance evaluation of Alfred 60AST rapid susceptibility testing directly from positive blood cultures in the routine laboratory workflow. Eur J Clin Microbiol Infect Dis 2021; 40:1487-1494. [PMID: 33598828 DOI: 10.1007/s10096-021-04191-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the performance of the new automated system Alfred60AST which is based on light scattering technology for rapid susceptibility testing directly from positive blood cultures as well as its applicability in the routine laboratory workflow. We evaluated 176 significant episodes of bacteremia due to 92 Gram-negative and 84 Gram-positive bacteria. The antimicrobial agents tested were ceftriaxone, ciprofloxacin, gentamicin, meropenem, piperacillin-tazobactam, and colistin for Gram negatives and cefoxitin, vancomycin, linezolid, and daptomycin for Gram positives. Concordance assessment was performed in comparison with our routine method, Vitek2 (bioMérieux). Discrepancies were resolved with MICRONAUT-S (Merlin) or E-test (bioMérieux). Out of 690 susceptibility determinations, 94.05% showed categorical agreement (CA) with the routine method and this percentage increased to 94.49 after discrepancy analysis. There were 1.45% very major errors, 3.33% major errors, and 1.16% minor errors (decreased to 1.45, 3.04, and 1.01 after discrepancy analysis). The CA for most of the antibiotics was above 90% except for daptomycin for Gram positives (87.30%) and ceftriaxone for Gram negatives (88.23%). The concordance was slightly better for Gram negative than for Gram-positive bacteria (94.30 versus 93.70%, respectively). The total turnaround time for a complete Alfred60AST result was 6-6.5h. The evaluated method gave rapid and reliable results in a few hours, versus 48h for the conventional one. Implementing this technology in routine workflow allows clinicians to optimize the treatment on the same day of blood culture positivity with potential positive clinical benefits and impact on antibiotic stewardship.
Collapse
|
29
|
Anton-Vazquez V, Suarez C, Krishna S, Planche T. Factors influencing antimicrobial prescription attitudes in bloodstream infections: susceptibility results and beyond. An exploratory survey. J Hosp Infect 2021; 111:140-147. [PMID: 33581245 DOI: 10.1016/j.jhin.2021.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Novel rapid antimicrobial susceptibility testing (RAST) methods promise quicker de-escalation of broad-spectrum antibiotics. However, other behavioural and situational factors influencing antimicrobial prescription are not well known. AIM To explore factors associated with optimal antimicrobial prescription in patients with Gram-negative bloodstream infection and to propose specific scenarios in which a rapid antimicrobial susceptibility result may help to optimize prescribing. METHODS Exploratory survey (April-August 2018) in the UK and Spain using clinical case-related questions. Seniority, specialty and country of practice were recorded. Cases described patients with Gram-negative bloodstream infections, their empirical treatment and clinical course and the hypothetical RAST result. Respondents chose one of several options regarding antibiotic treatment management. Microbiologically optimal antibiotic choice (MOAC) was agreed by expert consensus beforehand. Responses were categorized as MOAC, request for support or sub-optimal choice. The relationship between the RAST result and the clinical course was defined as concordant (susceptible organism-clinical improvement; resistant organism-clinical deterioration) or as discordant otherwise. FINDINGS A total of 426 respondents (UK: 332; Spain: 94) and 1494 answers were analysed. Multivariate analysis identified that requests for support were 87% less likely in Spain; that antimicrobial resistance and clinical deterioration were associated with both increased request for support (odds ratio (OR) 7.66 and OR 4.26, respectively) and MOAC (OR 2.08 and OR 2.06, respectively). A discordant clinical course was associated with 82% lower odds for MOAC. Out-of-hours results, seniority and specialty did not have an effect. CONCLUSION Antimicrobial choice is influenced by each country's type of practice, clinical course and susceptibility results. Antimicrobial resistance was associated with increased optimal treatment, suggesting RAST may be less useful for step-down decisions in settings with low baseline resistance rates.
Collapse
Affiliation(s)
- V Anton-Vazquez
- Institute of Infection and Immunity, St. George's University of London, London, UK.
| | - C Suarez
- Institute of Infection and Immunity, St. George's University of London, London, UK
| | - S Krishna
- Institute of Infection and Immunity, St. George's University of London, London, UK
| | - T Planche
- Institute of Infection and Immunity, St. George's University of London, London, UK; Department of Medical Microbiology, Southwest London Pathology, St. George's Hospital, London, UK; Infection Care Group, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Zhu Q, Zhu M, Li C, Li L, Guo M, Yang Z, Zhang Z, Liang Z. Epidemiology and microbiology of Gram-negative bloodstream infections in a tertiary-care hospital in Beijing, China: a 9-year retrospective study. Expert Rev Anti Infect Ther 2020; 19:769-776. [PMID: 33187451 DOI: 10.1080/14787210.2021.1848544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Gram-negative bacterial bloodstream infections (BSIs) are associated with high morbidity and mortality. The present study examines the incidence, clinical characteristics, microbiological features, drug resistance and mortality associated with Gram-negative bacterial BSIs at a tertiary-care hospital in Beijing, China.Methods: This retrospective cohort study of patients with Gram-negative bacterial BSIs was performed between 1 January 2010 and 31 December 2018 at the Chinese People,s Liberation Army General Hospital.Results: A total of 6867 episodes of Gram-negative bacterial BSIs occurred among 3199 patients over 9 years. The overall incidence of Gram-negative bacterial BSIs fluctuated from 2.30 to 2.55 episodes per 1000 admissions over 9 years. Escherichia coli was the major pathogen (34.3%). The antibiotic resistance of ESBLs-producing E. coli was higher than non-ESBLs producing E. coli including the majority of antibiotics, but to carbapenems (0.7% VS 5.1%). Between 2010 and 2018, the overall mortality of Gram-negative bacterial BSIs decreased from 11.41% to 9.05% (X2 = 6.95, P = 0.434).Conclusions: Cephalosporins and carbapenem antibiotics were considered as the optimal treatment for patients with Gram-negative bacterial BSIs except for A. baumannii, which was treated according to the drug sensitivity or multidrug combination.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| | - Minghui Zhu
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunyan Li
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lina Li
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| | - Mingxue Guo
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhen Yang
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhaorui Zhang
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhixin Liang
- Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Abstract
Antimicrobial susceptibility testing (AST) is now, more than ever, a critical role of the microbiology laboratory. Several factors limit its application for patient care and antimicrobial resistance epidemiology, including time to results, requirements for pure cultures, and high starting concentration of bacteria. This review discusses the global status of AST and new phenotypic and genotypic methods in late-stage development or that are new to market.
Collapse
Affiliation(s)
- Romney M Humphries
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South C-3322 MCN, Nashville, TN 37232-2561, USA.
| |
Collapse
|
32
|
Mizusawa M, Carroll KC. Novel strategies for rapid identification and susceptibility testing of MRSA. Expert Rev Anti Infect Ther 2020; 18:759-778. [PMID: 32329637 DOI: 10.1080/14787210.2020.1760842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is associated with adverse clinical outcomes and increased morbidity, mortality, length of hospital stay, and health-care costs. Rapid diagnosis of MRSA infections has been associated with positive impact on clinical outcomes. AREAS COVERED We searched relevant papers in PubMed for the last 10 years. In major papers, we scanned the bibliographies to ensure that important articles were included. This review describes screening and diagnostic test methods for MRSA and their analytical performances with a focus on rapid molecular-based assays including those that are on the horizon. Future novel technologies will allow more rapid detection of phenotypic resistance. In the case of whole-genome sequencing, detection of mutations may predict resistance, transmission, and virulence. EXPERT OPINION Currently there are many diagnostic options for the detection of MRSA in surveillance and clinical samples. In general, these are highly accurate and have resulted in improvements in targeted management and reduction in hospital or intensive care unit length of stay for both MSSA and MRSA. Impact on mortality has been variable. Promising novel technologies will not only accurately identify pathogens and detect their resistance markers but will allow discovery of virulence determinants that might further affect patient management.
Collapse
Affiliation(s)
- Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri , Kansas, MO, USA
| | - Karen C Carroll
- Department of Pathology, Division of Medical Microbiology, The Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|