1
|
Su G, Su L, Luo D, Yang X, Liu Z, Lin Q, An T, Weng C, Chen W, Zeng Z, Chen J. Cepharanthine inhibits African swine fever virus replication by suppressing AKT-associated pathways through disrupting Hsp90-Cdc37 complex. Int J Biol Macromol 2024; 282:137070. [PMID: 39486740 DOI: 10.1016/j.ijbiomac.2024.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
African swine fever (ASF) represents one of the most economically important viral infectious diseases in the swine industry worldwide. Presently, there is an absence of commercially available therapeutic drugs and safe vaccines. Cepharanthine (CEP), one of the naturally occurring bisbenzylisoquinoline alkaloids, has been approved as a drug to treat various diseases such as leukopenia, bronchial asthma, and snake bites for 70 years in Japan. Most recently, CEP was reported to inhibit ASFV replication by suppressing endosomal/lysosomal function although the specific molecular mechanisms were not elucidated. In this study, we demonstrate for the first time that ASFV infection promotes co-chaperone Cdc37 expression and its binding to Hsp90, leading to increased AKT phosphorylation to benefit viral replication. Notably, CEP disrupts the Hsp90-Cdc37 complex, subsequently decreasing p-AKT and inhibiting ASFV replication. Furthermore, our investigation reveals that enhanced AKT phosphorylation amplifies glycolysis, resulting in increased lactate production, while it upregulates the NF-κB signaling pathway, resulting in increased expression of IL-1β and other inflammatory cytokines. Elevated lactate enhances ASFV replication, and IL-1β acts synergistically on the proviral effect of lactate. CEP reduces ASFV replication by disrupting the formation of the Hsp90-Cdc37 complex and suppressing its downstream AKT/glycolysis axis and AKT/NF-κB pathway, leading to reduced lactate and IL-1β production. Our findings suggest that CEP could serve as a promising ASFV inhibitor, and the Hsp90-Cdc37 complex and glycolysis represent novel antiviral targets against ASFV infections, offering novel avenues for further exploration in antiviral therapeutic strategies. As the in vivo environment is largely complicated from ex vivo PAMs, anti-ASFV efficacy evaluation of CEP in pigs is the most imperative work in the future.
Collapse
Affiliation(s)
- Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Laboratory Animal Center, Guangdong Medical University, Dongguan 523808, China
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ding Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Cui L, Li X, Liu Z, Liu X, Zhu Y, Zhang Y, Han Z, Zhang Y, Liu S, Li H. MAPK pathway orchestrates gallid alphaherpesvirus 1 infection through the biphasic activation of MEK/ERK and p38 MAPK signaling. Virology 2024; 597:110159. [PMID: 38943781 DOI: 10.1016/j.virol.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Therapies targeting virus-host interactions are seen as promising strategies for treating gallid alphaherpesvirus 1 (ILTV) infection. Our study revealed a biphasic activation of two MAPK cascade pathways, MEK/ERK and p38 MAPK, as a notably activated host molecular event in response to ILTV infection. It exhibits antiviral functions at different stages of infection. Initially, the MEK/ERK pathway is activated upon viral invasion, leading to a broad suppression of metabolic pathways crucial for ILTV replication, thereby inhibiting viral replication from the early stage of ILTV infection. As the viral replication progresses, the p38 MAPK pathway activates its downstream transcription factor, STAT1, further hindering viral replication. Interestingly, ILTV overcomes this biphasic antiviral barrier by hijacking host p38-AKT axis, which protects infected cells from the apoptosis induced by infection and establishes an intracellular equilibrium conducive to extensive ILTV replication. These insights could provide potential therapeutic targets for ILTV infection.
Collapse
Affiliation(s)
- Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China; School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaoxiao Liu
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongxin Zhu
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yilei Zhang
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China; School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
3
|
Qi Q, Li Y, Ding M, Huang C, Omar SM, Shi Y, Liu P, Cai G, Zheng Z, Guo X, Gao X. Wogonin Inhibits Apoptosis and Necroptosis Induced by Nephropathogenic Infectious Bronchitis Virus in Chicken Renal Tubular Epithelial Cells. Int J Mol Sci 2024; 25:8194. [PMID: 39125764 PMCID: PMC11312162 DOI: 10.3390/ijms25158194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
NIBV is an acute and highly contagious virus that has a major impact on the poultry industry. Wogonin, as a flavonoid drug, has antiviral effects, but there have been no reports indicating its role in renal injury caused by NIBV infection. The aim of this study is to investigate the antiviral effect of wogonin against NIBV. Renal tubular epithelial cells were isolated and cultured, and divided into four groups: Con, Con+Wog, NIBV and NIBV+Wog. We found that wogonin significantly inhibited the copy number of NIBV and significantly alleviated NIBV-induced cell apoptosis and necrosis. Moreover, wogonin inhibited the reduction in mitochondrial membrane potential and the aberrant opening of mPTP caused by NIBV. In conclusion, wogonin can protect renal tubular epithelial cells from damage by inhibiting the replication of NIBV and preventing mitochondrial apoptosis and necroptosis induced by NIBV.
Collapse
Affiliation(s)
- Qiurong Qi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengbing Ding
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Salma Mbarouk Omar
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Gaofeng Cai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhanhong Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Li Y, Li S, Shou Z, Li Y, Li A, Liu W, Zhang X, Zhou C, Xu D, Li L. Integration of network pharmacology with experimental validation to reveal the mechanism of action of Longdan Xiegan Decoction against HSV2 infection and determine its effective components. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117861. [PMID: 38316223 DOI: 10.1016/j.jep.2024.117861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has made enormous strides recently in the discovery of anti-herpes simplex virus (HSV) drugs under the guidance of TCM theory. Longdan Xiegan Decoction (LXD), a formulation recorded in the Pharmacopoeia of the People's Republic of China, has proved to be effective against HSV infection. However, its effective components and action mechanism remain unclear. AIM OF THE STUDY To investigate the effective components and mechanisms of LXD in treating HSV infection based on network pharmacology and experimental validation. MATERIALS AND METHODS The anti-HSV activities of key compounds predicted by network analysis were detected by antiviral tests. High-performance liquid chromatography (HPLC) was applied to identify the main components of the LXD aqueous extract. Time-of-addition assay and infectivity inhibition reversibility assay were conducted to identify the potential antiviral mechanisms of licochalcone B (LCB). Additionally, we assessed the antiviral effect of LCB in vivo by use of body weight, viral load, histological analysis, and scoring of genital lesions in an HSV2-infected mouse model. RESULTS Our data demonstrated that some components exhibited significant anti-HSV1/2 activity in vitro, including quercetin, kaempferol, wogonin, formononetin, naringenin, baicalein, isorhamnetin, glabridin, licochalcone A, echinatin, oroxylin A, isoliquiritigenin, pinocembrin, LCB and acacetin. HPLC analysis showed that LCB was the main component of LXD aqueous extract. In vitro experiments revealed that LCB not only inactivated HSV2 particles, but also inhibited HSV2 multiplication through the inhibition of the phosphorylation of Akt and its downstream targets. In vivo experiments confirmed that LCB could significantly reduce viral titer, delay weight loss, and alleviate pathological changes in vaginal tissue in vaginal infection mouse models. CONCLUSION LCB acted as the main component of LXD, with significant anti-HSV2 infection effects both in vivo and in vitro. This study provides additional evidence of the healing efficacy of LXD against HSV infection and presents an efficient analytical method for further investigation of the mechanisms of TCM in prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Yuyun Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China
| | - Siyan Li
- Department of Rehabilitation Medicine, Guangzhou Xinhua University, Guangzhou, 510520, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeren Shou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yibin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Axin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenli Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chengliang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Daohua Xu
- Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China.
| | - Lin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Šudomová M, Hassan STS. Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle. Viruses 2023; 15:2340. [PMID: 38140581 PMCID: PMC10748012 DOI: 10.3390/v15122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
6
|
Huang Q, Wang M, Wang M, Lu Y, Wang X, Chen X, Yang X, Guo H, He R, Luo Z. Scutellaria baicalensis: a promising natural source of antiviral compounds for the treatment of viral diseases. Chin J Nat Med 2023; 21:563-575. [PMID: 37611975 DOI: 10.1016/s1875-5364(23)60401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 08/25/2023]
Abstract
Viruses, the smallest microorganisms, continue to present an escalating threat to human health, being the leading cause of mortality worldwide. Over the decades, although significant progress has been made in the development of therapies and vaccines against viral diseases, the need for effective antiviral interventions remains urgent. This urgency stems from the lack of effective vaccines, the severe side effects associated with current drugs, and the emergence of drug-resistant viral strains. Natural plants, particularly traditionally-used herbs, are often considered an excellent source of medicinal drugs with potent antiviral efficacy, as well as a substantial safety profile. Scutellaria baicalensis, a traditional Chinese medicine, has garnered considerable attention due to its extensive investigation across diverse therapeutic areas and its demonstrated efficacy in both preclinical and clinical trials. In this review, we mainly focused on the potential antiviral activities of ingredients in Scutellaria baicalensis, shedding light on their underlying mechanisms of action and therapeutic applications in the treatment of viral infections.
Collapse
Affiliation(s)
- Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Muyang Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Min Wang
- Hainan Affiliated Hospital of Hainan Medical University, Department of Pharmacy, Haikou 570311, China
| | - Yuhui Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Xiaohua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xin Yang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China.
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China.
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Zhang X, Li A, Li T, Shou Z, Li Y, Qiao X, Zhou R, Zhong X, Li S, Li L. A potential anti-HIV-1 compound, Q308, inhibits HSV-2 infection and replication in vitro and in vivo. Biomed Pharmacother 2023; 162:114595. [PMID: 36989723 DOI: 10.1016/j.biopha.2023.114595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
HSV-2 is a common human pathogen worldwide that causes genital herpes. Due to the lack of an effective HSV-2 vaccine in the foreseeable future, there is an urgent need to develop effective, safe and affordable anti-HSV-2 agents. Our previous studies confirmed that a small-molecule compound, Q308, effectively inhibits the reactivation of latent HIV and might be developed as an anti-HIV-1 agent. Patients infected with HSV-2 are generally more susceptible to HIV-1 infection than normal humans. In this study, we found that Q308 treatment had strong inhibitory activity against both HSV-2 and acyclovir-resistant HSV-2 strains in vitro and reduced the viral titers in tissue. And this treatment effectively ameliorated the cytokine storm and pathohistological changes caused by HSV-2 infection in HSV-2-infected mice. Unlike nucleoside analogs such as acyclovir, Q308 inhibited post-viral entry events by attenuating the synthesis of viral proteins. Furthermore, Q308 treatment blocked HSV-2-induced PI3K/AKT phosphorylation due to its inhibition on viral infection and replication. Overall, Q308 treatment exhibits potent anti-HSV-2 activity by inhibiting viral replication both in vitro and in vivo. Q308 is a promising lead compound for the development of new anti-HSV-2/HIV-1 therapies, particularly against acyclovir-resistant HSV-2 strains.
Collapse
|
8
|
Xu JQ, Su SB, Chen CY, Gao J, Cao ZM, Guan JL, Xiao LX, Zhao MM, Yu H, Hu YJ. Mechanisms of Ganweikang Tablets against Chronic Hepatitis B: A Comprehensive Study of Network Analysis, Molecular Docking, and Chemical Profiling. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8782892. [PMID: 37197593 PMCID: PMC10185428 DOI: 10.1155/2023/8782892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 05/19/2023]
Abstract
The hepatitis B virus (HBV) is one of the major viral infection problems worldwide in public health. The exclusive proprietary Chinese medicine Ganweikang (GWK) tablet has been marketed for years in the treatment of chronic hepatitis B (CHB). However, the pharmacodynamic material basis and underlying mechanism of GWK are not completely clear. This study is aimed at investigating the pharmacological mechanism of the GWK tablet in the treatment of CHB. The chemical ingredient information was obtained from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and Shanghai Institute of Organic Chemistry of CAS. Ingredients and disease-related targets were defined by a combination of differentially expressed genes from CHB transcriptome data and open-source databases. Target-pathway-target (TPT) network analysis, molecular docking, and chemical composition analysis were adopted to further verify the key targets and corresponding active ingredients of GWK. Eight herbs of GWK were correlated to 330 compounds with positive oral bioavailability, and 199 correlated targets were identified. The TPT network was constructed based on the 146 enriched targets by KEGG pathway analysis, significantly associated with 95 pathways. Twenty-five nonvolatile components and 25 volatile components in GWK were identified in UPLC-QTOF/MS and GC-MS chromatograms. The key active ingredients of GWK include ferulic acid, oleanolic acid, ursolic acid, tormentic acid, 11-deoxyglycyrrhetic acid, dibenzoyl methane, anisaldehyde, wogonin, protocatechuic acid, psoralen, caffeate, dimethylcaffeic acid, vanillin, β-amyrenyl acetate, formonentin, aristololactam IIIa, and 7-methoxy-2-methyl isoflavone, associated with targets CA2, NFKB1, RELA, AKT1, JUN, CA1, CA6, IKBKG, FOS, EP300, CREB1, STAT1, MMP9, CDK2, ABCB1, and ABCG2.
Collapse
Affiliation(s)
- Jia-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - C. Y. Chen
- Jiaheng (Hengqin, Zhuhai) Pharmaceutical Technology Co., Ltd., Zhuhai, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhuhai, China
| | - J. Gao
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhuhai, China
| | - Z. M. Cao
- Jiaheng (Hengqin, Zhuhai) Pharmaceutical Technology Co., Ltd., Zhuhai, China
| | - J. L. Guan
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Lin-Xuan Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ming-Ming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
9
|
Zhang X, Yu X, Yu Z, Fan C, Li Y, Li H, Shen Y, Sun Z, Zhang S. Network pharmacology and bioinformatics to identify molecular mechanisms and therapeutic targets of Ruyi Jinhuang Powder in the treatment of monkeypox. Medicine (Baltimore) 2023; 102:e33576. [PMID: 37115075 PMCID: PMC10145999 DOI: 10.1097/md.0000000000033576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Monkeypox outbreaks across the globe has aroused widespread concern. Ruyi Jinhuang Powder (RJP), a common formula in Chinese medicine, is used to treat pox-like illnesses. This study aimed to identify the molecular mechanisms and therapeutic targets of RJP for the treatment of monkeypox using network pharmacology and bioinformatics techniques. The bioactive substances and potential targets of each component of RJP were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The differentially expressed genes (DEGs) of the monkeypox virus (MPXV) were identified from the GSE24125 by GEO2R. Key signaling pathways, bioactive components, and potential targets were obtained by bioinformatics analysis, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), and protein-protein interactions (PPI) analyses. Finally, molecular docking was used to predict the interaction between active compounds and core targets. A total of 158 active ingredients and 17 drug-disease-shared targets of RJP were screened. Bioinformatics indicated that wogonin and quercetin might be potential drug candidates. Potential therapeutic targets were identified. Immune-related mechanisms that exerted antiviral effects included signaling pathways like TNF, age-rage, and c-type lectin receptor pathways. Our results illustrated the good therapeutic effect of RJP on monkeypox in terms of biological activity, potential targets, and molecular mechanism. This also offered a promising strategy to reveal the scientific basis and therapeutic mechanism of herbal formulas used to treat the disease.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinping Yu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhichao Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengcheng Fan
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueming Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingkai Shen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zijin Sun
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Onu EN, Ekuma UO, Judi HK, Ogbu O, Okoro N, Ajugwo GC, Akrami S, Okoli CS, Anyanwu CN, Saki M, Edeh PA. Seroprevalence of antibodies to herpes simplex virus 1 and 2 in patients with HIV positive from Ebonyi State, Nigeria: a cross-sectional study. BMJ Open 2023; 13:e069339. [PMID: 37072358 PMCID: PMC10124271 DOI: 10.1136/bmjopen-2022-069339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
OBJECTIVES To assess the seroprevalence of herpes simplex virus (HSV) types 1 and 2 in patients infected with HIV in Nigeria. DESIGN Cross-sectional design from January to June 2019. SETTING Federal Teaching Hospital, Ebonyi State, Nigeria. PARTICIPANTS A total of 276 patients with HIV were analysed using ELISA method for the presence of HSV-1 and HSV-2 specific IgG antibodies. OUTCOMES Fisher's exact test was used to determine the association between the seroprevalence of HSV and demographic variables (statistically significant=p value ≤0.05). RESULTS Totally, 212 (76.8%) and 155 (56.2%) patients with HIV were seropositive for HSV-1 and HSV-2 IgG antibodies, respectively. The seroprevalence of HSV-1 was significantly higher than the HSV-2 in patients with HIV (p value <0.0001). HSV-1 and HSV-2 seroprevalence were higher in patients aged more than 30 years. The seroprevalence of HSV-1 was significantly higher (p=0.01) in females (82.4%, 131/159) than males (69.2%, 81/117), but there was no significant difference in seroprevalence of HSV-2 in females (57.9%, 92/159) compared with males (53.8%, 63/117) (p=0.51). Professional drivers had a higher seroprevalence of HSV-1 and HSV-2 and there was a significant association between the occupation and the HSV-1 and HSV-2 seropositivity (p>0.05). The seroprevalence of HSV-1 was significantly higher in the singles (87.4%, 90/103) than the married patients with HIV (p=0.001). However, HSV-2 seroprevalence was significantly higher in the married patients with HIV (63.6%, 110/173) (p=0.001). CONCLUSIONS Prevalence of 76.8% for HSV-1 and 56.2% for HSV-2 among patients with HIV was seen. The HSV-1 was significantly higher in the singles while HSV-2 seroprevalence was significantly higher in the married patients with HIV with HSV-1 and HSV-2 coinfection rate of 7.6%. This study became very imperative to provide an important insight into the hidden dynamics of HSV infections.
Collapse
Affiliation(s)
| | | | - Hawraa K Judi
- Department of Medical Physics, Hilla University College, Babylon, Iraq
| | - Ogbonnaya Ogbu
- Department of Applied Microbiology, Ebonyi State University, Abakaliki, Nigeria
| | - Nworie Okoro
- Department of Biological Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria
| | - Gloria C Ajugwo
- Department of Microbiology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Sousan Akrami
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Chukwudum S Okoli
- Department of Applied Microbiology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Chioma Ngozi Anyanwu
- Department of Microbiology/Biochemistry, Federal Polytechnic Nekede, Imo State, Nigeria
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peter Anyigor Edeh
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
11
|
Wang J, Zeng X, Yin D, Yin L, Shen X, Xu F, Dai Y, Pan X. In silico and in vitro evaluation of antiviral activity of wogonin against main protease of porcine epidemic diarrhea virus. Front Cell Infect Microbiol 2023; 13:1123650. [PMID: 37009514 PMCID: PMC10050881 DOI: 10.3389/fcimb.2023.1123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The high mortality rate of weaned piglets infected with porcine epidemic diarrhea virus (PEDV) poses a serious threat to the pig industry worldwide, demanding urgent research efforts related to developing effective antiviral drugs to prevent and treat PEDV infection. Small molecules can possibly prevent the spread of infection by targeting specific vital components of the pathogen’s genome. Main protease (Mpro, also named 3CL protease) plays essential roles in PEDV replication and has emerged as a promising target for the inhibition of PEDV. In this study, wogonin exhibited antiviral activity against a PEDV variant isolate, interacting with the PEDV particles and inhibiting the internalization, replication and release of PEDV. The molecular docking model indicated that wogonin was firmly embedded in the groove of the active pocket of Mpro. Furthermore, the interaction between wogonin and Mpro was validated in silico via microscale thermophoresis and surface plasmon resonance analyses. In addition, the results of a fluorescence resonance energy transfer (FRET) assay indicated that wogonin exerted an inhibitory effect on Mpro. These findings provide useful insights into the antiviral activities of wogonin, which could support future research into anti-PEDV drugs.`
Collapse
Affiliation(s)
- Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xiaoyu Zeng
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Fazhi Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
- *Correspondence: Xiaocheng Pan, ; Yin Dai,
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
- *Correspondence: Xiaocheng Pan, ; Yin Dai,
| |
Collapse
|
12
|
Frasson I, Soldà P, Nadai M, Tassinari M, Scalabrin M, Gokhale V, Hurley LH, Richter SN. Quindoline-derivatives display potent G-quadruplex-mediated antiviral activity against herpes simplex virus 1. Antiviral Res 2022; 208:105432. [PMID: 36228762 PMCID: PMC9720158 DOI: 10.1016/j.antiviral.2022.105432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that regulate key biological processes, from transcription to genome replication both in humans and viruses. The herpes simplex virus-1 (HSV-1) genome is prone to form G4s that, along with proteins, regulate its viral cycle. General G4 ligands have been shown to hamper the viral cycle, pointing to viral G4s as original antiviral targets. Because cellular G4s are also normally present in infected cells, the quest for improved anti-HSV-1 G4 ligands is still open. Here, we evaluated a series of new quindoline-derivatives which showed high binding to and stabilization of the viral G4s. They displayed nanomolar-range anti-HSV-1 activity paralleled by negligible cytotoxicity in human cells, thus proving remarkable selectivity. The best-in-class compound inhibited the viral life cycle at the early times post infection up to the step of viral genome replication. In infected human cells, it reduced expression of ICP4, the main viral transcription factor, by stabilizing the G4s embedded in ICP4 promoter. Quindoline-derivatives thus emerge as a new class of G4 ligands with potent dual anti HSV-1 activity.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Vijay Gokhale
- BIO5 Institute, University of Arizona, Tucson, AZ, 85721, United States
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
13
|
Liu T, Shao Q, Wang W, Ma Y, Liu T, Jin X, Fang J, Huang G, Chen Z. Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription JieZe-1 in protecting against HSV-2 infection. PHARMACEUTICAL BIOLOGY 2022; 60:451-466. [PMID: 35180012 PMCID: PMC8865133 DOI: 10.1080/13880209.2022.2038209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT The Chinese herbal prescription JieZe-1 (JZ-1) is effective against HSV-2 (Herpes simplex virus type 2) infection. However, its mechanism remains unclear. OBJECTIVE To explore the mechanism of JZ-1 in protecting against HSV-2 infection. MATERIALS AND METHODS Using the methods of network pharmacology, the hub components and targets were screened and functionally enriched. We established a genital herpes (GH) mouse model and observe the disease characteristics. Then, the GH mice in different groups (10 per/group) were treated with 20 μL JZ-1 gel (2.5, 1.5, and 0.5 g/mL), acyclovir gel (0.03 g/mL), or plain carbomer gel twice a day. The symptom score, vulvar histomorphology, and virus load were measured. The critical proteins of caspase-1-dependent pyroptosis were analysed by microscopy, co-immunoprecipitation, western blotting, and ELISA. Molecular docking was also performed. RESULTS Network pharmacology analysis identified 388 JZ-1 targets related to HSV-2 infection, with 36 hub targets and 21 hub components screened. The TCID50 of HSV-2 was 1 × 10-7/0.1 mL. JZ-1 gel (2.5 g/mL) can effectively reduce the symptom score (81.23%), viral load (98.42%) and histopathological changes, and significantly inhibit the proteins expression of caspase-1-dependent pyroptosis in GH mice (p< 0.05). The molecular docking test showed a good binding potency between 11 components and caspase-1 or interleukin (IL)-1β. DISCUSSION AND CONCLUSIONS The present study demonstrated that JZ-1 protected mice from HSV-2 infection and inhibit the caspase-1-dependent pyroptosis in GH mice. It is of significance for the second development of JZ-1 and the exploration of new drugs.
Collapse
Affiliation(s)
- Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggui Ma
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianli Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Liu Y, Cui X, Xi J, Xie Y. Clinical efficacy evaluation and potential mechanism prediction on Pudilan Xiaoyan oral liquid in treatment of mumps in children based on meta-analysis, network pharmacology, and molecular docking. Front Pharmacol 2022; 13:956219. [PMID: 36210814 PMCID: PMC9537475 DOI: 10.3389/fphar.2022.956219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Mumps is caused by the mumps virus and is characterized by pain and parotid gland swelling. Although its incidence has declined due to vaccines, outbreaks still occur among children. In addition, it can lead to severe complications, so it has a certain perniciousness. Pudilan Xiaoyan oral liquid (PDL), a Chinese patent medicine, commonly treats children with mumps. However, its safety, efficacy, and specific mechanisms lack relevant evaluation and analysis. Therefore, we did a meta-analysis of the randomized controlled trials combined with a network pharmacology analysis to assess the efficacy and safety of PDL in relieving symptoms of mumps in children and investigate its pharmacological mechanisms. Methods: This study systematically searched the China National Knowledge Infrastructure (CNKI), WanFang Data Knowledge Service Platform, VIP Database, Sinomed, Chinese Medical Journal Full-text Database, PubMed, Embase, Cochrane Library, Web of Science, and Google Scholar for the published randomized controlled trials (date up to 3 March 2022; studies in both English and Chinese) comparing PDL and antiviral drug combination treatment to standalone antiviral drug treatment. The primary outcomes in this study were the effective rate and duration of five characteristic symptoms of children's mumps. We assessed the pooled data by using a fix-effect or random-effect model. We illustrated an odds ratio (OR) or standardized mean difference (SMD) with a 95% confidence interval (CI) using the Stata 15 software. In network pharmacology, active components of PDL were collected from the traditional Chinese medicine system pharmacology technology platform and the CNKI studies, while mumps' targets were collected from databases of the Genecards and Online Mendelian Inheritance in Man (OMIM), and then we constructed a "drug-component-target" network and a protein-protein interaction network using Cytoscape 3.9.0 for screening the core components and targets. Next, we ran Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of intersection targets of PDL and mumps. Finally, molecular docking was performed between core components and targets. Results: Of 70 identified studies, 12 were eligible and included in our analysis (N = 1,307 participants). Compared with the antiviral drug treatments, combination treatment using PDL and antiviral drugs provided higher effective rates (OR = 5.94), shorter symptom durations for fever (SMD = -1.05), headache (SMD = -0.69), parotid gland swelling (SMD = -1.30), parotid gland pain (SMD = -2.53), and loss of appetite (SMD = -0.56) with fewer reported side effects. Of the 113 active components of PDL and 57 mumps' targets, 11 core components like quercetin, isoetin, and seven core targets such as albumin (ALB) and interleukin-6 were obtained. Moreover, the potential pathways identified included cytokine-cytokine receptor interaction and T helper cell 17 (Th17 cell) differentiation. Molecular docking results revealed that most core components and targets could form stable structures. The core components, including isoetin, quercetin, and luteolin, and core targets involving heat shock protein HSP 90-alpha (HSP90AA1), estrogen receptor (ESR1), and ALB showed the best affinities. Conclusion: The combined use of PDL and antiviral drugs could effectively improve the efficacy of mumps among children and rapidly alleviate mumps-related symptoms. This efficacy may be associated with the anti-inflammatory and antiviral mechanisms by which PDL acts using multiple components, multiple targets, and multiple pathways. However, these results should be confirmed by further studies.
Collapse
Affiliation(s)
| | | | | | - Yanming Xie
- Institute of Basic Research In Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
16
|
Gao J, Liu M, Guo H, Zhu K, Liu B, Liu B, Zhang N, Zhang D. ROS Induced by Streptococcus agalactiae Activate Inflammatory Responses via the TNF-α/NF-κB Signaling Pathway in Golden Pompano Trachinotus ovatus (Linnaeus, 1758). Antioxidants (Basel) 2022; 11:antiox11091809. [PMID: 36139883 PMCID: PMC9495563 DOI: 10.3390/antiox11091809] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
Streptococcus agalactiae is common pathogenic bacteria in aquaculture and can cause mass mortality after fish infection. This study aimed to investigate the effects of S. agalactiae infection on the immune and antioxidant regulatory mechanisms of golden pompano (Trachinotus ovatus). Serum and liver samples were obtained at 0, 6, 12, 24, 48, 96, and 120 h after golden pompano infection with S. agalactiae for enzyme activity and gene expression analyses. After infection with S. agalactiae, the content of reactive oxygen species (ROS) in serum was significantly increased (p < 0.05). Serum levels of glucose (GLU), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) increased and then decreased (p < 0.05), reaching a maximum at 6 h. Serum antioxidant enzyme (LZM) activity increased significantly (p < 0.05) and reached a maximum at 120 h. In addition, the mRNA expression levels of antioxidant genes (SOD, CAT, and GPx) in the liver increased and then decreased, reaching the maximum at 24 h, 48 h, and 24 h, respectively. During the experimental period, the mRNA expression levels of NF-κB-related genes of the inflammatory signaling pathway inhibitory κB (IκB) showed an overall decreasing trend (p < 0.05) and the lowest expression at 120 h, whereas the mRNA expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IκB kinase (IKK), and nuclear factor NF-κB increased significantly (p < 0.05) and the highest expression was at 120 h. In conclusion, these results showed that S. agalactiae could activate internal regulatory signaling in the liver of golden pompano to induce defense and immune responses. This study is expected to lay a foundation to develop the healthy aquaculture of golden pompano and promote a more comprehensive understanding of its disease resistance mechanisms.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Mingjian Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Chinese Academy of Fishery Sciences, South China Sea Fisheries Research Institute, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572019, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Correspondence: ; Tel.: +86-20-8910-8316; Fax: +86-20-8445-1442
| |
Collapse
|
17
|
Tang Q, Luan F, Yuan A, Sun J, Rao Z, Wang B, Liu Y, Zeng N. Sophoridine Suppresses Herpes Simplex Virus Type 1 Infection by Blocking the Activation of Cellular PI3K/Akt and p38 MAPK Pathways. Front Microbiol 2022; 13:872505. [PMID: 35756044 PMCID: PMC9229184 DOI: 10.3389/fmicb.2022.872505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and important human pathogen capable of causing significant clinical diseases ranging from skin damage to encephalitis, particularly in immunocompromised and neonatal hosts. Currently, widely used nucleoside analogs, including acyclovir and penciclovir, have some limitations in their use due to side effects and drug resistance. Herein, we report sophoridine's (SRI) dramatic inhibition of HSV-1 replication in vitro. SRI exhibited a remarkable inhibitory influence on HSV-1 virus-induced cytopathic effect and plaque formation, as well as on progeny viruses in Vero and HeLa cells, with selection indexes (SI) of 38.96 and 22.62, respectively. Moreover, SRI also considerably suppressed HSV-1 replication by hindering the expression of viral immediate-early (ICP0 and ICP22), early (ICP8 and TK), and late (gB and gD) genes and the expression of viral proteins ICP0, gB, and gD. We suggest that SRI can directly inactivate viral particles and block some stages in the life cycle of HSV-1 after adsorption. Further experiments showed that SRI downregulated the cellular PI3K/Akt signaling pathway and obstructed HSV-1 replication even more. Most importantly, SRI markedly repressed HSV-1-induced p38 MAPK pathway activation. Collectively, this natural bioactive alkaloid could be a promising therapeutic candidate against HSV-1 via the modulation of cellular PI3K/Akt and p38 MAPK pathways.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - An Yuan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baojun Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Research on the effect and underlying molecular mechanism of Cangzhu in the treatment of gouty arthritis. Eur J Pharmacol 2022; 927:175044. [PMID: 35643303 DOI: 10.1016/j.ejphar.2022.175044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We aimed to identify the active ingredients and elucidate the underlying mechanism of action of Atractylodes lancea (Thunb.) DC (namely, Cangzhu) for the treatment of gouty arthritis (GA) based on network pharmacology methods. These findings are expected to provide a theoretical basis for the clinical treatment of GA. METHODS We used monosodium urate (MSU)-induced GA rats as a model to test the overall efficacy of Cangzhu in vivo. Then, the components of the Cangzhu decoction were analyzed and identified, and we screened the active ingredients and their targets. The GA disease targets were predicted by GeneCards and Disgenet databases and found to overlap in both databases. The STRING database was used to construct a protein-protein interaction network, followed by identification of the hub genes using Network Analyzer. Thereafter, Cytoscape software (version 3.8.2) was applied to construct a network for drug-active ingredient-key targets. Next, we applied cluego, a plug-in of Cytoscape, to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analyses. Additionally, molecular docking was used to verify the characteristics of the key candidate components interacting with the hub therapeutic targets. Finally, we established an inflammatory injury model of LPS using RAW264.7 macrophages and used it to experimentally validate the critical active ingredients. RESULTS Cangzhu effectively protected against gouty arthritis in vivo, and network pharmacology results revealed various active ingredients in Cangzhu, such as wogonin, atractylenolide I and atractylenolide II. These compounds were found to act on 16 hub targets, including tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL-1β), prostaglandin-endoperoxide synthase 2 (PTGS2), recombinant mitogen-activated protein kinase 14 (MAPK14) and transcription factor p65 (RELA), which have significant effects on regulating inflammatory factors and apoptosis-related pathways to improve the proinflammatory or anti-inflammatory imbalance in the body, and this may be one of the underlying mechanisms of Cangzhu in anti-GA. CONCLUSION Our findings revealed that Cangzhu comprises multiple active components that exert various targeted effects during GA treatment. These findings provide relevant insights to illuminate the mechanism of Cangzhu in the treatment of GA and provide a reference for further experimental research.
Collapse
|
19
|
Wang J, Ge W, Peng X, Yuan L, He S, Fu X. Investigating the active compounds and mechanism of HuaShi XuanFei formula for prevention and treatment of COVID-19 based on network pharmacology and molecular docking analysis. Mol Divers 2022; 26:1175-1190. [PMID: 34105049 PMCID: PMC8187140 DOI: 10.1007/s11030-021-10244-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023]
Abstract
Traditional Chinese medicine (TCM) has exerted positive effects in controlling the COVID-19 pandemic. HuaShi XuanFei Formula (HSXFF) was developed to treat patients with mild and general COVID-19 in Zhejiang Province, China. The present study seeks to explore its potentially active compounds and pharmacological mechanisms against COVID-19 based on network pharmacology, molecular docking, and molecular dynamics (MD) simulation. All components of HSXFF were harvested from the pharmacology database of the TCMSP system. COVID-19-related targets were retrieved from using OMIM and GeneCards databases. The herb-compound-targets network was constructed by Cytoscape. The target protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to discover the potential key target genes and mechanism. The main active compounds of HSXFF were docked with 3C-like (3CL) protease hydrolase and angiotensin-converting enzyme 2 (ACE2). The MD simulation confirmed the binding stability of docking results. The herbs-targets network mainly contained 52 compounds and 70 corresponding targets, including key targets such as RELA, TNF, TP53, IL6, MAPK1, CXCL8, IL-1β, and MAPK14. The GO and KEGG indicated that HSXFF may be mainly acting on the IL-17 signaling pathway, TNF signaling pathway, NF-κB signaling pathway, etc. The molecular docking results indicated that isovitexin and procyanidin B1 showed the highest affinity with 3CL and ACE2, respectively, which were confirmed by MD simulation. These findings suggested HSXFF exerted therapeutic effects involving "multi-compounds and multi-targets." It might be working through directly inhibiting the virus, improving immune function, and reducing the inflammatory in response to anti-COVID-19. In summary, the present study would provide a valuable direction for further research of HSXFF.
Collapse
Affiliation(s)
- Juan Wang
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, People's Republic of China
| | - Wen Ge
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, People's Republic of China
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Zhejiang Province, Ningbo, 315100, People's Republic of China.
| | - Lixia Yuan
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, People's Republic of China
| | - Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, People's Republic of China
| |
Collapse
|
20
|
Šudomová M, Berchová-Bímová K, Mazurakova A, Šamec D, Kubatka P, Hassan STS. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022; 14:v14030592. [PMID: 35336999 PMCID: PMC8949561 DOI: 10.3390/v14030592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses (HHVs) are large DNA viruses with highly infectious characteristics. HHVs can induce lytic and latent infections in their host, and most of these viruses are neurotropic, with the capacity to generate severe and chronic neurological diseases of the peripheral nervous system (PNS) and central nervous system (CNS). Treatment of HHV infections based on strategies that include natural products-derived drugs is one of the most rapidly developing fields of modern medicine. Therefore, in this paper, we lend insights into the recent advances that have been achieved during the past five years in utilizing flavonoids as promising natural drugs for the treatment of HHVs infections of the nervous system such as alpha-herpesviruses (herpes simplex virus type 1, type 2, and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein–Barr virus and Kaposi sarcoma-associated herpesvirus). The neurological complications associated with infections induced by the reviewed herpesviruses are emphasized. Additionally, this work covers all possible mechanisms and pathways by which flavonoids induce promising therapeutic actions against the above-mentioned herpesviruses.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Alena Mazurakova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Trga Dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
21
|
Kang X, Jin D, Jiang L, Zhang Y, Zhang Y, An X, Duan L, Yang C, Zhou R, Duan Y, Sun Y, Lian F. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Chin Med 2022; 17:30. [PMID: 35227280 PMCID: PMC8883015 DOI: 10.1186/s13020-022-00587-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), traditional Chinese medicine (TCM) has made an important contribution to the prevention and control of the epidemic. This review aimed to evaluate the efficacy and explore the mechanisms of TCM for COVID-19. We systematically searched 7 databases from their inception up to July 21, 2021, to distinguish randomized controlled trials (RCTs), cohort studies (CSs), and case–control studies (CCSs) of TCM for COVID-19. Two reviewers independently completed the screening of literature, extraction of data, and quality assessment of included studies. Meta-analysis was performed using Review Manager 5.4 software. Eventually, 29 RCTs involving 3060 patients and 28 retrospective studies (RSs) involving 12,460 patients were included. The meta-analysis demonstrated that TCM could decrease the proportion of patients progressing to severe cases by 55% and the mortality rate of severe or critical patients by 49%. Moreover, TCM could relieve clinical symptoms, curtail the length of hospital stay, improve laboratory indicators, and so on. In addition, we consulted the literature and obtained 149 components of Chinese medicinal herbs that could stably bind to antiviral targets or anti-inflammatory or immune-regulating targets by the prediction of molecular docking. It suggested that the mechanisms involved anti-virus, anti-inflammation, and regulation of immunity. Our study made a systematic review on the efficacy of TCM for COVID-19 and discussed the possible mechanisms, which provided clinical reference and theoretical basis for further research on the mechanism of TCM for COVID-19.
Collapse
Affiliation(s)
- Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongrong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Alfhili MA, Basudan AM, Alsughayyir J. Antiproliferative Wnt inhibitor wogonin prevents eryptosis following ionophoric challenge, hyperosmotic shock, oxidative stress, and metabolic deprivation. J Food Biochem 2021; 45:e13977. [PMID: 34664287 DOI: 10.1111/jfbc.13977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Anemia is a common complication of chemotherapy and may arise due to premature or suicidal death of red blood cells (RBCs). Prevention of RBC death thus lends itself as a promising strategy to counteract anemia. Wogonin (WGN; 5,7-dihydroxy-8-methoxyflavone) is a Wnt inhibitor derived from Scutellaria baicalensis plant with potent cytotoxic and antitumor potential. However, the nature of interaction of WGN with human RBCs is unknown. RBCs from healthy participants were exposed to different hemolytic and eryptotic stimuli for 24 or 48 hr at 37°C in the presence and absence of 100 μM WGN. Calcium overload was induced by 2 μM ionomycin, hyperosmotic shock with excessive sucrose, oxidative stress by 2-phenethyl isothiocyanate (PEITC), and metabolic deprivation by exclusion of glucose. Hemolysis was estimated from extracellular hemoglobin, phosphatidylserine (PS) exposure by Annexin V-FITC, intracellular calcium by Fluo4/AM, and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2 DCFDA). While WGN did not rescue the cells from the hemolytic activity of ionomycin, it reduced PS externalization by interfering with calcium influx under both ionomycin treatment and metabolic exhaustion. WGN also significantly inhibited PS exposure upon hyperosmotic shock, but the effect was independent of calcium entry. Moreover, WGN exhibited antihemolytic and anti-eryptotic activities against PEITC without appreciable reduction in ROS levels. Altogether, WGN prevents PEITC-induced hemolysis and suppresses eryptosis due to calcium accumulation, hyperosmotic shock, oxidative stress, and metabolic exhaustion. These novel insights may open new avenues into the therapeutic application of WGN for conditions in which anemia is commonly encountered, most notably cancer. PRACTICAL APPLICATIONS: The herbal supplement Sho-Saiko-To (Xiaochaihu-tang) is commonly prescribed to relieve symptoms of liver disease. Flavonoids from the herbal constituents of Sho-Saiko-To have demonstrated considerable anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory properties. In this work, we identify WGN, a major flavonoid in Sho-Saiko-To, as a novel inhibitor of hemolysis and eryptosis of human erythrocytes. Since inordinate erythrocyte death is a major obstacle in therapeutic drug development, our findings argue for the use of WGN as a natural alternative, either as a primary or an adjuvant drug, for a wide assortment of pathological conditions including cancer.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Ruchawapol C, Yuan M, Wang SM, Fu WW, Xu HX. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules 2021; 26:6290. [PMID: 34684870 PMCID: PMC8541008 DOI: 10.3390/molecules26206290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Si-Min Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; (C.R.); (M.Y.); (S.-M.W.)
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
24
|
Yosri N, Abd El-Wahed AA, Ghonaim R, Khattab OM, Sabry A, Ibrahim MAA, Moustafa MF, Guo Z, Zou X, Algethami AFM, Masry SHD, AlAjmi MF, Afifi HS, Khalifa SAM, El-Seedi HR. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021; 10:1776. [PMID: 34441553 PMCID: PMC8391193 DOI: 10.3390/foods10081776] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = -9.4 kcal/mol), RdRp (-7.5), RBD (-7.2), NSP13 (-9.4), and ACE2 (-10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (-8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.
Collapse
Affiliation(s)
- Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Reem Ghonaim
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Omar M. Khattab
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aya Sabry
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | | | - Saad H. D. Masry
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria 21934, Egypt;
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Al Ain 52150, United Arab Emirates
| | - Mohamed F. AlAjmi
- Pharmacognosy Group, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hanan S. Afifi
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
| |
Collapse
|
25
|
Huynh DL, Ngau TH, Nguyen NH, Tran GB, Nguyen CT. Potential therapeutic and pharmacological effects of Wogonin: an updated review. Mol Biol Rep 2020; 47:9779-9789. [PMID: 33165817 DOI: 10.1007/s11033-020-05972-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Flavonoids are members of polyphenolic compounds, which are naturally presented in fruits, vegetables, and some medicinal plants. Traditionally, the root of Scutellaria baicalensis is widely used as Chinese herbal medicine and contains several major bioactive compounds such as Wogonin, Scutellarein, Baicalein, and Baicalin. Experimental and clinical evidence has been proving that Wogonin exhibits diverse biological activities such as anti-cancer, anti-inflammation, and treatment of bacterial and viral infections. In this review, we summarize and emphasize the benefits of Wogonin as a therapeutic adjuvant for anti-viral infection, anti-inflammation, neuroprotection as well as anxiolytic and anticonvulsant. Moreover, the molecular mechanism(s) how Wogonin mediates the cellular signal pathways and immune responses are also discussed and highlighted valuable properties of Wogonin in multiple therapies.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Tran Hoang Ngau
- Faculty of Biotechnology, Ho Chi Minh University of Food and Industry, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|